Macrophage‑driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review)
- Authors:
- Jincun Li
- Wenyu Ma
- Zilei Tang
- Yingming Li
- Ruiyu Zheng
- Yuhuan Xie
- Gang Li
-
Affiliations: College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China, Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China, Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China - Published online on: November 4, 2024 https://doi.org/10.3892/mmr.2024.13381
- Article Number: 16
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhu W, Zhang Y and Wang Y: Immunotherapy strategies and prospects for acute lung injury: Focus on immune cells and cytokines. Front Pharmacol. 13:11033092022. View Article : Google Scholar : PubMed/NCBI | |
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al: Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 315:788–800. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hsieh PC, Wu YK, Yang MC, Su WL, Kuo CY and Lan CC: Deciphering the role of damage-associated molecular patterns and inflammatory responses in acute lung injury. Life Sci. 305:1207822022. View Article : Google Scholar : PubMed/NCBI | |
Mokrá D: Acute lung injury-from pathophysiology to treatment. Physiol Res. 69:S353–S366. 2020.PubMed/NCBI | |
Mokra D, Mikolka P, Kosutova P and Mokry J: Corticosteroids in acute lung injury: The dilemma continues. Int J Mol Sci. 20:47652019. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Chen M, Ma J, Wang C, Wang J, Xia H, Zhang D and Yao S: Integrating bulk and single-cell sequencing reveals the phenotype-associated cell subpopulations in sepsis-induced acute lung injury. Front Immunol. 13:9817842022. View Article : Google Scholar : PubMed/NCBI | |
Lendeckel U, Venz S and Wolke C: Macrophages: Shapes and functions. ChemTexts. 8:122022. View Article : Google Scholar : PubMed/NCBI | |
Johnston LK, Rims CR, Gill SE, McGuire JK and Manicone AM: Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol. 47:417–426. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dang W, Tao Y, Xu X, Zhao H, Zou L and Li Y: The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res. 71:1417–1432. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z and Wang Z: The role of macrophages polarization in sepsis-induced acute lung injury. Front Immunol. 14:12094382023. View Article : Google Scholar : PubMed/NCBI | |
Cheng P, Li S and Chen H: Macrophages in lung injury, repair, and fibrosis. Cells. 10:4362021. View Article : Google Scholar : PubMed/NCBI | |
Aribindi K, Lim M, Lakshminrusimha S and Albertson T: Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs. 33:243–277. 2024. View Article : Google Scholar : PubMed/NCBI | |
Vichare R and Janjic JM: Macrophage-targeted nanomedicines for ARDS/ALI: Promise and potential. Inflammation. 45:2124–2141. 2022. View Article : Google Scholar : PubMed/NCBI | |
Booz GW, Altara R, Eid AH, Wehbe Z, Fares S, Zaraket H, Habeichi NJ and Zouein FA: Macrophage responses associated with COVID-19: A pharmacological perspective. Eur J. 887:1735472020.PubMed/NCBI | |
Panahi Y, Gorabi AM, Talaei S, Beiraghdar F, Akbarzadeh A, Tarhriz V and Mellatyar H: An overview on the treatments and prevention against COVID-19. Virol J. 20:232023. View Article : Google Scholar : PubMed/NCBI | |
Matera MG, Rogliani P, Bianco A and Cazzola M: Pharmacological management of adult patients with acute respiratory distress syndrome. Expert Opin Pharmacother. 21:2169–2183. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lang FM, Lee KMC, Teijaro JR, Becher B and Hamilton JA: GM-CSF-based treatments in COVID-19: Reconciling opposing therapeutic approaches. Nat Rev Immunol. 20:507–514. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li S, Feng T, Zhang Y, Shi Q, Wang W, Ren J, Shen G, Gu H, Luo C and Li Y: Lianhua Qingwen protects LPS-induced acute lung injury by promoting M2 macrophage infiltration. J Ethnopharmacol. 320:1174672024. View Article : Google Scholar : PubMed/NCBI | |
Liang X and Liu JX: Role of macrophage polarization in pulmonary diseases and intervention of traditional Chinese medicines. Zhongguo Zhong Yao Za Zhi. 49:334–343. 2024.(In Chinese). PubMed/NCBI | |
Dong J, Liu W, Liu W, Wen Y, Liu Q, Wang H, Xiang G, Liu Y and Hao H: Acute lung injury: A view from the perspective of necroptosis. Inflamm Res. 73:997–1018. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Li W, Liu J, Wang F, Zhou W, Xiao L, Zhou P, Wu F, Chen X, Xu S, et al: Andrographolide ameliorates sepsis-induced acute lung injury by promoting autophagy in alveolar macrophages via the RAGE/PI3K/AKT/mTOR pathway. Int Immunopharmacol. 139:1127192024. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Wang J, Wang J, Zhou J, Jiang C, Chen W, Zhang X, Pan J, Zhu J and Chen M: Araloside A alleviates sepsis-induced acute lung injury via PHD2/HIF-1α in macrophages. Phytomedicine. 135:1560892024. View Article : Google Scholar : PubMed/NCBI | |
Wang WT, Zhang YY, Li ZR, Li JM, Deng HS, Li YY, Yang HY, Lau CC, Yao YJ, Pan HD, et al: Syringic acid attenuates acute lung injury by modulating macrophage polarization in LPS-induced mice. Phytomedicine. 129:1555912024. View Article : Google Scholar : PubMed/NCBI | |
Helou DG, Quach C, Hurrell BP, Li X, Li M, Akbari A, Shen S, Shafiei-Jahani P and Akbari O: LAIR-1 limits macrophage activation in acute inflammatory lung injury. Mucosal Immunol. 16:788–800. 2023. View Article : Google Scholar : PubMed/NCBI | |
Short KR, Kroeze EJBV, Fouchier RAM and Kuiken T: Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis. 14:57–69. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Zhao F, Cheng H, Su M and Wang Y: Macrophage polarization: An important role in inflammatory diseases. Front Immunol. 15:13529462024. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Xiao K and Xie L: Advances in the regulation of macrophage polarization by mesenchymal stem cells and implications for ALI/ARDS treatment. Front Immunol. 13:9281342022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Tang J, Shuai W, Meng J, Feng J and Han Z: Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res. 69:883–895. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang D, Zhang T, Ma Y, Tong X and Fan H: The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome. Front Immunol. 14:11175482023. View Article : Google Scholar : PubMed/NCBI | |
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal NR, King LS and D'alessio FR: Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol. 306:L709–L725. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fukui S, Iwamoto N, Takatani A, Igawa T, Shimizu T, Umeda M, Nishino A, Horai Y, Hirai Y, Koga T, et al: M1 and M2 monocytes in rheumatoid arthritis: A contribution of imbalance of M1/M2 monocytes to osteoclastogenesis. Front Immunol. 8:19582017. View Article : Google Scholar : PubMed/NCBI | |
Shi C and Pamer EG: Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 11:762–774. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li Q, Qiu Y and Lu H: COVID-19: Imbalanced cell-mediated immune response drives to immunopathology. Emerg Microbes Infect. 11:2393–2404. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, Wang W, Ma Z and Shi X: Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 25:3562021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Pan H, Yang J, Chen D, Wang Y, Zhang H and Cheng Y: Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models. Phytomedicine. 108:1545452023. View Article : Google Scholar : PubMed/NCBI | |
Liang P, Wang L, Yang S, Pan X, Li J, Zhang Y, Liang Y, Li J and Zhou B: 5-Methoxyflavone alleviates LPS-mediated lung injury by promoting Nrf2-mediated the suppression of NOX4/TLR4 axis in bronchial epithelial cells and M1 polarization in macrophages. J Inflamm (Lond). 19:242022. View Article : Google Scholar : PubMed/NCBI | |
Bu C, Wang R, Wang Y, Lu B, He S and Zhao X: Taraxasterol inhibits hyperactivation of macrophages to alleviate the sepsis-induced inflammatory response of ARDS rats. Cell Biochem Biophys. 80:763–770. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fang H, Chen J, Luo J, Hu J, Wang D, Lv L and Zhang W: Abietic acid attenuates sepsis-induced lung injury by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway to inhibit M1 macrophage polarization. Exp Anim. 71:481–490. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang L and Zhao M: Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats. Bioengineered. 13:7262–7276. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Su J, Zhang Z, Jiang L, Wei J, Xu X and Lv S: Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Sci Rep. 10:207502020. View Article : Google Scholar : PubMed/NCBI | |
Cai YC, Huang Q, Wei XL, Mei RH, Sa LN and Hu XL: Effects of salidroside on the secretion of inflammatory mediators induced by lipopolysaccharide in the co-culture of rat alveolar macrophages and type II alveolar epithelial cells. Sheng Li Xue Bao. 71:575–580. 2019.(In Chinese). PubMed/NCBI | |
Feng H, Zhang D, Yin Y, Kang J and Zheng R: Salidroside ameliorated the pulmonary inflammation induced by cigarette smoke via mitigating M1 macrophage polarization by JNK/c-Jun. Phytother Res. 37:4251–4264. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Xiao C, Yuan J, Chen X, Li Q and Shen F: Rhein-attenuates LPS-induced acute lung injury via targeting NFATc1/Trem2 axis. Inflamm Res. 72:1237–1255. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wang Z, Yang X, Song W, Chen P, Gao Z, Wu J and Huang F: Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by sirtuin 1. Life Sci. 310:1211152022. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Yao J, Hu Q, Kang H, Miao Y, Zhu L, Li C, Zhao X, Li J, Wan M and Tang W: Emodin ameliorates acute pancreatitis-associated lung injury through inhibiting the alveolar macrophages pyroptosis. Front Pharmacol. 13:8730532022. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Yao J, Wu X, Li J, Li G, Tang W, Liu J and Wan M: Emodin attenuates severe acute pancreatitis-associated acute lung injury by suppressing pancreatic exosome-mediated alveolar macrophage activation. Acta Pharm Sin B. 12:3986–4003. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Liu J, Dong J, Fan Z, Wang F, Wu P, Li X, Kou R and Chen F: Allyl methyl trisulfide protected against LPS-induced acute lung injury in mice via inhibition of the NF-κB and MAPK pathways. Front Pharmacol. 13:9198982022. View Article : Google Scholar : PubMed/NCBI | |
Zhuo Y, Li D, Cui L, Li C, Zhang S, Zhang Q, Zhang L, Wang X and Yang L: Treatment with 3,4-dihydroxyphenylethyl alcohol glycoside ameliorates sepsis-induced ALI in mice by reducing inflammation and regulating M1 polarization. Biomed Pharmacother. 116:1090122019. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Biswas SK, Galdiero MR, Sica A and Locati M: Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 229:176–185. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yadav S, Priya A, Borade DR and Agrawal-Rajput R: Macrophage subsets and their role: Co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res. 71:130–152. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Xu W, Shen A, Fu X, Cen H, Wang S, Lin Z, Zhang L, Lin F and Zhang X: Inhibition of YAP1 activity ameliorates acute lung injury through promotion of M2 macrophage polarization. MedComm (2020). 4:e2932023. View Article : Google Scholar : PubMed/NCBI | |
Jiang R, Xu J, Zhang Y, Zhu X, Liu J and Tan Y: Ligustrazine alleviate acute lung injury through suppressing pyroptosis and apoptosis of alveolar macrophages. Front Pharmacol. 12:6805122021. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Hong J, Liu T, Li M, Jin H and Wang X: Polygonatum polysaccharide regulates macrophage polarization and improves LPS-Induced acute lung injury through TLR4-MAPK/NF-κB pathway. Can Respir J. 2022:1–11. 2022. View Article : Google Scholar | |
Liu JH, Cao L, Zhang CH, Li C, Zhang ZH and Wu Q: Dihydroquercetin attenuates lipopolysaccharide-induced acute lung injury through modulating FOXO3-mediated NF-κB signaling via miR-132-3p. Pulm Pharmacol Ther. 64:1019342020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Liu J, Zhang C, Cao L, Zou F and Zhang Z: Dihydroquercetin (DHQ) ameliorates LPS-induced acute lung injury by regulating macrophage M2 polarization through IRF4/miR-132-3p/FBXW7 axis. Pulm Pharmacol Ther. 83:1022492023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Song D, Peng Z, Wang R, Li K, Ren H, Sun X, Du N and Tang SC: Anisodamine enhances macrophage M2 polarization through suppressing G9a-mediated interferon regulatory factor 4 silencing to alleviate lipopolysaccharide-induced acute lung injury. J Pharmacol Exp Ther. 381:247–256. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang X, Zhang L and Zhang R: Alleviation of acute lung injury in rats with sepsis by resveratrol via the phosphatidylinositol 3-Kinase/Nuclear factor-erythroid 2 related factor 2/Heme oxygenase-1 (PI3K/Nrf2/HO-1) pathway. Med Sci Monit. 24:3604–3611. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Liu Q, Wang M, Liang M, Yang X, Xu X, Zou H and Qiu J: Activation of Sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts. PLoS One. 6:e270812011. View Article : Google Scholar : PubMed/NCBI | |
Misawa T, Saitoh T, Kozaki T, Park S, Takahama M and Akira S: Resveratrol inhibits the acetylated α-tubulin-mediated assembly of the NLRP3-inflammasome. Int Immunol. 27:425–434. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu L, Chen Z, Li L, Jiang Z and Zhu L: Resveratrol decreases CD45+CD206− subtype macrophages in LPS-induced murine acute lung injury by SOCS3 signalling pathway. J Cell Mol Med. 23:8101–8113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li QR, Tan SR, Yang L, He W, Chen L, Shen FX, Wang Z and Wang HF: Mechanism of chlorogenic acid in alveolar macrophage polarization in Klebsiella pneumoniae-induced pneumonia. J Leukoc Biol. 112:9–21. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pan MH, Lai CS, Wang YJ and Ho CT: Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem Pharmacol. 72:1293–1303. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chang B, Wang Z, Cheng H, Xu T, Chen J, Wu W, Li Y and Zhang Y: Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis. Innate Immun. 30:11–20. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qiao X, Wang H, He Y, Song D, Altawil A, Wang Q and Yin Y: Grape seed proanthocyanidin ameliorates LPS-induced acute lung injury by modulating M2a macrophage polarization via the TREM2/PI3K/Akt pathway. Inflammation. 46:2147–2164. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wen H, Lu D, Chen H, Zhu Y, Xie Q, Zhang Z and Wu Z: Tetrahydropalmatine induces the polarization of M1 macrophages to M2 to relieve limb ischemia-reperfusion-induced lung injury via inhibiting the TLR4/NF-κB/NLRP3 signaling pathway. Drug Dev Res. 83:1362–1372. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu YX, Jiang FJ, Liu G, Wang YY, Gao ZQ, Jin SH, Nie YJ, Chen D, Chen JL and Pang QF: Dehydrocostus lactone attenuates methicillin-resistant staphylococcus aureus-induced inflammation and acute lung injury via modulating macrophage polarization. Int J Mol Sci. 22:97542021. View Article : Google Scholar : PubMed/NCBI | |
Xie K, Chai YS, Lin SH, Xu F and Wang CJ: Luteolin regulates the differentiation of regulatory T cells and activates IL-10-dependent macrophage polarization against acute lung injury. J Immunol Res. 2021:1–12. 2021. View Article : Google Scholar | |
Yang L, Zhang YM, Guo MN, Zhang H, Zhu XY, Xu C and Liu YJ: Matrine attenuates lung injury by modulating macrophage polarization and suppressing apoptosis. J Surg Res. 281:264–274. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Wang P, Feng G, Wang Q, Liu C, Lu J, Chen J and Liu P: Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of macrophage. Front Med (Lausanne). 9:10754652022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang C, Wang H, Li X, Xu J and Yu K: Loganin alleviates sepsis-induced acute lung injury by regulating macrophage polarization and inhibiting NLRP3 inflammasome activation. Int Immunopharmacol. 95:1075292021. View Article : Google Scholar : PubMed/NCBI | |
Zhao JY, Pu J, Fan J, Feng XY, Xu JW, Zhang R and Shang Y: Tanshinone IIA prevents acute lung injury by regulating macrophage polarization. J Integr Med. 20:274–280. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ying ZH, Li HM, Yu WY and Yu CH: Iridin prevented against lipopolysaccharide-induced inflammatory responses of macrophages via inactivation of PKM2-mediated glycolytic pathways. J Inflamm Res. 14:341–354. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhang M, Liu YW, Tan Y, Yin J, Chen Y, Chen D and Ni B: Sinomenine alleviates lipopolysaccharide-induced acute lung injury via a PPARβ/δ-dependent mechanism. Eur J Pharmacol. 953:1758382023. View Article : Google Scholar : PubMed/NCBI | |
Gao WJ, Liu JX, Xie Y, Luo P, Liu ZQ, Liu L and Zhou H: Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine. Pharmacol Res. 167:1055132021. View Article : Google Scholar : PubMed/NCBI | |
Yi L, Luo JF, Xie BB, Liu JX, Wang JY, Liu L, Wang PX, Zhou H and Dong Y: α7 nicotinic acetylcholine receptor is a novel mediator of sinomenine anti-inflammation effect in macrophages stimulated by lipopolysaccharide. Shock. 44:188–195. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhi YK, Li J, Yi L, Zhu RL, Luo JF, Shi QP, Bai SS, Li YW, Du Q, Cai JZ, et al: Sinomenine inhibits macrophage M1 polarization by downregulating α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1. Phytomedicine. 100:1540502022. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Wang H and Cui N: Autophagy regulation on pyroptosis: Mechanism and medical implication in sepsis. Mediators Inflamm. 2021:99250592021. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wei T, Zhang C and Song Y: Molecular mechanisms and roles of pyroptosis in acute lung injury. Chin Med J (Engl). 135:2417–2426. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Yu Y, Li R, Tao Z, Zhang L, Wang X, Qi X, Li Y, Meng T, Qu H, et al: Phenylalanine promotes alveolar macrophage pyroptosis via the activation of CaSR in ARDS. Front Immunol. 14:11141292023. View Article : Google Scholar : PubMed/NCBI | |
Wu DD, Pan PH, Liu B, Su XL, Zhang LM, Tan HY, Cao Z, Zhou ZR, Li HT, Li HS, et al: Inhibition of alveolar macrophage pyroptosis reduces lipopolysaccharide-induced acute lung injury in mice. Chin Med J (Engl). 128:2638–2645. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang Y, Feng Q, Liu Q, Xie J, Li H, Yang F, Liu X, Gao W, Bai X, et al: GPA peptide attenuates sepsis-induced acute lung injury in mice via inhibiting oxidative stress and pyroptosis of alveolar macrophage. Oxid Med Cell Longev. 2021:1–12. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Li Y, Song C, Hu Y, Dai M, Liu B and Pan P: Neutrophil extracellular traps augmented alveolar macrophage pyroptosis via AIM2 inflammasome activation in LPS-induced ALI/ARDS. J Inflamm Res. 14:4839–4858. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hsu CG, Chávez CL, Zhang C, Sowden M, Yan C and Berk BC: The lipid peroxidation product 4-hydroxynonenal inhibits NLRP3 inflammasome activation and macrophage pyroptosis. Cell Death Differ. 29:1790–1803. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang Y, You G, Zheng D, He Z, Guo W, Antonina K, Shukhrat Z, Ding B, Zan J and Zhang Z: Tangeretin attenuates acute lung injury in septic mice by inhibiting ROS-mediated NLRP3 inflammasome activation via regulating PLK1/AMPK/DRP1 signaling axis. Inflamm Res. 73:47–63. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wu FP, Huang YR, Li HD, Cao XY, You Y, Meng ZF, Sun KY and Shen XY: Matrine suppresses NLRP3 inflammasome activation via regulating PTPN2/JNK/SREBP2 pathway in sepsis. Phytomedicine. 109:1545742023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang H, Zhu F, Ouyang Y and Pan P: Inhibition of STAT3 phosphorylation by colchicine regulates NLRP3 activation to alleviate sepsis-induced acute lung injury. Inflammopharmacology. 31:2007–2021. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Liao Q, Xue M, Shi Y, Rong L, Song Z, Tong Z, Zheng W, Zhu Q, Cui X and Tao Z: Shufeng jiedu capsules alleviate lipopolysaccharide-induced acute lung inflammatory injury via activation of GPR18 by verbenalin. Cell Physiol Biochem. 50:629–639. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Liu T, Zhuo Y, Li D, Li D, Liu J, Gao H, Zhang L, Lin J and Wang X: Verbenalin alleviates acute lung injury induced by sepsis and IgG immune complex through GPR18 receptor. Cell Signal. 109:1107682023. View Article : Google Scholar : PubMed/NCBI | |
Chen LL, Song C, Zhang Y, Li Y, Zhao YH, Lin FY, Han DD, Dai MH, Li W and Pan PH: Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation. Eur J Pharmacol. 936:1753522022. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Yang J, Deng K, Lang X, Zhang J, Li M, Qiu L, Zhong G and Yu J: Tiliroside attenuates NLRP3 inflammasome activation in macrophages and protects against acute lung injury in mice. Molecules. 28:75272023. View Article : Google Scholar : PubMed/NCBI | |
Xu HW, Li WF, Hong SS, Shao JJ, Chen JH, Chattipakorn N, Wu D, Luo W and Liang G: Tabersonine, a natural NLRP3 inhibitor, suppresses inflammasome activation in macrophages and attenuate NLRP3-driven diseases in mice. Acta Pharmacol Sin. 44:1252–1261. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shao JJ, Li WF, Sun JF, Zhuang ZS, Min JL, Long XH, Wu GJ, Xu HW and Liang G: Britannin as a novel NLRP3 inhibitor, suppresses inflammasome activation in macrophages and alleviates NLRP3-related diseases in mice. Acta Pharmacol Sin. 45:803–814. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Ye XJ, Chen MY, Li HC, Wang YF, Zhong MY, Zhong CS, Zeng B, Xu LH, He XH and Ouyang DY: Inhibition of NLRP3 inflammasome activation and pyroptosis in macrophages by taraxasterol is associated with its regulation on mTOR signaling. Front Immunol. 12:6326062021. View Article : Google Scholar : PubMed/NCBI | |
Jang WY, Kim MY and Cho JY: Antioxidant, anti-inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites. Int J Mol Sci. 23:154822022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Yang L, Hu D, He S, Cui L, Zhao J, Zhuo Y, Zhang L and Wang X: Syringaresinol alleviates IgG immune complex induced acute lung injury via activating PPARγ and suppressing pyroptosis. Int Immunopharmacol 124(Pt B). 1110712023. View Article : Google Scholar : PubMed/NCBI | |
Li W, Xu H, Shao J, Chen J, Lin Y, Zheng Z, Wang Y, Luo W and Liang G: Discovery of alantolactone as a naturally occurring NLRP3 inhibitor to alleviate NLRP3-driven inflammatory diseases in mice. Br J Pharmacol. 180:1634–1647. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhou Y, Tu Q, Yao L, Li J and Yang Z: Alpha-linolenic acid pretreatment alleviates NETs-induced alveolar macrophage pyroptosis by inhibiting pyrin inflammasome activation in a mouse model of sepsis-induced ALI/ARDS. Front Immunol. 14:11466122023. View Article : Google Scholar : PubMed/NCBI | |
Weavers H, Evans IR, Martin P and Wood W: Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell. 165:1658–1671. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Zhang G, Xie M, Wang Y, Liang X, Tu M, Su Z and Zeng R: Softness enhanced macrophage-mediated therapy of inhaled apoptotic-cell-inspired nanosystems for acute lung injury. J Nanobiotechnology. 21:1722023. View Article : Google Scholar : PubMed/NCBI | |
Leventis PA and Grinstein S: The distribution and function of phosphatidylserine in cellular membranes. Ann Rev Biophysics. 39:407–427. 2010. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Friggeri A, Liu G and Abraham E: The C-terminal acidic tail is responsible for the inhibitory effects of HMGB1 on efferocytosis. J Leukoc Biol. 88:973–979. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mahida RY, Scott A, Parekh D, Lugg ST, Hardy RS, Lavery GG, Matthay MA, Naidu B, Perkins GD and Thickett DR: Acute respiratory distress syndrome is associated with impaired alveolar macrophage efferocytosis. Eur Respir J. 58:21008292021. View Article : Google Scholar : PubMed/NCBI | |
Mahida RY, Lax S, Bassford CR, Scott A, Parekh D, Hardy RS, Naidu B, Matthay MA, Stewart PM, Cooper MC, et al: Impaired alveolar macrophage 11β-hydroxysteroid dehydrogenase type 1 reductase activity contributes to increased pulmonary inflammation and mortality in sepsis-related ARDS. Front Immunol. 14:11598312023. View Article : Google Scholar : PubMed/NCBI | |
Martín-Vicente P, López-Martínez C and Albaiceta GM: The last-minute redemption of inflammatory cells in lung repair. Eur Respir J. 59:21030002022. View Article : Google Scholar : PubMed/NCBI | |
Nepal S, Tiruppathi C, Tsukasaki Y, Farahany J, Mittal M, Rehman J, Prockop DJ and Malik AB: STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation. Proc Natl Acad Sci USA. 116:16513–16518. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Xia Y, Wang W, Zhao J, Liu W, Liu S, Shi S, Li B, He X and Jin Y: Apoptotic bodies inhibit inflammation by PDL1-PD1-mediated macrophage metabolic reprogramming. Cell Prolif. 57:e135312023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang W, Xu Y, Wu D, Gao Z, Zhou J, Qian H, He B and Wang G: Extracellular HMGB1 impairs macrophage-mediated efferocytosis by suppressing the Rab43-controlled cell surface transport of CD91. Front Immunol. 13:7676302022. View Article : Google Scholar : PubMed/NCBI | |
Aderem A and Underhill DM: Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 17:593–623. 1999. View Article : Google Scholar : PubMed/NCBI | |
He F, Gao F, Cai N, Jiang M and Wu C: Chlorogenic acid enhances alveolar macrophages phagocytosis in acute respiratory distress syndrome by activating G protein-coupled receptor 37 (GPR 37). Phytomedicine. 107:1544742022. View Article : Google Scholar : PubMed/NCBI | |
Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, et al: Autophagy in healthy aging and disease. Nat Aging. 1:634–650. 2021. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Panigrahi DP, Patil S and Bhutia SK: Autophagy in health and disease: A comprehensive review. Biomed Pharmacother. 104:485–495. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Chen Y, Zhang P, Lin P, Xie N and Wu M: Protective features of autophagy in pulmonary infection and inflammatory diseases. Cells. 8:1232019. View Article : Google Scholar : PubMed/NCBI | |
Murray PJ: On macrophage diversity and inflammatory metabolic timers. Nat Rev Immunol. 20:89–90. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Xiao K and Xie L: Progress in preclinical studies of macrophage autophagy in the regulation of ALI/ARDS. Front Immunol. 13:9227022022. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Yu Y, Tang X, Dong R, Li X, Li F, Jin Y, Gong S, Wang X, Zeng Z, et al: 3-Hydroxybutyrate ameliorates sepsis-associated acute lung injury by promoting autophagy through the activation of GPR109α in macrophages. Biochem Pharmacol. 213:1156322023. View Article : Google Scholar : PubMed/NCBI | |
Quach C, Helou DG, Li M, Hurrell BP, Howard E, Shafiei-Jahani P, Soroosh P, Ou JJ, Razani B, Rehan V and Akbari O: Enhancing autophagy in CD11c+ antigen-presenting cells as a therapeutic strategy for acute respiratory distress syndrome. Cell Rep. 42:1129902023. View Article : Google Scholar : PubMed/NCBI | |
Qiu P, Liu Y, Chen K, Dong Y, Liu S and Zhang J: Hydrogen-rich saline regulates the polarization and apoptosis of alveolar macrophages and attenuates lung injury via suppression of autophagy in septic rats. Ann Transl Med. 9:9742021. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Liu J, Tang Y, Peng Q, Zhang L, Ma X, Xu N, Wei J and Han H: Sophoridine inhibits endotoxin-induced acute lung injury by enhancing autophagy of macrophage and reducing inflammation. J Leukoc Biol. 112:115–125. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wen H, Zhang H, Wang W and Li Y: Tetrahydropalmatine protects against acute lung injury induced by limb ischemia/reperfusion through restoring PI3K/AKT/mTOR-mediated autophagy in rats. Pulm Pharmacol Ther. 64:1019472020. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Cao F, Yan C, Fang K, Ma J, Gao L, Sun B and Wang G: Extracellular Vesicle/Macrophage axis: Potential targets for inflammatory disease intervention. Front Immunol. 13:7054722022. View Article : Google Scholar : PubMed/NCBI | |
Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T and Castegna A: The metabolic signature of macrophage responses. Front Immunol. 10:14622019. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Jing Z, Li Q, Chu L, Jiang Y, Zhang X, Yan L, Liu Y, Jiang J, Xu P, et al: Exosomal STIMATE derived from type II alveolar epithelial cells controls metabolic reprogramming of tissue-resident alveolar macrophages. Theranostics. 13:991–1009. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhong WJ, Liu T, Yang HH, Duan JX, Yang JT, Guan XX, Xiong JB, Zhang YF, Zhang CY, Zhou Y and Guan CX: TREM-1 governs NLRP3 inflammasome activation of macrophages by firing up glycolysis in acute lung injury. Int J Biol Sci. 19:242–257. 2023. View Article : Google Scholar : PubMed/NCBI | |
Breda CN, Davanzo GG, Basso PJ, Câmara NO and Moraes-Vieira PMM: Mitochondria as central hub of the immune system. Redox Biol. 26:1012552019. View Article : Google Scholar : PubMed/NCBI | |
Rosales C and Uribe-Querol E: Phagocytosis: A fundamental process in immunity. Biomed Res Int. 2017:90428512017. View Article : Google Scholar : PubMed/NCBI | |
Meidaninikjeh S, Sabouni N, Marzouni HZ, Bengar S, Khalili A and Jafari R: Monocytes and macrophages in COVID-19: Friends and foes. Life Sci. 269:1190102021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li S and Huang B: Alveolar macrophages: Achilles' heel of SARS-CoV-2 infection. Signal Transduct Target Ther. 7:2422022. View Article : Google Scholar : PubMed/NCBI |