1
|
Penn DL, Witte SR, Komotar RJ and Connolly
E Jr: The role of vascular remodeling and inflammation in the
pathogenesis of intracranial aneurysms. J Clin Neurosci. 21:28–32.
2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liao XH, Wang N, Zhao DW, Zheng DL, Zheng
L, Xing WJ, Ma WJ, Bao LY, Dong J and Zhang TC: STAT3 protein
regulates vascular smooth muscle cell phenotypic switch by
interaction with myocardin. J Biol Chem. 290:19641–19652. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Cao T, Zhang L, Yao LL, Zheng F, Wang L,
Yang JY, Guo LY, Li XY, Yan YW, Pan YM, et al: S100B promotes
injury-induced vascular remodeling through modulating smooth muscle
phenotype. Biochim Biophys Acta Mol Basis Dis. 1863:2772–2782.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhu LH, Huang L, Zhang X, Zhang P, Zhang
SM, Guan H, Zhang Y, Zhu XY, Tian S, Deng K and Li H: Mindin
regulates vascular smooth muscle cell phenotype and prevents
neointima formation. Clin Sci (Lond). 129:129–145. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bennett MR, Sinha S and Owens GK: Vascular
smooth muscle cells in atherosclerosis. Circ Res. 118:692–702.
2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhen Y and Stenmark H: Autophagosome
biogenesis. Cells. 12:6682023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tai S, Hu XQ, Peng DQ, Zhou SH and Zheng
XL: The roles of autophagy in vascular smooth muscle cells. Int J
Cardiol. 211:1–6. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Grootaert MOJ, Moulis M, Roth L, Martinet
W, Vindis C, Bennett MR and De Meyer GRY: Vascular smooth muscle
cell death, autophagy and senescence in atherosclerosis. Cardiovasc
Res. 114:622–634. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cheng CI, Lee YH, Chen PH, Lin YC, Chou MH
and Kao YH: Free fatty acids induce autophagy and LOX-1
upregulation in cultured aortic vascular smooth muscle cells. J
Cell Biochem. 118:1249–1261. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li T, Tan X, Zhu S, Zhong W, Huang B, Sun
J, Li F and Wang Y: SPARC induces phenotypic modulation of human
brain vascular smooth muscle cells via AMPK/mTOR-mediated
autophagy. Neurosci Lett. 712:1344852019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sabeena S: Role of noncoding RNAs with
emphasis on long noncoding RNAs as cervical cancer biomarkers. J
Med Virol. 95:e285252023. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang PS, Wang Z and Yang C: Dysregulations
of long non-coding RNAs-The emerging ‘lnc’ in environmental
carcinogenesis. Semin Cancer Biol. 76:163–172. 2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Meybodi SM, Soleimani N, Yari A, Javadifar
A, Tollabi M, Karimi B, Meybodi ME, Seyedhossaini S, Milan PB and
Firoozabadi AD: Circulatory long noncoding RNAs
(circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets
in cardiovascular diseases: Implications for cardiovascular
diseases complications. Int J Biol Macromol. 225:1049–1071. 2023.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Cui Y, Zhang F, Zhu C, Geng L, Tian T and
Liu H: Upregulated lncRNA SNHG1 contributes to progression of
non-small cell lung cancer through inhibition of miR-101-3p and
activation of Wnt/β-catenin signaling pathway. Oncotarget.
8:17785–17794. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li J, Zhang Z, Xiong L, Guo C, Jiang T,
Zeng L, Li G and Wang J: SNHG1 lncRNA negatively regulates
miR-199a-3p to enhance CDK7 expression and promote cell
proliferation in prostate cancer. Biochem Biophys Res Commun.
487:146–152. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu Y, Xi J, Zhang Y, Chen W, Zhang F, Li C
and Wang Z: SNHG1 inhibits ox-LDL-induced inflammatory response and
apoptosis of HUVECs via up-regulating GNAI2 and PCBP1. Front
Pharmacol. 11:7032020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li W, Dong X, He C, Tan G, Li Z, Zhai B,
Feng J, Jiang X, Liu C, Jiang H and Sun X: Correction to: LncRNA
SNHG1 contributes to sorafenib resistance by activating the Akt
pathway and is positively regulated by miR-21 in hepatocellular
carcinoma cells. J Exp Clin Cancer Res. 40:3772021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xu J, Yang R, Hua X, Huang M, Tian Z, Li
J, Lam HY, Jiang G, Cohen M and Huang C: lncRNA SNHG1 promotes
basal bladder cancer invasion via interaction with PP2A catalytic
subunit and induction of autophagy. Mol Ther Nucleic Acids.
21:354–366. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhao J, Geng L, Chen Y and Wu C: SNHG1
promotes MPP+-induced cytotoxicity by regulating
PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging
miR-153-3p. Biol Res. 53:12020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wu Y, Zhu B, Yan Y, Bai S, Kang H, Zhang
J, Ma W, Gao Y, Hui B, Li R, et al: Long non-coding RNA SNHG1
stimulates ovarian cancer progression by modulating expression of
miR-454 and ZEB1. Mol Oncol. 15:1584–1596. 2021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rizzetto L, De Filippo C, Rivero D,
Riccadonna S, Beltrame L and Cavalieri D: Systems biology of
host-mycobiota interactions: Dissecting Dectin-1 and Dectin-2
signalling in immune cells with DC-ATLAS. Immunobiology.
218:1428–1437. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang Y, Spatz M, Da Costa G, Michaudel C,
Lapiere A, Danne C, Agus A, Michel ML, Netea MG, Langella P, et al:
Deletion of both Dectin-1 and Dectin-2 affects the bacterial but
not fungal gut microbiota and susceptibility to colitis in mice.
Microbiome. 10:912022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Al Madhoun A, Kochumon S, Al-Rashed F,
Sindhu S, Thomas R, Miranda L, Al-Mulla F and Ahmad R: Dectin-1 as
a potential inflammatory biomarker for metabolic inflammation in
adipose tissue of individuals with obesity. Cells. 11:28792022.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Choraghe RP, Kolodziej T, Buser A, Rajfur
Z and Neumann AK: RHOA-mediated mechanical force generation through
Dectin-1. J Cell Sci. 133:jcs2361662020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rouchaud A, Johnson C, Thielen E,
Schroeder D, Ding YH, Dai D, Brinjikji W, Cebral J, Kallmes DF and
Kadirvel R: Differential gene expression in coiled versus
flow-diverter-treated aneurysms: RNA sequencing analysis in a
rabbit aneurysm model. AJNR Am J Neuroradiol. 37:1114–1121. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Turhon M, Maimaiti A, Gheyret D, Axier A,
Rexiati N, Kadeer K, Su R, Wang Z, Chen X, Cheng X, et al: An
immunogenic cell death-related regulators classification patterns
and immune microenvironment infiltration characterization in
intracranial aneurysm based on machine learning. Front Immunol.
13:10013202022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hu R, Huang L, Zhou M, Zhou S and Hu R:
Expression and clinical significance of CLEC7A in intracranial
aneurysm tissues and serum. J Minim Invasive Surg. 16:453–456.
2021.(In Chinese).
|
28
|
Su S, Shi YT, Chu Y, Jiang MZ, Wu N, Xu B,
Zhou H, Lin JC, Jin YR, Li XF and Liang J: Sec62 promotes gastric
cancer metastasis through mediating UPR-induced autophagy
activation. Cell Mol Life Sci. 79:1332022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Qiu WL, Zhang YW, Feng Y, Li LC, Yang L
and Xu CR: Deciphering pancreatic islet β cell and α cell
maturation pathways and characteristic features at the single-cell
level. Cell Metab. 25:1194–1205. e11942017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Yue Y, Xu J, Li Y, Cheng K, Feng Q, Ma X,
Ma N, Zhang T, Wang X, Zhao X and Nie G: Antigen-bearing outer
membrane vesicles as tumour vaccines produced in situ by ingested
genetically engineered bacteria. Nat Biomed Eng. 6:898–909. 2022.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Gomez-Sanchez R, Yakhine-Diop SM,
Rodriguez-Arribas M, Bravo-San Pedro JM, Martínez-Chacón G,
Uribe-Carretero E, Pinheiro de Castro DC, Pizarro-Estrella E,
Fuentes JM and González-Polo RA: MRNA and protein dataset of
autophagy markers (LC3 and p62) in several cell lines. Data Brief.
7:641–647. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ailawadi G, Moehle CW, Pei H, Walton SP,
Yang Z, Kron IL, Lau CL and Owens GK: Smooth muscle phenotypic
modulation is an early event in aortic aneurysms. J Thorac
Cardiovasc Surg. 138:1392–1399. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ding Y, Zhang M, Zhang W, Lu Q, Cai Z,
Song P, Okon IS, Xiao L and Zou MH: AMP-activated protein kinase
alpha 2 deletion induces VSMC phenotypic switching and reduces
features of atherosclerotic plaque stability. Circ Res.
119:718–730. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Horita H, Wysoczynski CL, Walker LA,
Moulton KS, Li M, Ostriker A, Tucker R, McKinsey TA, Churchill ME,
Nemenoff RA and Weiser-Evans MC: Nuclear PTEN functions as an
essential regulator of SRF-dependent transcription to control
smooth muscle differentiation. Nat Commun. 7:108302016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Owens GK, Kumar MS and Wamhoff BR:
Molecular regulation of vascular smooth muscle cell differentiation
in development and disease. Physiol Rev. 84:767–801. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Thyberg J: Phenotypic modulation of smooth
muscle cells during formation of neointimal thickenings following
vascular injury. Histol Histopathol. 13:871–891. 1998.PubMed/NCBI
|
38
|
Sawyer DM, Pace LA, Pascale CL, Kutchin
AC, O'Neill BE, Starke RM and Dumont AS: Lymphocytes influence
intracranial aneurysm formation and rupture: Role of extracellular
matrix remodeling and phenotypic modulation of vascular smooth
muscle cells. J Neuroinflammation. 13:1852016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jiang B, Li X, Wang M, Li GX, Ren PW, Wang
YQ, Xin SJ and Qin LF: Trehalose attenuates abdominal aortic
aneurysm formation by inducing autophagy in smooth muscle cells. J
Geriatr Cardiol. 20:214–222. 2023. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fang ZM, Feng X, Chen Y, Luo H, Jiang DS
and Yi X: Targeting autophagy in aortic aneurysm and dissection.
Biomed Pharmacother. 153:1135472022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang L, Luo X, Chen F, Yuan W, Xiao X,
Zhang X, Dong Y, Zhang Y and Liu Y: LncRNA SNHG1 regulates
cerebrovascular pathologies as a competing endogenous RNA through
HIF-1alpha/VEGF signaling in ischemic stroke. J Cell Biochem.
119:5460–5472. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang Z, Wang R, Wang K and Liu X:
Upregulated long noncoding RNA Snhg1 promotes the angiogenesis of
brain microvascular endothelial cells after oxygen-glucose
deprivation treatment by targeting miR-199a. Can J Physiol
Pharmacol. 96:909–915. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang L, Zhang Q, Lv L, Jianhua Z, Ting C
and Wu Y: LncRNA SNHG1 regulates vascular endothelial cell
proliferation and angiogenesis via miR-196a. J Mol Histol.
51:117–124. 2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
He FT, Fu XL, Li MH, Fu CY and Chen JZ:
LncRNA SNHG1 targets miR-340-5p/PIK3CA axis to regulate
microvascular endothelial cell proliferation, migration, and
angiogenesis in DR. Kaohsiung J Med Sci. 39:16–25. 2023. View Article : Google Scholar : PubMed/NCBI
|
45
|
Li S, Ni Y, Li C, Xiang Q, Zhao Y, Xu H,
Huang W, Wang Y, Wang Y, Zhan J and Liu Y: Long noncoding RNA SNHG1
alleviates high glucose-induced vascular smooth muscle cells
calcification/senescence by post-transcriptionally regulating
Bhlhe40 and autophagy via Atg10. J Physiol Biochem. 79:83–105.
2023. View Article : Google Scholar : PubMed/NCBI
|
46
|
Legaki E, Koutouratsas T, Theocharopoulos
C, Lagkada V and Gazouli M: Polymorphisms in CLEC5A and CLEC7A
genes modify risk for inflammatory bowel disease. Ann
Gastroenterol. 37:64–70. 2024.PubMed/NCBI
|
47
|
Basson A, Trotter A, Rodriguez-Palacios A
and Cominelli F: Mucosal interactions between genetics, diet, and
microbiome in inflammatory bowel disease. Front Immunol. 7:2902016.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Iliev ID, Funari VA, Taylor KD, Nguyen Q,
Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, et
al: Interactions between commensal fungi and the C-type lectin
receptor Dectin-1 influence colitis. Science. 336:1314–1317. 2012.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Turnbull C, Bones J, Stanley M, Medhavy A,
Wang H, Lorenzo AMD, Cappello J, Shanmuganandam S, Pandey A,
Seneviratne S, et al: DECTIN-1: A modifier protein in CTLA-4
haploinsufficiency. Sci Adv. 9:eadi95662023. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ma J, Zhou M, Song Z, Deng Y, Xia S, Li Y,
Huang X, Xiao D, Yin Y and Yin J: Clec7a drives gut fungus-mediated
host lipid deposition. Microbiome. 11:2642023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yang N, Wang M, Lin K, Wang M, Xu D, Han
X, Zhao X, Wang Y, Wu G, Luo W, et al: Dectin-1 deficiency
alleviates diabetic cardiomyopathy by attenuating
macrophage-mediated inflammatory response. Biochim Biophys Acta Mol
Basis Dis. 1869:1667102023. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhao X, Sun J, Xiong L, She L, Li L, Tang
H, Zeng Y, Chen F, Han X, Ye S, et al: β-amyloid binds to microglia
Dectin-1 to induce inflammatory response in the pathogenesis of
Alzheimer's disease. Int J Biol Sci. 19:3249–3265. 2023. View Article : Google Scholar : PubMed/NCBI
|
53
|
Öhman T, Teirila L, Lahesmaa-Korpinen AM,
Cypryk W, Veckman V, Saijo S, Wolff H, Hautaniemi S, Nyman TA and
Matikainen S: Dectin-1 pathway activates robust autophagy-dependent
unconventional protein secretion in human macrophages. J Immunol.
192:5952–5962. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Deng J, Xu W, Jie Y and Chong Y:
Subcellular localization and relevant mechanisms of human
cancer-related micropeptides. FASEB J. 37:e232702023. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE
and Xu X: Role of long non-coding RNAs in cancer: From subcellular
localization to nanoparticle-mediated targeted regulation. Mol Ther
Nucleic Acids. 33:774–793. 2023. View Article : Google Scholar : PubMed/NCBI
|
56
|
Cai H, Xu H, Lu H, Xu W, Liu H, Wang X,
Zhou G and Yang X: LncRNA SNHG1 facilitates tumor proliferation and
represses apoptosis by regulating PPARgamma ubiquitination in
bladder cancer. Cancers (Basel). 14:47402022. View Article : Google Scholar : PubMed/NCBI
|