Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2025 Volume 31 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 31 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Gut‑liver axis in liver disease: From basic science to clinical treatment (Review)

  • Authors:
    • Jianpeng Wang
    • Xinyi Wang
    • Enba Zhuo
    • Bangjie Chen
    • Shixin Chan
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 10
    |
    Published online on: October 23, 2024
       https://doi.org/10.3892/mmr.2024.13375
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered ‘a new virtual metabolic organ’. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases. 
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Adak A and Khan MR: An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 76:473–493. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Woodruff AW, Salih SY, de Savigny D, Baya EI, Shah AI and Dafalla AA: Toxocariasis in the Sudan. Ann Trop Med Parasitol. 75:559–561. 1981. View Article : Google Scholar : PubMed/NCBI

3 

Fan Y and Pedersen O: Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 19:55–71. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Wiest R, Albillos A, Trauner M, Bajaj JS and Jalan R: Targeting the gut-liver axis in liver disease. J Hepatol. 67:1084–1103. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Radovanovic Spurnic A, Gmizic I, Stevanovic O, Djordjevic V, Lekic N, et al: Gut-Liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature. Int J Mol Sci. 20:3952019. View Article : Google Scholar : PubMed/NCBI

6 

Kim ER, Park JS, Kim JH, Oh JY, Oh IJ, Choi DH, Lee YS, Park IS, Kim S, Lee DH, et al: A GLP-1/GLP-2 receptor dual agonist to treat NASH: Targeting the gut-liver axis and microbiome. Hepatology. 75:1523–1538. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Song Q, Zhang X, Liu W, Wei H, Liang W, Zhou Y, Ding Y, Ji F, Ho-Kwan Cheung A, Wong N and Yu J: Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Hepatol. 79:1352–1365. 2023. View Article : Google Scholar : PubMed/NCBI

8 

Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Lo Cascio A, Gandini S, Lizier M, Braga D, Asnicar F, et al: Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell. 39:708–724.e11. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Hu X, Chen F, Jia L, Long A, Peng Y, Li X, Huang J, Wei X, Fang X, Gao Z, et al: A gut-derived hormone regulates cholesterol metabolism. Cell. 187:1685–700.e18. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, Zheng D, Cheung KCP, Liao B, Wang S, et al: Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 35:1752–1766.e8. 2023. View Article : Google Scholar : PubMed/NCBI

11 

Sheng Z, Xu J, Li F, Yuan Y, Peng X, Chen S, Zhou R and Huang W: The RING-domain E3 ubiquitin ligase RNF146 promotes cardiac hypertrophy by suppressing the LKB1/AMPK signaling pathway. Exp Cell Res. 410:1129542022. View Article : Google Scholar : PubMed/NCBI

12 

Goto J, Otaki Y, Watanabe T, Kobayashi Y, Aono T, Watanabe K, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, et al: HECT (Homologous to the E6-AP Carboxyl Terminus)-Type ubiquitin E3 ligase ITCH attenuates cardiac hypertrophy by suppressing the Wnt/β-catenin signaling pathway. Hypertension. 76:1868–1878. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Broquetas T and Carrion JA: Past, present, and future of long-term treatment for hepatitis B virus. World J Gastroenterol. 29:3964–3983. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Frenette C, Mendiratta-Lala M, Salgia R, Wong RJ, Sauer BG and Pillai A: ACG clinical guideline: Focal liver lesions. Am J Gastroenterol. 119:1235–1271. 2024. View Article : Google Scholar : PubMed/NCBI

15 

European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO) and the European Association for the Study of the Liver (EASL), . EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol. 81:492–542. 2024. View Article : Google Scholar : PubMed/NCBI

16 

Forrest EH, Atkinson SR, Richardson P, Masson S, Ryder S, Thursz MR and Allison M: ACG clinical guideline for alcoholic liver disease: The MELD threshold for corticosteroid treatment has yet to be established. Am J Gastroenterol. 114:175–176. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Dai JJ, Zhang YF and Zhang ZH: Global trends and hotspots of treatment for nonalcoholic fatty liver disease: A bibliometric and visualization analysis (2010–2023). World J Gastroenterol. 29:5339–5360. 2023. View Article : Google Scholar : PubMed/NCBI

18 

Suddle A, Reeves H, Hubner R, Marshall A, Rowe I, Tiniakos D, Hubscher S, Callaway M, Sharma D, See TC, et al: British Society of Gastroenterology guidelines for the management of hepatocellular carcinoma in adults. Gut. 73:1235–1268. 2024. View Article : Google Scholar : PubMed/NCBI

19 

Zhou Q, Li B and Li J: DLL4-Notch signalling in acute-on-chronic liver failure: State of the art and perspectives. Life Sci. 317:1214382023. View Article : Google Scholar : PubMed/NCBI

20 

Conde de la Rosa L, Garcia-Ruiz C, Vallejo C, Baulies A, Nuñez S, Monte MJ, Marin JJG, Baila-Rueda L, Cenarro A, Civeira F, et al: STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway. J Hepatol. 74:1429–1441. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Bernsmeier C, Singanayagam A, Patel VC, Wendon J and Antoniades CG: Immunotherapy in the treatment and prevention of infection in acute-on-chronic liver failure. Immunotherapy. 7:641–654. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K and Flentje M: Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 45:838–847. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E and Kamath PS: Global burden of liver disease: 2023 update. J Hepatol. 79:516–537. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Taha G, Ezra L and Abu-Freha N: Hepatitis C elimination: Opportunities and challenges in 2023. Viruses. 15:14132023. View Article : Google Scholar : PubMed/NCBI

25 

Hsu YC, Huang DQ and Nguyen MH: Global burden of hepatitis B virus: Current status, missed opportunities and a call for action. Nat Rev Gastroenterol Hepatol. 20:524–537. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Hernandez-Evole H, Jimenez-Esquivel N, Pose E and Bataller R: Alcohol-associated liver disease: Epidemiology and management. Ann Hepatol. 29:1011622024. View Article : Google Scholar : PubMed/NCBI

27 

Julien J, Ayer T, Bethea ED, Tapper EB and Chhatwal J: Projected prevalence and mortality associated with alcohol-related liver disease in the USA, 2019–40: A modelling study. Lancet Public Health. 5:e316–e23. 2020. View Article : Google Scholar : PubMed/NCBI

28 

McGlynn KA, Petrick JL and El-Serag HB: Epidemiology of hepatocellular carcinoma. Hepatology. 73 (Suppl 1):S4–S13. 2021. View Article : Google Scholar

29 

Collins SL, Stine JG, Bisanz JE, Okafor CD and Patterson AD: Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat Rev Microbiol. 21:236–247. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Taranto MP, Perez-Martinez G and Font de Valdez G: Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol. 157:720–725. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Han B, Lv X, Liu G, Li S, Fan J, Chen L, Huang Z, Lin G, Xu X, Huang Z, et al: Gut microbiota-related bile acid metabolism-FXR/TGR5 axis impacts the response to anti-α4β7-integrin therapy in humanized mice with colitis. Gut Microbes. 15:22321432023. View Article : Google Scholar : PubMed/NCBI

32 

Liu HM, Chang ZY, Yang CW, Chang HH and Lee TY: Farnesoid X receptor agonist GW4064 protects lipopolysaccharide-induced intestinal epithelial barrier function and colorectal tumorigenesis signaling through the αKlotho/βKlotho/FGFs pathways in mice. Int J Mol Sci. 24:169322023. View Article : Google Scholar : PubMed/NCBI

33 

Ploton M, Mazuy C, Gheeraert C, Dubois V, Berthier A, Dubois-Chevalier J, Maréchal X, Bantubungi K, Diemer H, Cianférani S, et al: The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. J Hepatol. 69:1099–1109. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Cao Y, Xiao Y, Zhou K, Yan J, Wang P, Yan W and Cai W: FXR agonist GW4064 improves liver and intestinal pathology and alters bile acid metabolism in rats undergoing small intestinal resection. Am J Physiol Gastrointest Liver Physiol. 317:G108–G115. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Yan Y, Sha Y, Huang X, Yuan W, Wu F, Hong J, Fang S, Huang B, Hu C, Wang B and Zhang X: Roux-en-Y gastric bypass improves metabolic conditions in association with increased serum bile acids level and hepatic Farnesoid X receptor expression in a T2DM rat model. Obes Surg. 29:2912–2922. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, et al: Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 439:484–489. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Zietak M and Kozak LP: Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am J Physiol Endocrinol Metab. 310:E346–E354. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Van Treuren W and Dodd D: Microbial contribution to the human metabolome: Implications for health and disease. Annu Rev Pathol. 15:345–369. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Cornell RP: Restriction of gut-derived endotoxin impairs DNA synthesis for liver regeneration. Am J Physiol. 249:R563–R569. 1985.PubMed/NCBI

40 

Nolan JP: The role of intestinal endotoxin in liver injury: A long and evolving history. Hepatology. 52:1829–1835. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Liu H, Xi Q, Tan S, Qu Y, Meng Q, Zhang Y, Cheng Y and Wu G: The metabolite butyrate produced by gut microbiota inhibits cachexia-associated skeletal muscle atrophy by regulating intestinal barrier function and macrophage polarization. Int Immunopharmacol. 124:1110012023. View Article : Google Scholar : PubMed/NCBI

42 

Tang G, Du Y, Guan H, Jia J, Zhu N, Shi Y, Rong S and Yuan W: Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals. Br J Pharmacol. 179:159–178. 2022. View Article : Google Scholar : PubMed/NCBI

43 

Meena AS, Shukla PK, Bell B, Giorgianni F, Caires R, Fernández-Peña C, Beranova S, Aihara E, Montrose MH, Chaib M, et al: TRPV6 channel mediates alcohol-induced gut barrier dysfunction and systemic response. Cell Rep. 39:1109372022. View Article : Google Scholar : PubMed/NCBI

44 

Dominguez-Bello MG, Godoy-Vitorino F, Knight R and Blaser MJ: Role of the microbiome in human development. Gut. 68:1108–1114. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Han YH, Onufer EJ, Huang LH, Sprung RW, Davidson WS, Czepielewski RS, Wohltmann M, Sorci-Thomas MG, Warner BW and Randolph GJ: Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science. 373:eabe67292021. View Article : Google Scholar : PubMed/NCBI

46 

Gomaa EZ: Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek. 113:2019–2040. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Robles-Alonso V and Guarner F: Progress in the knowledge of the intestinal human microbiota. Nutr Hosp. 28:553–557. 2013.(In Spanish). PubMed/NCBI

48 

Charlet R, Bortolus C, Barbet M, Sendid B and Jawhara S: A decrease in anaerobic bacteria promotes Candida glabrata overgrowth while β-glucan treatment restores the gut microbiota and attenuates colitis. Gut Pathog. 10:502018. View Article : Google Scholar : PubMed/NCBI

49 

Charlet R, Pruvost Y, Tumba G, Istel F, Poulain D, Kuchler K, Sendid B and Jawhara S: Remodeling of the Candida glabrata cell wall in the gastrointestinal tract affects the gut microbiota and the immune response. Sci Rep. 8:33162018. View Article : Google Scholar : PubMed/NCBI

50 

Bertin Y, Girardeau JP, Chaucheyras-Durand F, Lyan B, Pujos-Guillot E, Harel J and Martin C: Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol. 13:365–377. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Ma HD, Zhao ZB, Ma WT, Liu QZ, Gao CY, Li L, Wang J, Tsuneyama K, Liu B, Zhang W, et al: Gut microbiota translocation promotes autoimmune cholangitis. J Autoimmun. 95:47–57. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, Wang Y, He L, Liu Y, Liu Q, et al: Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol. 69:886–895. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Giuffre M, Campigotto M, Campisciano G, Comar M and Croce LS: A story of liver and gut microbes: How does the intestinal flora affect liver disease? A review of the literature. Am J Physiol Gastrointest Liver Physiol. 318:G889–G906. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Bellot P, Frances R and Such J: Pathological bacterial translocation in cirrhosis: Pathophysiology, diagnosis and clinical implications. Liver Int. 33:31–39. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Giorgio V, Miele L, Principessa L, Ferretti F, Villa MP, Negro V, Grieco A, Alisi A and Nobili V: Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 46:556–560. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G, et al: Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 49:1877–1887. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Rao R: Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology. 50:638–644. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Sewell GW and Kaser A: Interleukin-23 in the pathogenesis of inflammatory bowel disease and implications for therapeutic intervention. J Crohns Colitis. 16 (Suppl 2):ii3–ii19. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, et al: Fungal microbiota dysbiosis in IBD. Gut. 66:1039–1048. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Ng SC, Benjamin JL, McCarthy NE, Hedin CR, Koutsoumpas A, Plamondon S, Price CL, Hart AL, Kamm MA, Forbes A, et al: Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease. Inflamm Bowel Dis. 17:2027–2037. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Coccia M, Harrison OJ, Schiering C, Asquith MJ, Becher B, Powrie F and Maloy KJ: IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 209:1595–1609. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Ma TY, Boivin MA, Ye D, Pedram A and Said HM: Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: Role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol. 288:G422–G430. 2005. View Article : Google Scholar : PubMed/NCBI

63 

He WQ, Wang J, Sheng JY, Zha JM, Graham WV and Turner JR: Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int J Mol Sci. 21:9932020. View Article : Google Scholar : PubMed/NCBI

64 

Chotikatum S, Naim HY and El-Najjar N: Inflammation induced ER stress affects absorptive intestinal epithelial cells function and integrity. Int Immunopharmacol. 55:336–344. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Kinoshita N, Hiroi T, Ohta N, Fukuyama S, Park EJ and Kiyono H: Autocrine IL-15 mediates intestinal epithelial cell death via the activation of neighboring intraepithelial NK cells. J Immunol. 169:6187–6192. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Rohr M, Narasimhulu CA, Keewan E, Hamid S and Parthasarathy S: The dietary peroxidized lipid, 13-HPODE, promotes intestinal inflammation by mediating granzyme B secretion from natural killer cells. Food Funct. 11:9526–9534. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Yasuda K, Nakanishi K and Tsutsui H: Interleukin-18 in health and disease. Int J Mol Sci. 19:6492019. View Article : Google Scholar

68 

Woznicki JA, Saini N, Flood P, Rajaram S, Lee CM, Stamou P, Skowyra A, Bustamante-Garrido M, Regazzoni K, Crawford N, et al: TNF-α synergises with IFN-γ to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells. Cell Death Dis. 12:8642021. View Article : Google Scholar : PubMed/NCBI

69 

Chang JT: Pathophysiology of inflammatory bowel diseases. N Engl J Med. 383:2652–2664. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Romagnani S: Lymphokine production by human T cells in disease states. Annu Rev Immunol. 12:227–257. 1994. View Article : Google Scholar : PubMed/NCBI

71 

Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, et al: IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 15:985–995. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Lin Y, Li B, Yang X, Liu T, Shi T, Deng B, Zhang Y, Jia L, Jiang Z and He R: Non-hematopoietic STAT6 induces epithelial tight junction dysfunction and promotes intestinal inflammation and tumorigenesis. Mucosal Immunol. 12:1304–1315. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Ceponis PJ, Botelho F, Richards CD and McKay DM: Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem. 275:29132–29137. 2000. View Article : Google Scholar : PubMed/NCBI

74 

He L, Liu T, Shi Y, Tian F, Hu H, Deb DK, Bissonnette M and Li YC: Gut epithelial Vitamin D receptor regulates Microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology. 159:967–979. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Lee SH, Kwon JE and Cho ML: Immunological pathogenesis of inflammatory bowel disease. Intest Res. 16:26–42. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Wang X, Ni J, You Y, Feng G, Zhang S, Bao W, Hou H, Li H, Liu L, Zheng M, et al: SNX10-mediated LPS sensing causes intestinal barrier dysfunction via a caspase-5-dependent signaling cascade. EMBO J. 40:e1080802021. View Article : Google Scholar : PubMed/NCBI

77 

Li Q, Rempel JD, Yang J and Minuk GY: The effects of Pathogen-associated molecular patterns on peripheral blood monocytes in patients with Non-alcoholic fatty liver disease. J Clin Exp Hepatol. 12:808–817. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Nakamoto N and Kanai T: Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol. 5:2212014. View Article : Google Scholar : PubMed/NCBI

79 

Szabo G, Dolganiuc A and Mandrekar P: Pattern recognition receptors: A contemporary view on liver diseases. Hepatology. 44:287–298. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Kesar V and Odin JA: Toll-like receptors and liver disease. Liver Int. 34:184–196. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Hardin PE: From biological clock to biological rhythms. Genome Biol. 1:REVIEWS10232000. View Article : Google Scholar : PubMed/NCBI

82 

Jouffe C, Weger BD, Martin E, Atger F, Weger M, Gobet C, Ramnath D, Charpagne A, Morin-Rivron D, Powell EE, et al: Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc Natl Acad Sci USA. 119:e22000831192022. View Article : Google Scholar : PubMed/NCBI

83 

Kinouchi K and Sassone-Corsi P: Metabolic rivalry: Circadian homeostasis and tumorigenesis. Nat Rev Cancer. 20:645–661. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Nassan M and Videnovic A: Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol. 18:7–24. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Song S, Tien CL, Cui H, Basil P, Zhu N, Gong Y, Li W, Li H, Fan Q, Min Choi J, et al: Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox. Circulation. 145:448–464. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Choi H, Rao MC and Chang EB: Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol. 18:679–689. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Heddes M, Altaha B, Niu Y, Reitmeier S, Kleigrewe K, Haller D and Kiessling S: The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nat Commun. 13:60682022. View Article : Google Scholar : PubMed/NCBI

88 

Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, et al: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 159:514–529. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF and Gordon JI: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 101:15718–15723. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Rabot S, Membrez M, Bruneau A, Gerard P, Harach T, Moser M, Raymond F, Mansourian R and Chou CJ: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24:4948–4959. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang YX, Chan AWH, Wei H, Yang X, Sung JJY and Yu J: Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut. 70:761–774. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Wang B, Kong Q, Li X, Zhao J, Zhang H, Chen W and Wang G: A High-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients. 12:31972020. View Article : Google Scholar : PubMed/NCBI

93 

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER and Gordon JI: An Obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 444:1027–1031. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E and Berry D: Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol. 19:95–105. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Palmnas-Bedard MSA, Costabile G, Vetrani C, Aberg S, Hjalmarsson Y, Dicksved J, Riccardi G and Landberg R: The human gut microbiota and glucose metabolism: A scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr. 116:862–874. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Dunn R, Wetten A, McPherson S and Donnelly MC: Viral hepatitis in 2021: The challenges remaining and how we should tackle them. World J Gastroenterol. 28:76–95. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Zhao X and Guo S: Methods for visualizing intracellular organelles. J Vis Exp. Mar 3–2023.doi: 10.3791/64966.

98 

Zhao W, Ma L, Cai C and Gong X: Caffeine Inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. Int J Biol Sci. 15:1571–1581. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, Ni YH, Tseng HT, Wu D, Lu X, et al: Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci USA. 112:2175–2180. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Chauhan A, Kumar R, Sharma S, Mahanta M, Vayuuru SK, Nayak B and Kumar S: Shalimar: Fecal microbiota transplantation in Hepatitis B e antigen-positive chronic Hepatitis B patients: A pilot study. Dig Dis Sci. 66:873–880. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, Lu H, Yin S, Ji J, Zhou L and Zheng S: Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 12:1022020. View Article : Google Scholar : PubMed/NCBI

102 

Preveden T, Scarpellini E, Milic N, Luzza F and Abenavoli L: Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev Gastroenterol Hepatol. 11:813–819. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Shen Y, Wu SD, Chen Y, Li XY, Zhu Q, Nakayama K, Zhang WQ, Weng CZ, Zhang J, Wang HK, et al: Alterations in gut microbiome and metabolomics in chronic hepatitis B infection-associated liver disease and their impact on peripheral immune response. Gut Microbes. 15:21550182023. View Article : Google Scholar : PubMed/NCBI

104 

Wei X, Yan X, Zou D, Yang Z, Wang X, Liu W, Wang S, Li X, Han J, Huang L and Yuan J: Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol. 13:1752013. View Article : Google Scholar : PubMed/NCBI

105 

Bajaj JS, Liu EJ, Kheradman R, Fagan A, Heuman DM, White M, Gavis EA, Hylemon P, Sikaroodi M and Gillevet PM: Fungal dysbiosis in cirrhosis. Gut. 67:1146–1154. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Aly AM, Adel A, El-Gendy AO, Essam TM and Aziz RK: Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog. 8:422016. View Article : Google Scholar : PubMed/NCBI

107 

Luther J, Khan S, Gala MK, Kedrin D, Sridharan G, Goodman RP, Garber JJ, Masia R, Diagacomo E, Adams D, et al: Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proc Natl Acad Sci USA. 117:11667–11673. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Jophlin LL, Singal AK, Bataller R, Wong RJ, Sauer BG, Terrault NA and Shah VH: ACG clinical guideline: Alcohol-associated liver disease. Am J Gastroenterol. 119:30–54. 2024. View Article : Google Scholar : PubMed/NCBI

109 

Huang DQ, Mathurin P, Cortez-Pinto H and Loomba R: Global epidemiology of alcohol-associated cirrhosis and HCC: Trends, projections and risk factors. Nat Rev Gastroenterol Hepatol. 20:37–49. 2023. View Article : Google Scholar : PubMed/NCBI

110 

Singal AK, Bataller R, Ahn J, Kamath PS and Shah VH: ACG clinical guideline: Alcoholic liver disease. Am J Gastroenterol. 113:175–194. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Acharya C and Bajaj JS: Gut Microbiota and complications of liver disease. Gastroenterol Clin North Am. 46:155–169. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Dubinkina VB, Tyakht AV, Odintsova VY, Yarygin KS, Kovarsky BA, Pavlenko AV, Ischenko DS, Popenko AS, Alexeev DG, Taraskina AY, et al: Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome. 5:1412017. View Article : Google Scholar : PubMed/NCBI

113 

Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, et al: Short chain fatty acids in human gut and metabolic health. Benef Microbes. 11:411–455. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Wang Z, Zhang X, Zhu L, Yang X, He F, Wang T, Bao T, Lu H, Wang H and Yang S: Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. Int Immunopharmacol. 78:1060622020. View Article : Google Scholar : PubMed/NCBI

115 

Yang X, He F, Zhang Y, Xue J, Li K, Zhang X, Zhu L, Wang Z, Wang H and Yang S: Inulin ameliorates alcoholic liver disease via suppressing LPS-TLR4-mpsi axis and modulating gut microbiota in mice. Alcohol Clin Exp Res. 43:411–424. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Deng M, Qu F, Chen L, Liu C, Zhang M, Ren F, Guo H, Zhang H, Ge S, Wu C and Zhao L: SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol. 245:425–437. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK and Hurt RT: Evolution of NAFLD and its management. Nutr Clin Pract. 35:72–84. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M and Clement K: Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology. 160:573–599. 2021. View Article : Google Scholar : PubMed/NCBI

119 

Canfora EE, Meex RCR, Venema K and Blaak EE: Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 15:261–273. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Kolodziejczyk AA, Zheng D, Shibolet O and Elinav E: The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 11:e93022019. View Article : Google Scholar : PubMed/NCBI

121 

Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, et al: Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 482:179–185. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Zhong S, Li L, Liang N, Zhang L, Xu X, Chen S and Yin H: Acetaldehyde dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol. 41:1019192021. View Article : Google Scholar : PubMed/NCBI

123 

Inokuchi S, Tsukamoto H, Park E, Liu ZX, Brenner DA and Seki E: Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin Exp Res. 35:1509–1518. 2011.PubMed/NCBI

124 

Bogatyrev SR, Rolando JC and Ismagilov RF: Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome. 8:192020. View Article : Google Scholar : PubMed/NCBI

125 

Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI

126 

Endo H, Niioka M, Kobayashi N, Tanaka M and Watanabe T: Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: New insight into the probiotics for the gut-liver axis. PLoS One. 8:e633882013. View Article : Google Scholar : PubMed/NCBI

127 

Ma YY, Li L, Yu CH, Shen Z, Chen LH and Li YM: Effects of probiotics on nonalcoholic fatty liver disease: A meta-analysis. World J Gastroenterol. 19:6911–6918. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI, Bazhukova TA, Soloviev AG, Barve SS, McClain CJ and Cave M: Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: A pilot study. Alcohol. 42:675–682. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Schuppan D and Afdhal NH: Liver cirrhosis. Lancet. 371:838–851. 2008. View Article : Google Scholar : PubMed/NCBI

130 

Quiroz-Aldave JE, Gamarra-Osorio ER, Durand-Vasquez MDC, Rafael-Robles LDP, Gonzales-Yovera JG, Quispe-Flores MA, Concepción-Urteaga LA, Román-González A, Paz-Ibarra J and Concepción-Zavaleta MJ: From liver to hormones: The endocrine consequences of cirrhosis. World J Gastroenterol. 30:1073–1095. 2024. View Article : Google Scholar : PubMed/NCBI

131 

Horn P and Tacke F: Metabolic reprogramming in liver fibrosis. Cell Metab. 36:1439–1455. 2024. View Article : Google Scholar : PubMed/NCBI

132 

Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y and Han Z: Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: From pathogenesis to treatment. Cell Mol Immunol. 20:583–599. 2023. View Article : Google Scholar : PubMed/NCBI

133 

Iredale JP, Thompson A and Henderson NC: Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. Biochim Biophys Acta. 1832:876–883. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Bataller R and Brenner DA: Liver fibrosis. J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI

135 

Smith A, Baumgartner K and Bositis C: Cirrhosis: Diagnosis and management. Am Fam Physician. 100:759–770. 2019.PubMed/NCBI

136 

Tapper EB and Parikh ND: Diagnosis and management of cirrhosis and its complications: A review. JAMA. 329:1589–1602. 2023. View Article : Google Scholar : PubMed/NCBI

137 

GBD 2019 Diseases and Injuries Collaborators: Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 396:1204–1222. 2020. View Article : Google Scholar

138 

Asrani SK, Devarbhavi H, Eaton J and Kamath PS: Burden of liver diseases in the world. J Hepatol. 70:151–171. 2019. View Article : Google Scholar : PubMed/NCBI

139 

European Association for the Study of the Liver. Electronic address, . simpleeasloffice@easloffice.eu and European Association for the Study of the Liver: EASL clinical practice guidelines on Acute-on-chronic liver failure. J Hepatol. 79:461–491. 2023. View Article : Google Scholar : PubMed/NCBI

140 

Gines P, Krag A, Abraldes JG, Sola E, Fabrellas N and Kamath PS: Liver cirrhosis. Lancet. 398:1359–1376. 2021. View Article : Google Scholar : PubMed/NCBI

141 

Groschwitz KR and Hogan SP: Intestinal barrier function: Molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 124:3–22. 2009. View Article : Google Scholar : PubMed/NCBI

142 

Nishimura N, Kaji K, Kitagawa K, Sawada Y, Furukawa M, Ozutsumi T, Fujinaga Y, Tsuji Y, Takaya H, Kawaratani H, et al: Intestinal permeability is a mechanical rheostat in the pathogenesis of liver cirrhosis. Int J Mol Sci. 22:69212021. View Article : Google Scholar : PubMed/NCBI

143 

Trebicka J, Macnaughtan J, Schnabl B, Shawcross DL and Bajaj JS: The microbiota in cirrhosis and its role in hepatic decompensation. J Hepatol. 75 (Suppl 1):S67–S81. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Benjamin J, Singla V, Arora I, Sood S and Joshi YK: Intestinal permeability and complications in liver cirrhosis: A prospective cohort study. Hepatol Res. 43:200–207. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Shibamoto A, Kaji K, Nishimura N, Kubo T, Iwai S, Tomooka F, Suzuki J, Tsuji Y, Fujinaga Y, Kawaratani H, et al: Vitamin D deficiency exacerbates alcohol-related liver injury via gut barrier disruption and hepatic overload of endotoxin. J Nutr Biochem. 122:1094502023. View Article : Google Scholar : PubMed/NCBI

146 

Suk KT and Kim DJ: Gut microbiota: Novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 13:193–204. 2019. View Article : Google Scholar : PubMed/NCBI

147 

Albillos A, Lario M and Alvarez-Mon M: Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J Hepatol. 61:1385–1396. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Fukui H: Role of gut dysbiosis in liver diseases: What have we learned so far? Diseases. 7:582019. View Article : Google Scholar : PubMed/NCBI

149 

Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B and Verne GN: Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 24:503–512. 2012. View Article : Google Scholar : PubMed/NCBI

150 

Ghosh S, Whitley CS, Haribabu B and Jala VR: Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol. 11:1463–1482. 2021. View Article : Google Scholar : PubMed/NCBI

151 

Oh TG, Kim SM, Caussy C, Fu T, Guo J, Bassirian S, Singh S, Madamba EV, Bettencourt R, Richards L, et al: A universal Gut-microbiome-derived signature predicts cirrhosis. Cell Metab. 32:878–888.e6. 2020. View Article : Google Scholar : PubMed/NCBI

152 

Chang CS, Chen GH, Lien HC and Yeh HZ: Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology. 28:1187–1190. 1998. View Article : Google Scholar : PubMed/NCBI

153 

Corradi F, Brusasco C, Fernandez J, Vila J, Ramirez MJ, Seva-Pereira T, Fernández-Varo G, Mosbah IB, Acevedo J, Silva A, et al: Effects of pentoxifylline on intestinal bacterial overgrowth, bacterial translocation and spontaneous bacterial peritonitis in cirrhotic rats with ascites. Dig Liver Dis. 44:239–244. 2012. View Article : Google Scholar : PubMed/NCBI

154 

Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, Puri P, Sterling RK, Luketic V, Stravitz RT, Siddiqui MS, Fuchs M, et al: Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther. 39:1113–1125. 2014. View Article : Google Scholar : PubMed/NCBI

155 

Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, et al: Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: A randomized clinical trial. Hepatology. 66:1727–1738. 2017. View Article : Google Scholar : PubMed/NCBI

156 

Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, Monteith P, Noble NA, Sikaroodi M and Gillevet PM: Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol. 303:G675–G685. 2012. View Article : Google Scholar : PubMed/NCBI

157 

Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, Wang Y, Zhu B and Li L: Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 54:562–572. 2011. View Article : Google Scholar : PubMed/NCBI

158 

Shen TD, Daniel SG, Patel S, Kaplan E, Phung L, Lemelle-Thomas K, Chau L, Herman L, Trisolini C, Stonelake A, et al: The Mucosally-adherent rectal microbiota contains features unique to alcohol-related cirrhosis. Gut Microbes. 13:19877812021. View Article : Google Scholar : PubMed/NCBI

159 

Egger M, Horvath A, Pruller F, Fickert P, Finkelman M, Kriegl L, Grønbaek H, Møller HJ, Prattes J, Krause R, et al: Fungal translocation measured by serum 1,3-β-D-glucan correlates with severity and outcome of liver cirrhosis-A pilot study. Liver Int. 43:1975–1983. 2023. View Article : Google Scholar : PubMed/NCBI

160 

Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L, et al: Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight. 8:e1581832023. View Article : Google Scholar : PubMed/NCBI

161 

Pleguezuelo M, Benitez JM, Jurado J, Montero JL and De la Mata M: Diagnosis and management of bacterial infections in decompensated cirrhosis. World J Hepatol. 5:16–25. 2013. View Article : Google Scholar : PubMed/NCBI

162 

Kim J, Ahn SW, Kim JY, Whon TW, Lim SK, Ryu BH, Han NS, Choi HJ, Roh SW and Lee SH: Probiotic Lactobacilli ameliorate alcohol-induced hepatic damage via gut microbial alteration. Front Microbiol. 13:8692502022. View Article : Google Scholar : PubMed/NCBI

163 

Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, Pikarsky E, Kudo M and Finn RS: Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol. 21:294–311. 2024. View Article : Google Scholar : PubMed/NCBI

164 

Ding JH, Jin Z, Yang XX, Lou J, Shan WX, Hu YX, Du Q, Liao QS, Xie R and Xu JY: Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol. 26:6141–6162. 2020. View Article : Google Scholar : PubMed/NCBI

165 

Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona Diaz F, Andrés-Lacueva C and Tinahones FJ: Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 95:1323–1334. 2012. View Article : Google Scholar : PubMed/NCBI

166 

Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M and Gillevet P: Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res. 33:1836–1846. 2009. View Article : Google Scholar : PubMed/NCBI

167 

Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, Tsukamoto H, Nelson KE, Brenner DA and Schnabl B: Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 53:96–105. 2011. View Article : Google Scholar : PubMed/NCBI

168 

Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, Lau CK and Keshavarzian A: Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol. 302:G966–G978. 2012. View Article : Google Scholar : PubMed/NCBI

169 

Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, et al: The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 63:764–775. 2016. View Article : Google Scholar : PubMed/NCBI

170 

Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y and Li L: Altered fecal microbiota correlates with liver biochemistry in nonobese patients with Non-alcoholic fatty liver disease. Sci Rep. 6:320022016. View Article : Google Scholar : PubMed/NCBI

171 

Singh DP, Khare P, Bijalwan V, Baboota RK, Singh J, Kondepudi KK, Chopra K and Bishnoi M: Coadministration of isomalto-oligosaccharides augments metabolic health benefits of cinnamaldehyde in high fat diet fed mice. Biofactors. 43:821–835. 2017. View Article : Google Scholar : PubMed/NCBI

172 

Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, Sanguinetti M, Morelli D, Paroni Sterbini F, Petito V, et al: Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 69:107–120. 2019. View Article : Google Scholar : PubMed/NCBI

173 

Sarangi AN, Goel A, Singh A, Sasi A and Aggarwal R: Faecal bacterial microbiota in patients with cirrhosis and the effect of lactulose administration. BMC Gastroenterol. 17:1252017. View Article : Google Scholar : PubMed/NCBI

174 

Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R, et al: Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 68:1014–1023. 2019. View Article : Google Scholar : PubMed/NCBI

175 

Schneider KM, Mohs A, Gui W, Galvez EJC, Candels LS, Hoenicke L, Muthukumarasamy U, Holland CH, Elfers C, Kilic K, et al: Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat Commun. 13:39642022. View Article : Google Scholar : PubMed/NCBI

176 

Li Z, Zhang Y, Hong W, Wang B, Chen Y, Yang P, Zhou J, Fan J, Zeng Z and Du S: Gut microbiota modulate radiotherapy-associated antitumor immune responses against hepatocellular carcinoma Via STING signaling. Gut Microbes. 14:21190552022. View Article : Google Scholar : PubMed/NCBI

177 

Thoen RU, Longo L, Leonhardt LC, Pereira MHM, Rampelotto PH, Cerski CTS and Álvares-da-Silva MR: Alcoholic liver disease and intestinal microbiota in an experimental model: Biochemical, inflammatory, and histologic parameters. Nutrition. 106:1118882023. View Article : Google Scholar : PubMed/NCBI

178 

McMahan RH, Hulsebus HJ, Najarro KM, Giesy LE, Frank DN and Kovacs EJ: Changes in gut microbiome correlate with intestinal barrier dysfunction and inflammation following a 3-day ethanol exposure in aged mice. Alcohol. 107:136–143. 2023. View Article : Google Scholar : PubMed/NCBI

179 

Sangineto M, Grander C, Grabherr F, Mayr L, Enrich B, Schwärzler J, Dallio M, Bukke VN, Moola A, Moschetta A, et al: Recovery of Bacteroides thetaiotaomicron ameliorates hepatic steatosis in experimental alcohol-related liver disease. Gut Microbes. 14:20890062022. View Article : Google Scholar : PubMed/NCBI

180 

Day AW and Kumamoto CA: Gut microbiome dysbiosis in alcoholism: Consequences for health and recovery. Front Cell Infect Microbiol. 12:8401642022. View Article : Google Scholar : PubMed/NCBI

181 

Wang W, Li Q, Chai W, Sun C, Zhang T, Zhao C, Yuan Y, Wang X, Liu H and Ye H: Lactobacillus paracasei Jlus66 extenuate oxidative stress and inflammation via regulation of intestinal flora in rats with non alcoholic fatty liver disease. Food Sci Nutr. 7:2636–2646. 2019. View Article : Google Scholar : PubMed/NCBI

182 

Safari Z and Gerard P: The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci. 76:1541–1558. 2019. View Article : Google Scholar : PubMed/NCBI

183 

Ji Y, Yin Y, Li Z and Zhang W: Gut Microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD). Nutrients. 11:17122019. View Article : Google Scholar : PubMed/NCBI

184 

Fang J, Yu CH, Li XJ, Yao JM, Fang ZY, Yoon SH and Yu WY: Gut dysbiosis in nonalcoholic fatty liver disease: Pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 12:9970182022. View Article : Google Scholar : PubMed/NCBI

185 

Liu S and Yang X: Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer. Front Cell Infect Microbiol. 13:11401262023. View Article : Google Scholar : PubMed/NCBI

186 

Lee NY and Suk KT: The role of the gut microbiome in liver cirrhosis treatment. Int J Mol Sci. 22:1992020. View Article : Google Scholar : PubMed/NCBI

187 

Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, et al: Alterations of the human gut microbiome in liver cirrhosis. Nature. 513:59–64. 2014. View Article : Google Scholar : PubMed/NCBI

188 

Akkiz H: The gut microbiome and hepatocellular carcinoma. J Gastrointest Cancer. 52:1314–1319. 2021. View Article : Google Scholar : PubMed/NCBI

189 

Schwabe RF and Greten TF: Gut microbiome in HCC-mechanisms, diagnosis and therapy. J Hepatol. 72:230–238. 2020. View Article : Google Scholar : PubMed/NCBI

190 

Zhang S, Hou L and Sun Q: Correlation analysis of intestinal flora and immune function in patients with primary hepatocellular carcinoma. J Gastrointest Oncol. 13:1308–1316. 2022. View Article : Google Scholar : PubMed/NCBI

191 

Zhang HL, Yu LX, Yang W, Tang L, Lin Y, Wu H, Zhai B, Tan YX, Shan L, Liu Q, et al: Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol. 57:803–812. 2012. View Article : Google Scholar : PubMed/NCBI

192 

Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, et al: Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 21:504–516. 2012. View Article : Google Scholar : PubMed/NCBI

193 

Mou WL, Chen SR, Wu ZT, Hu LH, Zhang JY, Chang HJ, Zhou H and Liu Y: LPS-TLR4/MD-2-TNF-α signaling mediates alcohol-induced liver fibrosis in rats. J Toxicol Pathol. 35:193–203. 2022. View Article : Google Scholar : PubMed/NCBI

194 

Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, Tang L, Lin Y, He YQ, Zou SS, et al: Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology. 52:1322–1333. 2010. View Article : Google Scholar : PubMed/NCBI

195 

Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et al: Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 499:97–101. 2013. View Article : Google Scholar : PubMed/NCBI

196 

Nguyen PT, Kanno K, Pham QT, Kikuchi Y, Kakimoto M, Kobayashi T, Otani Y, Kishikawa N, Miyauchi M, Arihiro K, et al: Senescent hepatic stellate cells caused by deoxycholic acid modulates malignant behavior of hepatocellular carcinoma. J Cancer Res Clin Oncol. 146:3255–3268. 2020. View Article : Google Scholar : PubMed/NCBI

197 

Vaughn BP, Rank KM and Khoruts A: Fecal microbiota transplantation: Current status in treatment of gi and liver disease. Clin Gastroenterol Hepatol. 17:353–361. 2019. View Article : Google Scholar : PubMed/NCBI

198 

Routy B, Lenehan JG, Miller WH Jr, Jamal R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L, Punčochář M, et al: Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: A phase I trial. Nat Med. 29:2121–2132. 2023. View Article : Google Scholar : PubMed/NCBI

199 

Belvoncikova P, Maronek M and Gardlik R: Gut dysbiosis and fecal microbiota transplantation in autoimmune diseases. Int J Mol Sci. 23:107292022. View Article : Google Scholar : PubMed/NCBI

200 

Borody TJ, Eslick GD and Clancy RL: Fecal microbiota transplantation as a new therapy: From Clostridioides difficile infection to inflammatory bowel disease, irritable bowel syndrome, and colon cancer. Curr Opin Pharmacol. 49:43–51. 2019. View Article : Google Scholar : PubMed/NCBI

201 

Burz SD, Monnoye M, Philippe C, Farin W, Ratziu V, Strozzi F, Paillarse JM, Chêne L, Blottière HM and Gérard P: Fecal microbiota transplant from human to mice gives insights into the role of the gut microbiota in non-alcoholic fatty liver disease (NAFLD). Microorganisms. 9:1992021. View Article : Google Scholar : PubMed/NCBI

202 

Purohit A, Alam MJ, Kandiyal B, Shalimar Das B and Banerjee SK: Gut microbiome and non-alcoholic fatty liver disease. Prog Mol Biol Transl Sci. 191:187–206. 2022. View Article : Google Scholar : PubMed/NCBI

203 

Brandt LJ and Aroniadis OC: An overview of fecal microbiota transplantation: Techniques, indications, and outcomes. Gastrointest Endosc. 78:240–249. 2013. View Article : Google Scholar : PubMed/NCBI

204 

Persky SE and Brandt LJ: Treatment of recurrent Clostridium difficile-associated diarrhea by administration of donated stool directly through a colonoscope. Am J Gastroenterol. 95:3283–3285. 2000. View Article : Google Scholar : PubMed/NCBI

205 

Michailidis L, Currier AC, Le M and Flomenhoft DR: Adverse events of fecal microbiota transplantation: A meta-analysis of high-quality studies. Ann Gastroenterol. 34:802–814. 2021.PubMed/NCBI

206 

Allegretti JR, Kassam Z, Mullish BH, Chiang A, Carrellas M, Hurtado J, Marchesi JR, McDonald JAK, Pechlivanis A, Barker GF, et al: Effects of fecal microbiota transplantation with oral capsules in obese patients. Clin Gastroenterol Hepatol. 18:855–863.e2. 2020. View Article : Google Scholar : PubMed/NCBI

207 

Yang J, Tang X, Liang Z, Chen M and Sun L: Taurocholic acid promotes hepatic stellate cell activation via S1PR2/p38 MAPK/YAP signaling under cholestatic conditions. Clin Mol Hepatol. 29:465–481. 2023. View Article : Google Scholar : PubMed/NCBI

208 

Mancinelli R, Ceci L, Kennedy L, Francis H, Meadows V, Chen L, Carpino G, Kyritsi K, Wu N, Zhou T, et al: The effects of Taurocholic acid on biliary damage and liver fibrosis are mediated by calcitonin-gene-related peptide signaling. Cells. 11:15912022. View Article : Google Scholar : PubMed/NCBI

209 

Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D, Spriet I, Depypere M, Wagemans J, Lavigne R, et al: Safety and efficacy of phage therapy in difficult-to-treat infections: A systematic review. Lancet Infect Dis. 22:e208–e220. 2022. View Article : Google Scholar : PubMed/NCBI

210 

Federici S, Kredo-Russo S, Valdes-Mas R, Kviatcovsky D, Weinstock E, Matiuhin Y, Silberberg Y, Atarashi K, Furuichi M, Oka A, et al: Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 185:2879–2898.e24. 2022. View Article : Google Scholar : PubMed/NCBI

211 

Duan Y, Young R and Schnabl B: Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 19:135–144. 2022. View Article : Google Scholar : PubMed/NCBI

212 

Shuwen H and Kefeng D: Intestinal phages interact with bacteria and are involved in human diseases. Gut Microbes. 14:21137172022. View Article : Google Scholar : PubMed/NCBI

213 

Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, et al: Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 575:505–511. 2019. View Article : Google Scholar : PubMed/NCBI

214 

Fujiki J and Schnabl B: Phage therapy: Targeting intestinal bacterial microbiota for the treatment of liver diseases. JHEP Rep. 5:1009092023. View Article : Google Scholar : PubMed/NCBI

215 

Gong X, Geng H, Yang Y, Zhang S, He Z, Fan Y, Yin F, Zhang Z and Chen GQ: Metabolic engineering of commensal bacteria for gut butyrate delivery and dissection of host-microbe interaction. Metab Eng. 80:94–106. 2023. View Article : Google Scholar : PubMed/NCBI

216 

Anand AC and Acharya SK: The story of ammonia in liver disease: An unraveling continuum. J Clin Exp Hepatol. 14:1013612024. View Article : Google Scholar : PubMed/NCBI

217 

Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, Kotula JW, Antipov E, Dagon Y, Denney WS, et al: An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 11:eaau79752019. View Article : Google Scholar : PubMed/NCBI

218 

Yu M, Hu S, Tang B, Yang H and Sun D: Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications. Biotechnol Adv. 67:1082022023. View Article : Google Scholar : PubMed/NCBI

219 

Lynch JP, Goers L and Lesser CF: Emerging strategies for engineering Escherichia coli Nissle 1917-based therapeutics. Trends Pharmacol Sci. 43:772–786. 2022. View Article : Google Scholar : PubMed/NCBI

220 

Husted AS, Trauelsen M, Rudenko O, Hjorth SA and Schwartz TW: GPCR-mediated signaling of metabolites. Cell Metab. 25:777–796. 2017. View Article : Google Scholar : PubMed/NCBI

221 

Akiba Y and Kaunitz JD: Duodenal luminal chemosensing; acid, ATP, and nutrients. Curr Pharm Des. 20:2760–2765. 2014. View Article : Google Scholar : PubMed/NCBI

222 

Kokorovic A, Cheung GW, Breen DM, Chari M, Lam CK and Lam TK: Duodenal mucosal protein kinase C-δ regulates glucose production in rats. Gastroenterology. 141:1720–1727. 2011. View Article : Google Scholar : PubMed/NCBI

223 

van Baar ACG, Beuers U, Wong K, Haidry R, Costamagna G, Hafedi A, Deviere J, Ghosh SS, Lopez-Talavera JC, Rodriguez L, et al: Endoscopic duodenal mucosal resurfacing improves glycaemic and hepatic indices in type 2 diabetes: 6-month multicentre results. JHEP Rep. 1:429–437. 2019. View Article : Google Scholar : PubMed/NCBI

224 

de Oliveira GHP, de Moura DTH, Funari MP, McCarty TR, Ribeiro IB, Bernardo WM, Sagae VMT, Freitas JR Jr, Souza GMV and de Moura EGH: Metabolic effects of endoscopic duodenal mucosal resurfacing: A systematic review and Meta-analysis. Obes Surg. 31:1304–1312. 2021. View Article : Google Scholar : PubMed/NCBI

225 

Shamseddeen H, Vuppalanchi R and Gromski MA: Duodenal mucosal resurfacing for nonalcoholic fatty liver disease. Clin Liver Dis (Hoboken). 20:166–169. 2022. View Article : Google Scholar : PubMed/NCBI

226 

Condello G and Chen CY: Minireview: Current status of endoscopic duodenal mucosal resurfacing. Obes Res Clin Pract. 14:504–507. 2020. View Article : Google Scholar : PubMed/NCBI

227 

Mingrone G, van Baar AC, Deviere J, Hopkins D, Moura E, Cercato C, Rajagopalan H, Lopez-Talavera JC, White K, Bhambhani V, et al: Safety and efficacy of hydrothermal duodenal mucosal resurfacing in patients with type 2 diabetes: The randomised, double-blind, sham-controlled, multicentre REVITA-2 feasibility trial. Gut. 71:254–264. 2022. View Article : Google Scholar : PubMed/NCBI

228 

Hadefi A, Verset L, Pezzullo M, Rosewick N, Degre D, Gustot T, Moreno C, Devière J and Trépo E: Endoscopic duodenal mucosal resurfacing for nonalcoholic steatohepatitis (NASH): A pilot study. Endosc Int Open. 9:E1792–E1800. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Wang X, Zhuo E, Chen B and Chan S: Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 31: 10, 2025.
APA
Wang, J., Wang, X., Zhuo, E., Chen, B., & Chan, S. (2025). Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Molecular Medicine Reports, 31, 10. https://doi.org/10.3892/mmr.2024.13375
MLA
Wang, J., Wang, X., Zhuo, E., Chen, B., Chan, S."Gut‑liver axis in liver disease: From basic science to clinical treatment (Review)". Molecular Medicine Reports 31.1 (2025): 10.
Chicago
Wang, J., Wang, X., Zhuo, E., Chen, B., Chan, S."Gut‑liver axis in liver disease: From basic science to clinical treatment (Review)". Molecular Medicine Reports 31, no. 1 (2025): 10. https://doi.org/10.3892/mmr.2024.13375
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Wang X, Zhuo E, Chen B and Chan S: Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 31: 10, 2025.
APA
Wang, J., Wang, X., Zhuo, E., Chen, B., & Chan, S. (2025). Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Molecular Medicine Reports, 31, 10. https://doi.org/10.3892/mmr.2024.13375
MLA
Wang, J., Wang, X., Zhuo, E., Chen, B., Chan, S."Gut‑liver axis in liver disease: From basic science to clinical treatment (Review)". Molecular Medicine Reports 31.1 (2025): 10.
Chicago
Wang, J., Wang, X., Zhuo, E., Chen, B., Chan, S."Gut‑liver axis in liver disease: From basic science to clinical treatment (Review)". Molecular Medicine Reports 31, no. 1 (2025): 10. https://doi.org/10.3892/mmr.2024.13375
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team