Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2025 Volume 31 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 31 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review)

  • Authors:
    • Siyu Sun
    • Huige Guo
    • Guohui Chen
    • Hui Zhang
    • Zhanrui Zhang
    • Xiulong Wang
    • Dongxu Li
    • Xuefang Li
    • Guoan Zhao
    • Fei Lin
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China, Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
    Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 17
    |
    Published online on: November 4, 2024
       https://doi.org/10.3892/mmr.2024.13382
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Heart disease (HD) is a general term for various diseases affecting the heart. An increasing body of evidence suggests that the pathogenesis of HD is closely related to mitochondrial dysfunction. Peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α) is a transcriptional coactivator that plays an important role in mitochondrial function by regulating mitochondrial biogenesis, energy metabolism and oxidative stress. The present review shows that PGC‑1α expression and activity in the heart are controlled by multiple signaling pathways, including adenosine monophosphate‑activated protein kinase, sirtuin 1/3 and nuclear factor κB. These can mediate the activation or inhibition of transcription and post‑translational modifications (such as phosphorylation and acetylation) of PGC‑1α. Furthermore, it highlighted the recent progress of PGC‑1α in HD, including heart failure, coronary heart disease, diabetic cardiomyopathy, drug‑induced cardiotoxicity and arrhythmia. Understanding the mechanisms underlying PGC‑1α in response to pathological stimulation may prove to be beneficial in developing new ideas and strategies for preventing and treating HDs. Meanwhile, the present review explored why the opposite results occurred when PGC‑1α was used as a target therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Harrington JS, Ryter SW, Plataki M, Price DR and Choi AMK: Mitochondria in health, disease and aging. Physiol Rev. 103:2349–2422. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Jannig PR, Dumesic PA, Spiegelman BM and Ruas JL: SnapShot: Regulation and biology of PGC-1α. Cell. 185:1444.e12022. View Article : Google Scholar : PubMed/NCBI

3 

Andrulionyte L, Peltola P, Chiasson JL and Laakso M; STOP-NIDDM Study Group, : Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: The STOP-NIDDM trial. Diabetes. 55:2148–2152. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Yongsakulchai P, Settasatian C, Settasatian N, Komanasin N, Kukongwiriyapan U, Cote ML, Intharapetch P and Senthong V: Association of combined genetic variations in PPARγ, PGC-1α and LXRα with coronary artery disease and severity in Thai population. Atherosclerosis. 248:140–148. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Rojek A, Cielecka-Prynda M, Przewlocka-Kosmala M, Laczmanski L, Mysiak A and Kosmala W: Impact of the PPARGC1A Gly482Ser polymorphism on left ventricular structural and functional abnormalities in patients with hypertension. J Hum Hypertens. 28:557–563. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Yao Y, Chen T, Wu H, Yang N and Xu S: Melatonin attenuates bisphenol A-induced colon injury by dual targeting mitochondrial dynamics and Nrf2 antioxidant system via activation of SIRT1/PGC-1α signaling pathway. Free Radic Biol Med. 195:13–22. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Kärkkäinen O, Tuomainen T, Mutikainen M, Lehtonen M, Ruas JL, Hanhineva K and Tavi P: Heart specific PGC-1α deletion identifies metabolome of cardiac restricted metabolic heart failure. Cardiovasc Res. 115:107–118. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Rowe GC, Jiang A and Arany Z: PGC-1 coactivators in cardiac development and disease. Circ Res. 107:825–838. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Garcia D and Shaw RJ: AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 66:789–800. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Tian R, Musi N, D'Agostino J, Hirshman MF and Goodyear LJ: Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation. 104:1664–1669. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Nishino Y, Miura T, Miki T, Sakamoto J, Nakamura Y, Ikeda Y, Kobayashi H and Shimamoto K: Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res. 61:610–619. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Tong D, Schiattarella GG, Jiang N, Daou D, Luo Y, Link MS, Lavandero S, Gillette TG and Hill JA: Impaired AMP-Activated protein kinase signaling in heart failure with preserved ejection Fraction-associated atrial fibrillation. Circulation. 146:73–76. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y and Meng X: The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal. 14:157–176. 2024. View Article : Google Scholar : PubMed/NCBI

14 

Jäger S, Handschin C, St-Pierre J and Spiegelman BM: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 104:12017–12022. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Wang Y, Li X, Guo Y, Chan L and Guan X: Alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice. Metabolism. 59:967–976. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Malik N, Ferreira BI, Hollstein PE, Curtis SD, Trefts E, Weiser Novak S, Yu J, Gilson R, Hellberg K, Fang L, et al: Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science. 380:eabj55592023. View Article : Google Scholar : PubMed/NCBI

17 

Xu CQ, Li J, Liang ZQ, Zhong YL, Zhang ZH, Hu XQ, Cao YB and Chen J: Sirtuins in macrophage immune metabolism: A novel target for cardiovascular disorders. Int J Biol Macromol. 256:1282702024. View Article : Google Scholar : PubMed/NCBI

18 

Komen JC and Thorburn DR: Turn up the power-pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol. 171:1818–1836. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Wang L, Quan N, Sun W, Chen X, Cates C, Rousselle T, Zhou X, Zhao X and Li J: Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res. 114:805–821. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Chen Q and Lesnefsky EJ: A new strategy to decrease cardiac injury in aged heart following Ischaemia-reperfusion: Enhancement of the interaction between AMPK and SIRT1. Cardiovasc Res. 114:771–772. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Bugga P, Alam MJ, Kumar R, Pal S, Chattopadyay N and Banerjee SK: Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial bioge-nesis and dynamics in cardiomyoblast. Cell Signal. 94:1103092022. View Article : Google Scholar : PubMed/NCBI

22 

Capece D, Verzella D, Flati I, Arboretto P, Cornice J and Franzoso G: NF-κB: Blending metabolism, immunity and inflammation. Trends Immunol. 43:757–775. 2022. View Article : Google Scholar : PubMed/NCBI

23 

Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, Higuchi T, Vaeth M, Zernecke A, Frantz S, et al: Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res. 118:37–52. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Rabinovich-Nikitin I, Blant A, Dhingra R, Kirshenbaum LA and Czubryt MP: NF-κB p65 attenuates cardiomyocyte PGC-1α expression in hypoxia. Cells. 11:21932022. View Article : Google Scholar : PubMed/NCBI

25 

Zhao MM, Xu MJ, Cai Y, Zhao G, Guan Y, Kong W, Tang C and Wang X: Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and in vivo. Kidney Int. 79:1071–1079. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Wang P, Xu S, Xu J, Xin Y, Lu Y, Zhang H, Zhou B, Xu H, Sheu SS, Tian R and Wang W: Elevated MCU expression by CaMKIIδB limits pathological cardiac remodeling. Circulation. 145:1067–1083. 2022. View Article : Google Scholar : PubMed/NCBI

27 

Wright DC, Geiger PC, Han DH, Jones TE and Holloszy JO: Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 282:18793–18799. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Kim HK, Ko TH, Song IS, Jeong YJ, Heo HJ, Jeong SH, Kim M, Park NM, Seo DY, Kha PT, et al: BH4 activates CaMKK2 and rescues the cardiomyopathic phenotype in rodent models of diabetes. Life Sci Alliance. 3:e2019006192020. View Article : Google Scholar : PubMed/NCBI

29 

Watanabe S, Horie T, Nagao K, Kuwabara Y, Baba O, Nishi H, Sowa N, Narazaki M, Matsuda T, Takemura G, et al: Cardiac-specific inhibition of kinase activity in calcium/calmodulin-dependent protein kinase kinase-β leads to accelerated left ventricular remodeling and heart failure after transverse aortic constriction in mice. PLoS One. 9:e1082012014. View Article : Google Scholar : PubMed/NCBI

30 

Gill JF, Delezie J, Santos G, McGuirk S, Schnyder S, Frank S, Rausch M, St-Pierre J and Handschin C: Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress and cell death to mitigate skeletal muscle aging. Aging Cell. 18:e129932019. View Article : Google Scholar : PubMed/NCBI

31 

Oldfield CJ, Duhamel TA and Dhalla NS: Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol. 98:74–84. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Brainard RE and Facundo HT: Cardiac hypertrophy drives PGC-1α suppression associated with enhanced O-glycosylation. Biochim Biophys Acta Mol Basis Dis. 1867:1660802021. View Article : Google Scholar : PubMed/NCBI

33 

Xu Z, Li M, Lyu D, Xiao H, Li S, Li Z, Li M, Xiao J and Huang H: Cinnamaldehyde activates AMPK/PGC-1α pathway via targeting GRK2 to ameliorate heart failure. Phytomedicine. 133:1558942024. View Article : Google Scholar : PubMed/NCBI

34 

Hu X, Xu X, Huang Y, Fassett J, Flagg TP, Zhang Y, Nichols CG, Bache RJ and Chen Y: Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload. Circ Res. 103:1009–1017. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Zhuang L, Jia K, Chen C, Li Z, Zhao J, Hu J, Zhang H, Fan Q, Huang C, Xie H, et al: DYRK1B-STAT3 drives cardiac hypertrophy and heart failure by impairing mitochondrial bioenergetics. Circulation. 145:829–846. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Zhang S, Tang F, Yang Y, Lu M, Luan A, Zhang J, Yang J and Wang H: Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-κB/PGC-1α signaling mediated energy biosynthesis. PLoS One. 10:e01187592015. View Article : Google Scholar : PubMed/NCBI

37 

Planavila A, Iglesias R, Giralt M and Villarroya F: Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation and inflammation. Cardiovasc Res. 90:276–284. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Liu XP, Gao H, Huang XY, Chen YF, Feng XJ, He YH, Li ZM and Liu PQ: Peroxisome proliferator-activated receptor gamma coactivator 1 alpha protects cardiomyocytes from hypertrophy by suppressing calcineurin-nuclear factor of activated T cells c4 signaling pathway. Transl Res. 166:459–473.e3. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Pereira RO, Wende AR, Crum A, Hunter D, Olsen CD, Rawlings T, Riehle C, Ward WF and Abel ED: Maintaining PGC-1α expression following pressure overload-induced cardiac hypertrophy preserves angiogenesis but not contractile or mitochondrial function. FASEB J. 28:3691–3702. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Bhat S, Chin A, Shirakabe A, Ikeda Y, Ikeda S, Zhai P, Hsu CP, Sayed D, Abdellatif M, Byun J, et al: Recruitment of RNA polymerase II to metabolic gene promoters is inhibited in the failing heart possibly through PGC-1α (Peroxisome proliferator-activated Receptor-γ coactivator-1α) Dysregulation. Circ Heart Fail. 12:e0055292019. View Article : Google Scholar : PubMed/NCBI

41 

Naumenko N, Mutikainen M, Holappa L, Ruas JL, Tuomainen T and Tavi P: PGC-1α deficiency reveals sex-specific links between cardiac energy metabolism and EC-coupling during development of heart failure in mice. Cardiovasc Res. 118:1520–1534. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Chen L, Qin Y, Liu B, Gao M, Li A, Li X and Gong G: PGC-1α-mediated mitochondrial quality control: Molecular mechanisms and implications for heart failure. Front Cell Dev Biol. 10:8713572022. View Article : Google Scholar : PubMed/NCBI

43 

Hausenloy DJ and Yellon DM: Ischaemic conditioning and reperfusion injury. Nature reviews. Cardiology. 13:193–209. 2016.PubMed/NCBI

44 

Kadlec AO, Chabowski DS, Ait-Aissa K and Gutterman DD: Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis. Arterioscler Thromb Vasc Biol. 36:1467–1474. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Wang ZC, Niu KM, Wu YJ, Du KR, Qi LW, Zhou YB and Sun HJ: A dual Keap1 and p47phox inhibitor Ginsenoside Rb1 ameliorates high glucose/ox-LDL-induced endothelial cell injury and atherosclerosis. Cell Death Dis. 13:8242022. View Article : Google Scholar : PubMed/NCBI

46 

Kim HJ, Park KG, Yoo EK, Kim YH, Kim YN, Kim HS, Kim HT, Park JY, Lee KU, Jang WG, et al: Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal. 9:301–307. 2007. View Article : Google Scholar : PubMed/NCBI

47 

McCarthy C, Lieggi NT, Barry D, Mooney D, de Gaetano M, James WG, McClelland S, Barry MC, Escoubet-Lozach L, Li AC, et al: Macrophage PPAR gamma Co-activator-1 alpha participates in repressing foam cell formation and atherosclerosis in response to conjugated linoleic acid. EMBO Mol Med. 5:1443–1457. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Li YQ, Jiao Y, Liu YN, Fu JY, Sun LK and Su J: PGC-1α protects from myocardial ischaemia-reperfusion injury by regulating mitonuclear communication. J Cell Mol Med. 26:593–600. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Chen Y, Wang Y, Chen J, Chen X, Cao W, Chen S, Xu S, Huang H and Liu P: Roles of transcriptional corepressor RIP140 and coactivator PGC-1α in energy state of chronically infarcted rat hearts and mitochondrial function of cardiomyocytes. Mol Cell Endocrinol. 362:11–18. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Caligiuri G: Mechanotransduction, immunoregulation and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res. 115:1425–1434. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Kadlec AO, Chabowski DS, Ait-Aissa K, Hockenberry JC, Otterson MF, Durand MJ, Freed JK, Beyer AM and Gutterman DD: PGC-1α (Peroxisome proliferator-activated receptor γ coactivator 1-α) overexpression in coronary artery disease recruits NO and hydrogen peroxide during flow-mediated dilation and protects against increased intraluminal pressure. Hypertension. 70:166–173. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Li J, Geng XY and Cong XL: PGC-1α ameliorates Angiotensin II-induced eNOS dysfunction in human aortic endothelial cells. Vascul Pharmacol. 83:90–97. 2016. View Article : Google Scholar : PubMed/NCBI

54 

García-Quintans N, Prieto I, Sánchez-Ramos C, Luque A, Arza E, Olmos Y and Monsalve M: Regulation of endothelial dynamics by PGC-1α relies on ROS control of VEGF-A signaling. Free Radical Biol Med. 93:41–51. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM, Doran AC and Kovacic JC: Macrophage trafficking, inflammatory resolution and genomics in atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol. 72:2181–2197. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Minsky N and Roeder RG: Inhibition of adhesion molecule gene expression and cell adhesion by the metabolic regulator PGC-1α. PLoS One. 11:e01655982016. View Article : Google Scholar : PubMed/NCBI

57 

Qu A, Jiang C, Xu M, Zhang Y, Zhu Y, Xu Q, Zhang C and Wang X: PGC-1alpha attenuates neointimal formation via inhibition of vascular smooth muscle cell migration in the injured rat carotid artery. Am J Physiol Cell Physiol. 297:C645–C653. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Zhu L, Sun G, Zhang H, Zhang Y, Chen X, Jiang X, Jiang X, Krauss S, Zhang J, Xiang Y and Zhang CY: PGC-1alpha is a key regulator of glucose-induced proliferation and migration in vascular smooth muscle cells. PLoS One. 4:e41822009. View Article : Google Scholar : PubMed/NCBI

59 

Zhao Q, Zhang J and Wang H: PGC-1α limits angiotensin II-induced rat vascular smooth muscle cells proliferation via attenuating NOX1-mediated generation of reactive oxygen species. Biosci Rep. 35:e002522015. View Article : Google Scholar : PubMed/NCBI

60 

Nah DY and Rhee MY: The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J. 39:393–398. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Günthel M, van Duijvenboden K, de Bakker DEM, Hooijkaas IB, Bakkers J, Barnett P and Christoffels VM: Epigenetic state changes underlie metabolic switch in mouse post-infarction border zone cardiomyocytes. J Cardiovasc Dev Dis. 8:1342021.PubMed/NCBI

62 

Oehler D, Spychala A, Gödecke A, Lang A, Gerdes N, Ruas J, Kelm M, Szendroedi J and Westenfeld R: Full-length transcriptomic analysis in murine and human heart reveals diversity of PGC-1α promoters and isoforms regulated distinctly in myocardial ischemia and obesity. BMC Biol. 20:1692022. View Article : Google Scholar : PubMed/NCBI

63 

Lou PH, Zhang L, Lucchinetti E, Heck M, Affolter A, Gandhi M, Kienesberger PC, Hersberger M, Clanachan AS and Zaugg M: Infarct-remodelled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischaemia/reperfusion injury. Cardiovasc Res. 97:251–261. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Bugger H and Pfeil K: Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis. 1866:1657682020. View Article : Google Scholar : PubMed/NCBI

65 

Gu S, Hua H, Guo X, Jia Z, Zhang Y, Maslov LN, Zhang X and Ma H: PGC-1α participates in the protective effect of chronic intermittent hypobaric hypoxia on cardiomyocytes. Cell Physiol Biochem. 50:1891–1902. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Papatheodorou I, Makrecka-Kuka M, Kuka J, Liepinsh E, Dambrova M and Lazou A: Pharmacological activation of PPARβ/δ preserves mitochondrial respiratory function in ischemia/reperfusion via stimulation of fatty acid oxidation-linked respiration and PGC-1α/NRF-1 signaling. Front Endocrinol. 13:9418222022. View Article : Google Scholar : PubMed/NCBI

67 

Yu LM, Dong X, Xue XD, Zhang J, Li Z, Wu HJ, Yang ZL, Yang Y and Wang HS: Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: The role of the AMPK-SIRT3 signaling pathway. Food Function. 10:2752–2765. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Lindberg S, Jensen JS, Pedersen SH, Galatius S, Frystyk J, Flyvbjerg A, Bjerre M and Mogelvang R: Low adiponectin levels and increased risk of type 2 diabetes in patients with myocardial infarction. Diabetes Care. 37:3003–3008. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Xia Y, Zhang F, Zhao S, Li Y, Chen X, Gao E, Xu X, Xiong Z, Zhang X, Zhang J, et al: Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction. Cardiovasc Res. 114:1335–1349. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Monsalve M: Induction of PGC-1α expression can be detected in blood samples of patients with ST-segment elevation acute myocardial infarction. PLoS One. 6:e269132011. View Article : Google Scholar : PubMed/NCBI

71 

Duncan JG, Fong JL, Medeiros DM, Finck BN and Kelly DP: Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 115:909–917. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Kim Y, Lim JH, Kim EN, Hong YA, Park HJ, Chung S, Choi BS, Kim YS, Park JY, Kim HW and Park CW: Adiponectin receptor agonist ameliorates cardiac lipotoxicity via enhancing ceramide metabolism in type 2 diabetic mice. Cell Death Disease. 13:2822022. View Article : Google Scholar : PubMed/NCBI

73 

Bekhite M, González-Delgado A, Hübner S, Haxhikadrija P, Kretzschmar T, Müller T, Wu JMF, Bekfani T, Franz M, Wartenberg M, et al: The role of ceramide accumulation in human induced pluripotent stem cell-derived cardiomyocytes on mitochondrial oxidative stress and mitophagy. Free Radical Biol Med. 167:66–80. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Waldman M, Arad M, Abraham NG and Hochhauser E: The peroxisome Proliferator-activated receptor-gamma coactivator-1α-heme oxygenase 1 axis a powerful antioxidative pathway with potential to attenuate diabetic cardiomyopathy. Antioxid Redox Signal. 32:1273–1290. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Wang SY, Zhu S, Wu J, Zhang M, Xu Y, Xu W, Cui J, Yu B, Cao W and Liu J: Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med (Berl). 98:245–261. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M, Kornwoski R, Aravot D, Abraham NG, Arad M and Hochhauser E: Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’. Cardiovasc Diabetol. 17:1112018. View Article : Google Scholar : PubMed/NCBI

77 

Whitehead N, Gill JF, Brink M and Handschin C: Moderate modulation of cardiac PGC-1α expression partially affects age-associated transcriptional remodeling of the heart. Front Physiol. 9:2422018. View Article : Google Scholar : PubMed/NCBI

78 

Mamoshina P, Rodriguez B and Bueno-Orovio A: Toward a broader view of mechanisms of drug cardiotoxicity. Cell Rep Med. 2:1002162021. View Article : Google Scholar : PubMed/NCBI

79 

Zhao X, Tian Z, Sun M and Dong D: Nrf2: A dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov. 9:2612023. View Article : Google Scholar : PubMed/NCBI

80 

Song JH, Kim MS, Lee SH, Hwang JT, Park SH, Park SW, Jeon SB, Lee RR, Lee J and Choi HK: Hydroethanolic extract of Cirsium setidens ameliorates doxorubicin-induced cardiotoxicity by AMPK-PGC-1α-SOD-mediated mitochondrial protection. Phytomedicine. 129:1556332024. View Article : Google Scholar : PubMed/NCBI

81 

Yin L, Yuan L, Tang Y, Luo Z, Lin X, Wang S, Liang P and Jiang B: Nucleolin promotes autophagy through PGC-1α In LPS-induced myocardial injury. Shock. 60:227–237. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Pharoah BM, Zhang C, Khodade VS, Keceli G, McGinity C, Paolocci N and Toscano JP: Hydropersulfides (RSSH) attenuate doxorubicin-induced cardiotoxicity while boosting its anticancer action. Redox Biol. 60:1026252023. View Article : Google Scholar : PubMed/NCBI

83 

Terrar DA: Timing mechanisms to control heart rhythm and initiate arrhythmias: Roles for intracellular organelles, signalling pathways and subsarcolemmal Ca2. Philos Trans R Soc Lond B Biol Sci. 378:202201702023. View Article : Google Scholar : PubMed/NCBI

84 

Chadda KR, Edling CE, Valli H, Ahmad S, Huang CL and Jeevaratnam K: Gene and protein expression profile of selected molecular targets mediating electrophysiological function in Pgc-1α deficient murine atria. Int J Mol Sci. 19:34502018. View Article : Google Scholar : PubMed/NCBI

85 

Saadeh K, Chadda KR, Ahmad S, Valli H, Nanthakumar N, Fazmin IT, Edling CE, Huang CL and Jeevaratnam K: Molecular basis of ventricular arrhythmogenicity in a Pgc-1α deficient murine model. Mol Genet Metab Rep. 27:1007532021. View Article : Google Scholar : PubMed/NCBI

86 

Liu GZ, Hou TT, Yuan Y, Hang PZ, Zhao JJ, Sun L, Zhao GQ, Zhao J, Dong JM, Wang XB, et al: Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway. Br J Pharmacol. 173:1095–1109. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM and Kelly DP: Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 106:847–856. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sun S, Guo H, Chen G, Zhang H, Zhang Z, Wang X, Li D, Li X, Zhao G, Lin F, Lin F, et al: Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review). Mol Med Rep 31: 17, 2025.
APA
Sun, S., Guo, H., Chen, G., Zhang, H., Zhang, Z., Wang, X. ... Lin, F. (2025). Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review). Molecular Medicine Reports, 31, 17. https://doi.org/10.3892/mmr.2024.13382
MLA
Sun, S., Guo, H., Chen, G., Zhang, H., Zhang, Z., Wang, X., Li, D., Li, X., Zhao, G., Lin, F."Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review)". Molecular Medicine Reports 31.1 (2025): 17.
Chicago
Sun, S., Guo, H., Chen, G., Zhang, H., Zhang, Z., Wang, X., Li, D., Li, X., Zhao, G., Lin, F."Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review)". Molecular Medicine Reports 31, no. 1 (2025): 17. https://doi.org/10.3892/mmr.2024.13382
Copy and paste a formatted citation
x
Spandidos Publications style
Sun S, Guo H, Chen G, Zhang H, Zhang Z, Wang X, Li D, Li X, Zhao G, Lin F, Lin F, et al: Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review). Mol Med Rep 31: 17, 2025.
APA
Sun, S., Guo, H., Chen, G., Zhang, H., Zhang, Z., Wang, X. ... Lin, F. (2025). Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review). Molecular Medicine Reports, 31, 17. https://doi.org/10.3892/mmr.2024.13382
MLA
Sun, S., Guo, H., Chen, G., Zhang, H., Zhang, Z., Wang, X., Li, D., Li, X., Zhao, G., Lin, F."Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review)". Molecular Medicine Reports 31.1 (2025): 17.
Chicago
Sun, S., Guo, H., Chen, G., Zhang, H., Zhang, Z., Wang, X., Li, D., Li, X., Zhao, G., Lin, F."Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review)". Molecular Medicine Reports 31, no. 1 (2025): 17. https://doi.org/10.3892/mmr.2024.13382
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team