|
1
|
Carioli G, Malvezzi M, Bertuccio P,
Boffetta P, Levi F, La Vecchia C and Negri E: European cancer
mortality predictions for the year 2021 with focus on pancreatic
and female lung cancer. Ann Oncol. 32:478–487. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Dolgin E: Cancer's new normal. Nat Cancer.
2:1248–1250. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cheek DM and Naxerova K: Mapping the long
road to cancer. Cell. 185:939–940. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bonnet F, Perin JP, Maillet P, Jolles P
and Alliel PM: Characterization of a human seminal plasma
glycosaminoglycan-bearing polypeptide. Biochem J. 288((Pt 2)):
565–569. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Charbonnier F, Périn JP, Roussel G,
Nussbaum JL and Alliel PM: Cloning of testican/SPOCK in man and
mouse. Neuromuscular expression perspectives in pathology. C R
Seances Soc Biol Fil. 191:127–133. 1997.(In French). PubMed/NCBI
|
|
7
|
Hausser HJ, Decking R and Brenner RE:
Testican-1, an inhibitor of pro-MMP-2 activation, is expressed in
cartilage. Osteoarthritis Cartilage. 12:870–877. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Perurena N, Zandueta C, Martinez-Canarias
S, Moreno H, Vicent S, Almeida AS, Guruceaga E, Gomis RR,
Santisteban M, Egeblad M, et al: EPCR promotes breast cancer
progression by altering SPOCK1/testican 1-mediated 3D growth. J
Hematol Oncol. 10:232017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhong J, Krawczyk SA, Chaerkady R, Huang
H, Goel R, Bader JS, Wong GW, Corkey BE and Pandey A: Temporal
profiling of the secretome during adipogenesis in humans. J
Proteome Res. 9:5228–5238. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chiarini A, Onorati F, Marconi M, Pasquali
A, Patuzzo C, Malashicheva A, Irtyega O, Faggian G, Pignatti PF,
Trabetti E, et al: Studies on sporadic non-syndromic thoracic
aortic aneurysms: II. Alterations of extra-cellular matrix
components and focal adhesion proteins. Eur J Prev Cardiol. 25
(Suppl 1):S51–S58. 2018. View Article : Google Scholar
|
|
11
|
Váncza L, Tátrai P, Reszegi A, Baghy K and
Kovalszky I: SPOCK1 with unexpected function. The start of a new
career. Am J Physiol Cell Physiol. 322:C688–c693. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gao Y, Yu M, Ma M, Zhuang Y, Qiu X, Zhao
Q, Dai J, Cai H and Yan X: SPOCK1 contributes to the
third-generation EGFR tyrosine kinase inhibitors resistance in lung
cancer. J Cell Biochem. 120:12566–12573. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Charbonnier F, Périn JP, Mattei MG,
Camuzat A, Bonnet F, Gressin L and Alliel PM: Genomic organization
of the human SPOCK gene and its chromosomal localization to 5q31.
Genomics. 48:377–380. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Alliel PM, Perin JP, Jolles P and Bonnet
FJ: Testican, a multidomain testicular proteoglycan resembling
modulators of cell social behaviour. Eur J Biochem. 214:347–350.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hohenester E, Maurer P, Hohenadl C, Timpl
R, Jansonius JN and Engel J: Structure of a novel extracellular
Ca(2+)-binding module in BM-40. Nat Struct Biol. 3:67–73. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Molina F, Bouanani M, Pau B and Granier C:
Characterization of the type-1 repeat from thyroglobulin, a
cysteine-rich module found in proteins from different families. Eur
J Biochem. 240:125–133. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen TK, Surapaneni AL, Arking DE,
Ballantyne CM, Boerwinkle E, Chen J, Coresh J, Köttgen A, Susztak
K, Tin A, et al: APOL1 Kidney Risk Variants and Proteomics. Clin J
Am Soc Nephrol. 17:684–692. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kamioka M, Imamura J, Komatsu N, Daibata M
and Sugiura T: Testican 3 expression in adult T-cell leukemia. Leuk
Res. 33:913–918. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lou W, Ding B, Zhong G, Du C, Fan W and Fu
P: Dysregulation of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway
fuels stage progression of ovarian cancer. Aging (Albany NY).
11:11416–11439. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lal CV and Ambalavanan N: Genetic
predisposition to bronchopulmonary dysplasia. Semin Perinatol.
39:584–591. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ye Z, Chen J, Hu X, Yang S, Xuan Z, Lu X
and Zhao Q: SPOCK1: A multi-domain proteoglycan at the crossroads
of extracellular matrix remodeling and cancer development. Am J
Cancer Res. 10:3127–3137. 2020.PubMed/NCBI
|
|
22
|
Okato A, Arai T, Kojima S, Koshizuka K,
Osako Y, Idichi T, Kurozumi A, Goto Y, Kato M, Naya Y, et al: Dual
strands of pre-miR-150 (miR-150-5p and miR-150-3p) act as antitumor
miRNAs targeting SPOCK1 in naïve and castration-resistant prostate
cancer. Int J Oncol. 51:245–256. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Reichard J and Zimmer-Bensch G: The
epigenome in neurodevelopmental disorders. Front Neurosci.
15:7768092021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pimentel-Santos FM, Ligeiro D, Matos M,
Mourão AF, Costa J, Santos H, Barcelos A, Godinho F, Pinto P, Cruz
M, et al: Whole blood transcriptional profiling in ankylosing
spondylitis identifies novel candidate genes that might contribute
to the inflammatory and tissue-destructive disease aspects.
Arthritis Res Ther. 13:R572011. View
Article : Google Scholar : PubMed/NCBI
|
|
25
|
Vannahme C, Schübel S, Herud M, Gösling S,
Hülsmann H, Paulsson M, Hartmann U and Maurer P: Molecular cloning
of testican-2: Defining a novel calcium-binding proteoglycan family
expressed in brain. J Neurochem. 73:12–20. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li D, Farrell JJ, Mez J, Martin ER, Bush
WS, Ruiz A, Boada M, de Rojas I, Mayeux R, Haines JL, et al: Novel
loci for Alzheimer's disease identified by a genome-wide
association study in Ashkenazi Jews. Alzheimers Dement.
19:5550–5562. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yu F, Li G, Gao J, Sun Y, Liu P, Gao H, Li
P, Lei T, Chen Y, Cheng Y, et al: SPOCK1 is upregulated in
recurrent glioblastoma and contributes to metastasis and
Temozolomide resistance. Cell Prolif. 49:195–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xu M, Zhang X, Zhang S, Piao J, Yang Y,
Wang X and Lin Z: SPOCK1/SIX1axis promotes breast cancer
progression by activating AKT/mTOR signaling. Aging (Albany NY).
13:1032–1050. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shengxiao X, Xinxin S, Yunxiang Z, Zhijie
T and Xiaofei T: Identification of a basement membrane-related gene
signature for predicting prognosis, immune infiltration, and drug
sensitivity in colorectal cancer. Front Oncol. 14:14281762024.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Luo J, Lai C, Xu X, Shi J, Hu J, Guo K,
Mulati Y, Xiao Y, Kong D, Liu C and Xu K: Mechanism of prognostic
marker SPOCK3 affecting malignant progression of prostate cancer
and construction of prognostic model. BMC Cancer. 23:7412023.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ma D, Fetahu IS, Wang M, Fang R, Li J, Liu
H, Gramyk T, Iwanicki I, Gu S, Xu W, et al: The fusiform gyrus
exhibits an epigenetic signature for Alzheimer's disease. Clin
Epigenetics. 12:1292020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Herreros-Pomares A, Llorens C, Soriano B,
Bagan L, Moreno A, Calabuig-Fariñas S, Jantus-Lewintre E and Bagan
J: Differentially methylated genes in proliferative verrucous
leukoplakia reveal potential malignant biomarkers for oral squamous
cell carcinoma. Oral Oncol. 116:1051912021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jensen LD, Hot B, Ramsköld D, Germano RFV,
Yokota C, Giatrellis S, Lauschke VM, Hubmacher D, Li MX, Hupe M, et
al: Disruption of the Extracellular Matrix Progressively Impairs
Central Nervous System Vascular Maturation Downstream of β-Catenin
Signaling. Arterioscler Thromb Vasc Biol. 39:1432–1447. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chai T, Tian M, Yang X, Qiu Z, Lin X and
Chen L: Genome-Wide identification of associations of circulating
molecules with spontaneous coronary artery dissection and aortic
aneurysm and dissection. Front Cardiovasc Med. 9:8749122022.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Martinez JR, Dhawan A and Farach-Carson
MC: Modular Proteoglycan Perlecan/HSPG2: Mutations, phenotypes, and
functions. Genes (Basel). 9:5562018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gordts PLSM and Esko JD: The heparan
sulfate proteoglycan grip on hyperlipidemia and atherosclerosis.
Matrix Biol. 71–72. 262–282. 2018.PubMed/NCBI
|
|
37
|
Pintér A, Hevesi Z, Zahola P, Alpár A and
Hanics J: Chondroitin sulfate proteoglycan-5 forms perisynaptic
matrix assemblies in the adult rat cortex. Cell Signal.
74:1097102020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Schiffer D, Mellai M, Boldorini R, Bisogno
I, Grifoni S, Corona C, Bertero L, Cassoni P, Casalone C and
Annovazzi L: The significance of chondroitin sulfate proteoglycan 4
(CSPG4) in human gliomas. Int J Mol Sci. 19:27242018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Swenarchuk LE: Nerve, Muscle, and
Synaptogenesis. Cells. 8:14482019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gridley DS, Mao XW, Tian J, Cao JD, Perez
C, Stodieck LS, Ferguson VL, Bateman TA and Pecaut MJ: Genetic and
apoptotic changes in lungs of mice flown on the STS-135 mission in
space. In vivo. 29:423–433. 2015.PubMed/NCBI
|
|
41
|
Zhang L, An XP, Liu XR, Fu MZ, Han P, Peng
JY, Hou JX, Zhou ZQ, Cao BY and Song YX: Characterization of the
transcriptional complexity of the receptive and pre-receptive
endometria of dairy goats. Sci Rep. 5:142442015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hadchouel A, Durrmeyer X, Bouzigon E,
Incitti R, Huusko J, Jarreau PH, Lenclen R, Demenais F,
Franco-Montoya ML, Layouni I, et al: Identification of SPOCK2 as a
susceptibility gene for bronchopulmonary dysplasia. Am J Respir
Crit Care Med. 184:1164–1170. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Buga AM, Scholz CJ, Kumar S, Herndon JG,
Alexandru D, Cojocaru GR, Dandekar T and Popa-Wagner A:
Identification of new therapeutic targets by genome-wide analysis
of gene expression in the ipsilateral cortex of aged rats after
stroke. PLoS One. 7:e509852012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Weber H, Scholz CJ, Jacob CP, Heupel J,
Kittel-Schneider S, Erhardt A, Hempel S, Schmidt B, Kiel T, Gessner
A, et al: SPOCK3, a risk gene for adult ADHD and personality
disorders. Eur Arch Psychiatry Clin Neurosci. 264:409–421. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Karcher NR, Rogers BP and Woodward ND:
Functional connectivity of the striatum in schizophrenia and
psychotic bipolar disorder. Biol Psychiatry Cogn Neurosci
Neuroimaging. 4:956–965. 2019.PubMed/NCBI
|
|
46
|
Walker WH II, Walton JC, DeVries AC and
Nelson RJ: Circadian rhythm disruption and mental health. Transl
Psychiatry. 10:282020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Haukvik UK, Tamnes CK, Soderman E and
Agartz I: Neuroimaging hippocampal subfields in schizophrenia and
bipolar disorder: A systematic review and meta-analysis. J
Psychiatr Res. 104:217–226. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Weissflog L, Scholz CJ, Jacob CP, Nguyen
TT, Zamzow K, Gross-Lesch S, Renner TJ, Romanos M, Rujescu D,
Walitza S, et al: KCNIP4 as a candidate gene for personality
disorders and adult ADHD. Eur Neuropsychopharmacol. 23:436–447.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bocock JP, Edgell CJ, Marr HS and Erickson
AH: Human proteoglycan testican-1 inhibits the lysosomal cysteine
protease cathepsin L. Eur J Biochem. 270:4008–4015. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
van de Merbel AF, van der Horst G, Buijs
JT and van der Pluijm G: Protocols for Migration and Invasion
Studies in Prostate Cancer. Methods Mol Biol. 1786:67–79. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Morillo-Bernal J, Fernandez LP and
Santisteban P: FOXE1 regulates migration and invasion in thyroid
cancer cells and targets ZEB1. Endocr Relat Cancer. 27:137–151.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pal A, Haliti P, Dharmadhikari B, Qi W and
Patra P: Manipulating extracellular matrix organizations and
parameters to control local cancer invasion. IEEE/ACM Trans Comput
Biol Bioinform. 18:2566–2576. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Quan Q, Wang X, Lu C, Ma W, Han J, Xia G,
Yang G and Wang C: Association of extracellular matrix
microarchitecture and three-dimensional collective invasion of
cancer cells. Biotech Histochem. 95:605–612. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bakir B, Chiarella AM, Pitarresi JR and
Rustgi AK: EMT, MET, plasticity, and tumor metastasis. Trends Cell
Biol. 30:764–776. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pastushenko I and Blanpain C: EMT
transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ohtsu A: Current status and future
prospects of chemotherapy for metastatic gastric cancer: A review.
Gastric Cancer. 8:95–102. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen D, Zhou H, Liu G, Zhao Y, Cao G and
Liu Q: SPOCK1 promotes the invasion and metastasis of gastric
cancer through Slug-induced epithelial-mesenchymal transition. J
Cell Mol Med. 22:797–807. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ge R, Wang Z, Montironi R, Jiang Z, Cheng
M, Santoni M, Huang K, Massari F, Lu X, Cimadamore A, et al:
Epigenetic modulations and lineage plasticity in advanced prostate
cancer. Ann Oncol. 31:470–479. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen Q, Yao YT, Xu H, Chen YB, Gu M, Cai
ZK and Wang Z: SPOCK1 promotes tumor growth and metastasis in human
prostate cancer. Drug Des Devel Ther. 10:2311–2321. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chien MH, Lin YW, Wen YC, Yang YC, Hsiao
M, Chang JL, Huang HC and Lee WJ: Targeting the SPOCK1-snail/slug
axis-mediated epithelial-to-mesenchymal transition by apigenin
contributes to repression of prostate cancer metastasis. J Exp Clin
Cancer Res. 38:2462019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen ML, Ho CJ, Yeh CM, Chen SL, Sung WW,
Wang SC and Chen CJ: High SPOCK1 expression is associated with
advanced stage, T value, and gleason grade in prostate cancer.
Medicina (Kaunas). 55:3432019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ma LJ, Wu WJ, Wang YH, Wu TF, Liang PI,
Chang IW, He HL and Li CF: SPOCK1 overexpression confers a poor
prognosis in urothelial carcinoma. J Cancer. 7:467–476. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fan LC, Jeng YM, Lu YT and Lien HC: SPOCK1
Is a novel transforming growth factor-β-induced myoepithelial
marker that enhances invasion and correlates with poor prognosis in
breast cancer. PLoS One. 11:e01629332016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Veenstra VL, Damhofer H, Waasdorp C,
Steins A, Kocher HM, Medema JP, ven Laarhoven HW and Bijlsma MF:
Stromal SPOCK1 supports invasive pancreatic cancer growth. Mol
Oncol. 11:1050–1064. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Roberts DD: Emerging functions of
matricellular proteins. Cell Mol Life Sci. 68:3133–3136. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gerarduzzi C, Hartmann U, Leask A and
Drobetsky E: The matrix revolution: Matricellular proteins and
restructuring of the cancer microenvironment. Cancer Res.
80:2705–2717. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yang J, Yang Q, Yu J, Li X, Yu S and Zhang
X: SPOCK1 promotes the proliferation, migration and invasion of
glioma cells through PI3K/AKT and Wnt/β-catenin signaling pathways.
Oncol Rep. 35:3566–3576. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li Y, Chen L, Chan TH, Liu M, Kong KL, Qiu
JL, Li Y, Yuan YF and Guan XY: SPOCK1 is regulated by CHD1L and
blocks apoptosis and promotes HCC cell invasiveness and metastasis
in mice. Gastroenterology. 144:179–191.e4. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang J, Zhi X, Shi S, Tao R, Chen P, Sun
S, Bian L, Xu Z and Ma L: SPOCK1 is up-regulated and promotes tumor
growth via the PI3K/AKT signaling pathway in colorectal cancer.
Biochem Biophys Res Commun. 482:870–876. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kong L, Wu Q, Zhao L, Ye J, Li N and Yang
H: Identification of messenger and long noncoding RNAs associated
with gallbladder cancer via gene expression profile analysis. J
Cell Biochem. 120:19377–19387. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shu YJ, Weng H, Ye YY, Hu YP, Bao RF, Cao
Y, Cao Y, Wang XA, Zhang F, Xiang SS, et al: SPOCK1 as a potential
cancer prognostic marker promotes the proliferation and metastasis
of gallbladder cancer cells by activating the PI3K/AKT pathway. Mol
Cancer. 14:122015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vincent A, Herman J, Schulick R, Hruban RH
and Goggins M: Pancreatic cancer. Lancet. 378:607–620. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ilic M and Ilic I: Epidemiology of
pancreatic cancer. World J Gastroenterol. 22:9694–9705. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li J, Ke J, Fang J and Chen JP: A
potential prognostic marker and therapeutic target: SPOCK1 promotes
the proliferation, metastasis, and apoptosis of pancreatic ductal
adenocarcinoma cells. J Cell Biochem. 121:743–754. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen C, Xie L, Ren T, Huang Y, Xu J and
Guo W: Immunotherapy for osteosarcoma: Fundamental mechanism,
rationale, and recent breakthroughs. Cancer Lett. 500:1–10. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ritter J and Bielack SS: Osteosarcoma. Ann
Oncol. 21 Suppl 7:vii320–vii325. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li P, Xiao Z, Luo J, Zhang Y and Lin L:
MiR-139-5p, miR-940 and miR-193a-5p inhibit the growth of
hepatocellular carcinoma by targeting SPOCK1. J Cell Mol Med.
23:2475–2488. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yu XF, Wang J, OUYang N, Guo S, Sun H,
Tong J, Chen T and Li J: The role of miR-130a-3p and SPOCK1 in
tobacco exposed bronchial epithelial BEAS-2B transformed cells:
Comparison to A549 and H1299 lung cancer cell lines. J Toxicol
Environ Health A. 82:862–869. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xu Y, Zhao P, Xu X, Zhang S, Xia B and Zhu
L: T790M mutation sensitizes non-small cell lung cancer cells to
radiation via suppressing SPOCK1. Biochem Biophys Rep.
38:1017292024.PubMed/NCBI
|
|
80
|
Wang T, Liu X, Tian Q, Liang T and Chang
P: Reduced SPOCK1 expression inhibits non-small cell lung cancer
cell proliferation and migration through Wnt/β-catenin signaling.
Eur Rev Med Pharmacol Sci. 22:637–644. 2018.PubMed/NCBI
|
|
81
|
Koshizuka K, Hanazawa T, Kikkawa N, Katada
K, Okato A, Arai T, Idichi T, Osako Y, Okamoto Y and Seki N:
Antitumor miR-150-5p and miR-150-3p inhibit cancer cell
aggressiveness by targeting SPOCK1 in head and neck squamous cell
carcinoma. Auris Nasus Larynx. 45:854–865. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Osako Y, Seki N, Koshizuka K, Okato A,
Idichi T, Arai T, Omoto I, Sasaki K, Uchikado Y, Kita Y, et al:
Regulation of SPOCK1 by dual strands of pre-miR-150 inhibit cancer
cell migration and invasion in esophageal squamous cell carcinoma.
J Hum Genet. 62:935–944. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Song X, Han P, Liu J, Wang Y, Li D, He J,
Gong J, Li M, Tu W, Yan W, et al: Up-regulation of SPOCK1 induces
epithelial-mesenchymal transition and promotes migration and
invasion in esophageal squamous cell carcinoma. J Mol Histol.
46:347–356. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhu X, Jiang S, Wu Z, Liu T, Zhang W, Wu
L, Xu L and Shao M: Long non-coding RNA TTN antisense RNA 1
facilitates hepatocellular carcinoma progression via regulating
miR-139-5p/SPOCK1 axis. Bioengineered. 12:578–588. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Verma M, Patel P and Verma M: Biomarkers
in prostate cancer epidemiology. Cancers (Basel). 3:3773–3798.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sambuudash O, Kim HS and Cho MY: Lack of
aberrant methylation in an adjacent area of left-sided colorectal
cancer. Yonsei Med J. 58:749–755. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu G, Ren F and Song Y: Upregulation of
SPOCK2 inhibits the invasion and migration of prostate cancer cells
by regulating the MT1-MMP/MMP2 pathway. PeerJ. 7:e71632019.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chang AJ, Autio KA, Roach M III and Scher
HI: High-risk prostate cancer-classification and therapy. Nat Rev
Clin Oncol. 11:308–323. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ren F, Wang DB, Li T, Chen YH and Li Y:
Identification of differentially methylated genes in the malignant
transformation of ovarian endometriosis. J Ovarian Res. 7:732014.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Taphoorn MJB, Dirven L, Kanner AA,
Lavy-Shahaf G, Weinberg U, Taillibert S, Toms SA, Honnorat J, Chen
TC, Sroubek J, et al: Influence of treatment with tumor-treating
fields on health-related quality of life of patients with newly
diagnosed glioblastoma: A secondary analysis of a randomized
clinical trial. JAMA Oncol. 4:495–504. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wessels PH, Weber WE, Raven G, Ramaekers
FC, Hopman AH and Twijnstra A: Supratentorial grade II astrocytoma:
Biological features and clinical course. Lancet Neurol. 2:395–403.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
MacDonald TJ, Pollack IF, Okada H,
Bhattacharya S and Lyons-Weiler J: Progression-associated genes in
astrocytoma identified by novel microarray gene expression data
reanalysis. Methods Mol Biol. 377:203–222. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ren F, Wang D, Wang Y, Chen P and Guo C:
SPOCK2 affects the biological behavior of endometrial cancer cells
by regulation of MT1-MMP and MMP2. Reprod Sci. 27:1391–1399. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
She S, Yang M, Hu H, Hu P, Yang Y and Ren
H: Proteomics based identification of autotaxin as an
anti-hepatitis B virus factor and a promoter of hepatoma cell
invasion and migration. Cell Physiol Biochem. 45:744–760. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Nakada M, Yamada A, Takino T, Miyamori H,
Takahashi T, Yamashita J and Sato H: Suppression of membrane-type 1
matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor
invasion by testican 3 and its splicing variant gene product,
N-Tes. Cancer Res. 61:8896–8902. 2001.PubMed/NCBI
|
|
96
|
Nakada M, Miyamori H, Yamashita J and Sato
H: Testican 2 abrogates inhibition of membrane-type matrix
metalloproteinases by other testican family proteins. Cancer Res.
63:3364–3369. 2003.PubMed/NCBI
|
|
97
|
Yu G, Tang Z, Chen H, Chen Z, Wang L, Cao
H, Wang G, Xing J, Shen H, Cheng Q, et al: Long-term exposure to 4G
smartphone radiofrequency electromagnetic radiation diminished male
reproductive potential by directly disrupting Spock3-MMP2-BTB axis
in the testes of adult rats. Sci Total Environ. 698:1338602020.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang LY, Cui JJ, Zhu T, Shao WH, Zhao Y,
Wang S, Zhang YP, Wu JC and Zhang L: Biomarkers identified for
prostate cancer patients through genome-scale screening.
Oncotarget. 8:92055–92063. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lee SJ, Kim SJ, Seo HH, Shin SP, Kim D,
Park CS, Kim KT, Kim YH, Jeong JS and Kim IH: Over-expression of
miR-145 enhances the effectiveness of HSVtk gene therapy for
malignant glioma. Cancer Lett. 320:72–80. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Du Z, Lin Z, Wang Z, Liu D, Tian D and Xia
L: SPOCK1 overexpression induced by platelet-derived growth
factor-BB promotes hepatic stellate cell activation and liver
fibrosis through the integrin α5β1/PI3K/Akt signaling pathway. Lab
Invest. 100:1042–1056. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Morales Johansson H, Newman DR and Sannes
PL: Whole-genome analysis of temporal gene expression during early
transdifferentiation of human lung alveolar epithelial type 2 cells
in vitro. PLoS One. 9:e934132014. View Article : Google Scholar : PubMed/NCBI
|