Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2025 Volume 31 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2025 Volume 31 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review)

  • Authors:
    • Zhaochen Zhang
    • Rongxuan Zhao
    • Xuhui Wu
    • Yunkun Ma
    • Yuxi He
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China, Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130041, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 47
    |
    Published online on: December 3, 2024
       https://doi.org/10.3892/mmr.2024.13412
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The cornea is a clear connective tissue membrane at the front of the outer layer of the eyeball wall. It plays a crucial role in the refractive system of the eyeball, making it essential to maintain its transparency. Neovascularization and lymphangiogenesis in the cornea significantly impact corneal transparency and immune privilege. The growth of corneal neovascularization (CNV) and corneal lymphangiogenesis (CL) vessels is interconnected yet independent. Currently, there is a substantial amount of clinical and experimental research on CNV and CL vessels. However, due to the relatively recent focus on CL vessel research compared with CNV research, most scholars tend to concentrate on CNV, with few articles offering a comprehensive comparison and discussion of the two processes. The present review emphasizes the similarities and differences between CNV and CL and summarizes recent research progress on their correlation in animal models, growth characteristics, cytokine effects and related diseases.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Zhong W, Montana M, Santosa SM, Isjwara ID, Huang YH, Han KY, O'Neil C, Wang A, Cortina MS, de la Cruz J, et al: Angiogenesis and lymphangiogenesis in corneal transplantation-A review. Surv Ophthalmol. 63:453–479. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Narimatsu A, Hattori T, Koike N, Tajima K, Nakagawa H, Yamakawa N, Usui Y, Kumakura S, Matsumoto T and Goto H: Corneal lymphangiogenesis ameliorates corneal inflammation and edema in late stage of bacterial keratitis. Sci Rep. 9:29842019. View Article : Google Scholar : PubMed/NCBI

3 

Chang LK, Garcia-Cardeña G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J and Kaipainen A: Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA. 101:11658–11663. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, Wiegand S, Chen L and Cursiefen C: Cutting edge: Lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol. 184:535–539. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Meshko B, Volatier TLA, Hadrian K, Deng S, Hou Y, Kluth MA, Ganss C, Frank MH, Frank NY, Ksander B, et al: ABCB5+ limbal epithelial stem cells inhibit developmental but promote inflammatory (Lymph) angiogenesis while preventing corneal inflammation. Cells. 12:17312023. View Article : Google Scholar : PubMed/NCBI

6 

Dana MR: Angiogenesis and lymphangiogenesis-implications for corneal immunity. Semin Ophthalmol. 21:19–22. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Cursiefen C, Chen L, Dana MR and Streilein JW: Corneal lymphangiogenesis: Evidence, mechanisms, and implications for corneal transplant immunology. Cornea. 22:273–281. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R and Bonini S: Corneal angiogenic privilege and its failure. Exp Eye Res. 204:1084572021. View Article : Google Scholar : PubMed/NCBI

9 

Benayoun Y, Casse G, Forte R, Dallaudière B, Adenis JP and Robert PY: Corneal neovascularization: epidemiological, physiopathological, and clinical features. J Fr Ophtalmol. 36:627–639. 2013.(In French). View Article : Google Scholar : PubMed/NCBI

10 

Hadrian K and Cursiefen C: The role of lymphatic vessels in corneal fluid homeostasis and wound healing. J Ophthalmic Inflamm Infect. 14:42024. View Article : Google Scholar : PubMed/NCBI

11 

Kimyon Comert G, Basaran D, Ergin Akkoz H, Celik B, Sinaci S, Turkmen O, Karalok A, Kandemir O and Turan T: Blood Vessel Invasion in Endometrial Cancer Is One of the Mechanisms of Spread to the Cervix. Pathol Oncol Res. 25:1431–1436. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Jackson DG, Prevo R, Clasper S and Banerji S: LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol. 22:317–321. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Shi W, Liu J, Li M, Gao H and Wang T: Expression of MMP, HPSE, and FAP in stroma promoted corneal neovascularization induced by different etiological factors. Curr Eye Res. 35:967–977. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Cogan DG: Vascularization of the cornea; ats experimental induction by small lesions and a new theory of its pathogenesis. Arch Ophthal. 41:406–416. 1949. View Article : Google Scholar : PubMed/NCBI

15 

Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D'Amore PA, Dana MR, Wiegand SJ and Streilein JW: VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 113:1040–1050. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Gothard TW, Hardten DR, Lane SS, Doughman DJ, Krachmer JH and Holland EJ: Clinical findings in Brown-McLean syndrome. Am J Ophthalmol. 115:729–737. 1993. View Article : Google Scholar : PubMed/NCBI

17 

Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J and D'Amato RJ: A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci. 37:1625–1632. 1996.PubMed/NCBI

18 

Simons M, Gordon E and Claesson-Welsh L: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 17:611–625. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Viallard C and Larrivée B: Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Nicholas MP and Mysore N: Corneal neovascularization. Exp Eye Res. 202:1083632021. View Article : Google Scholar : PubMed/NCBI

21 

Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR and Holland EJ: Current and emerging therapies for corneal neovascularization. Ocul Surf. 16:398–414. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG and Oliver G: An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21:1505–1513. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivée B, Del Toro R, Suchting S, Medvinsky A, et al: Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol. 188:115–130. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Abdelfattah NS, Amgad M, Zayed AA, Hussein H and Abd El-Baky N: Molecular underpinnings of corneal angiogenesis: Advances over the past decade. Int J Ophthalmol. 9:768–779. 2016.PubMed/NCBI

25 

Mäkinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, et al: Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20:4762–4773. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Goyal S, Chauhan SK, El Annan J, Nallasamy N, Zhang Q and Dana R: Evidence of corneal lymphangiogenesis in dry eye disease: A potential link to adaptive immunity? Arch Ophthalmol. 128:819–824. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Chauhan SK, Jin Y, Goyal S, Lee HS, Fuchsluger TA, Lee HK and Dana R: A novel pro-lymphangiogenic function for Th17/IL-17. Blood. 118:4630–4634. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Lee SJ, Im ST, Wu J, Cho CS, Jo DH, Chen Y, Dana R, Kim JH and Lee SM: Corneal lymphangiogenesis in dry eye disease is regulated by substance P/neurokinin-1 receptor system through controlling expression of vascular endothelial growth factor receptor 3. Ocul Surf. 22:72–79. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Wilting J, Neeff H and Christ B: Embryonic lymphangiogenesis. Cell Tissue Res. 297:1–11. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Lee HK, Lee SM and Lee DI: Corneal Lymphangiogenesis: Current pathophysiological understandings and its functional role in ocular surface disease. Int J Mol Sci. 22:116282021. View Article : Google Scholar : PubMed/NCBI

31 

Sáinz-Jaspeado M and Claesson-Welsh L: Cytokines regulating lymphangiogenesis. Curr Opin Immunol. 53:58–63. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, Rosenblatt MI and Azar DT: Lymphangiogenesis guidance mechanisms and therapeutic implications in pathological states of the cornea. Cells. 12:3192023. View Article : Google Scholar : PubMed/NCBI

33 

Cao R, Ji H, Feng N, Zhang Y, Yang X, Andersson P, Sun Y, Tritsaris K, Hansen AJ, Dissing S and Cao Y: Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA. 109:15894–15899. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Cursiefen C, Schlötzer-Schrehardt U, Küchle M, Sorokin L, Breiteneder-Geleff S, Alitalo K and Jackson D: Lymphatic vessels in vascularized human corneas: Immunohistochemical investigation using LYVE-1 and podoplanin. Invest Ophthalmol Vis Sci. 43:2127–2135. 2002.PubMed/NCBI

35 

Cursiefen C, Maruyama K, Jackson DG, Streilein JW and Kruse FE: Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea. 25:443–447. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Shi W, Ming C, Liu J, Wang T and Gao H: Features of corneal neovascularization and lymphangiogenesis induced by different etiological factors in mice. Graefes Arch Clin Exp Ophthalmol. 249:55–67. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Giacomini C, Ferrari G, Bignami F and Rama P: Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: An overview of two common animal models of corneal neovascularization. Exp Eye Res. 121:1–4. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Song S, Cheng J, Yu BJ, Zhou L, Xu HF and Yang LL: LRG1 promotes corneal angiogenesis and lymphangiogenesis in a corneal alkali burn mouse model. Int J Ophthalmol. 13:365–373. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Ammassam Veettil R, Li W, Pflugfelder SC and Koch DD: A Mouse Model for Corneal Neovascularization by Alkali Burn. J Vis Exp. 2023. View Article : Google Scholar : PubMed/NCBI

40 

Park JH, Joo CK and Chung SK: Comparative study of tacrolimus and bevacizumab on corneal neovascularization in rabbits. Cornea. 34:449–455. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Maier AK, Reichhart N, Gonnermann J, Kociok N, Riechardt AI, Gundlach E, Strauß O and Joussen AM: Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS One. 16:e02451432021. View Article : Google Scholar : PubMed/NCBI

42 

Ung L and Chodosh J: Foundational concepts in the biology of bacterial keratitis. Exp Eye Res. 209:1086472021. View Article : Google Scholar : PubMed/NCBI

43 

Koganti R, Yadavalli T, Naqvi RA, Shukla D and Naqvi AR: Pathobiology and treatment of viral keratitis. Exp Eye Res. 205:1084832021. View Article : Google Scholar : PubMed/NCBI

44 

Gurung HR, Carr MM, Bryant K, Chucair-Elliott AJ and Carr DJ: Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection. Mucosal Immunol. 11:172–185. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Xie F, Zhang X, Luo W, Ge H, Sun D and Liu P: Notch signaling pathway is involved in bFGF-induced corneal lymphangiogenesis and hemangiogenesis. J Ophthalmol. 2019:96139232019.PubMed/NCBI

46 

Li S, Li L, Zhou Q, Gao H, Liu M and Shi W: Blood vessels and lymphatic vessels in the cornea and iris after penetrating keratoplasty. Cornea. 38:742–747. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Hos D, Bukowiecki A, Horstmann J, Bock F, Bucher F, Heindl LM, Siebelmann S, Steven P, Dana R, Eming SA and Cursiefen C: Transient ingrowth of lymphatic vessels into the physiologically avascular cornea regulates corneal edema and transparency. Sci Rep. 7:72272017. View Article : Google Scholar : PubMed/NCBI

48 

Gao X, Guo K, Santosa SM, Montana M, Yamakawa M, Hallak JA, Han KY, Doh SJ, Rosenblatt MI, Chang JH and Azar DT: Application of corneal injury models in dual fluorescent reporter transgenic mice to understand the roles of the cornea and limbus in angiogenic and lymphangiogenic privilege. Sci Rep. 9:123312019. View Article : Google Scholar : PubMed/NCBI

49 

Goyal S, Chauhan SK and Dana R: Blockade of prolymphangiogenic vascular endothelial growth factor C in dry eye disease. Arch Ophthalmol. 130:84–89. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Wuest TR and Carr DJ: VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis. J Exp Med. 207:101–115. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Wuest T, Zheng M, Efstathiou S, Halford WP and Carr DJ: The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization. PLoS Pathog. 7:e10022782011. View Article : Google Scholar : PubMed/NCBI

52 

Thangamathesvaran L, Kong J, Bressler SB, Singh M, Wenick AS, Scott AW, Arévalo JF and Bressler NM: Severe intraocular inflammation following intravitreal faricimab. JAMA Ophthalmol. 142:365–370. 2024. View Article : Google Scholar : PubMed/NCBI

53 

Jaggi D, Nagamany T, Wolf S, Zinkernagel MS and Heussen FM: Aflibercept for central retinal vein occlusions: Long-term outcomes of a ‘Treat-and-Extend’ regimen. BMJ Open Ophthalmol. 9:e0016592024. View Article : Google Scholar : PubMed/NCBI

54 

Limon DU, Kaplan FB, Saygın I, Önder Tokuç E, Kutlutürk Karagöz I, Kanar HS, Sevik MO, Yayla U, Çelik E, Sönmez A, et al: One-Year functional and morphological prognosis after intravitreal injection treatments according to different morphological patterns of diabetic macular edema in real-life: MARMASIA Study Group Report No.13. Semin Ophthalmol. 39:460–467. 2024. View Article : Google Scholar : PubMed/NCBI

55 

Yang XM, Li QP, Wang ZH and Zhang MN: Comparison of ranibizumab and conbercept treatment in type 1 prethreshold retinopathy of prematurity in zone II. BMC Pediatr. 24:5562024. View Article : Google Scholar : PubMed/NCBI

56 

Hong SH and Kim HD: Central retinal artery occlusion after intravitreal brolucizumab injection for treatment-naïve neovascular age-related macular degeneration; a case report. BMC Ophthalmol. 24:2002024. View Article : Google Scholar : PubMed/NCBI

57 

HARMONi-A Study Investigators, . Fang W, Zhao Y, Luo Y, Yang R, Huang Y, He Z, Zhao H, Li M, Li K, et al: Ivonescimab Plus Chemotherapy in Non-Small Cell Lung Cancer With EGFR Variant: A Randomized Clinical Trial. JAMA. 332:561–570. 2024. View Article : Google Scholar : PubMed/NCBI

58 

Cho W, Mittal SK, Elbasiony E and Chauhan SK: Ocular surface mast cells promote inflammatory lymphangiogenesis. Microvasc Res. 141:1043202022. View Article : Google Scholar : PubMed/NCBI

59 

Ferrari G, Bignami F, Giacomini C, Franchini S and Rama P: Safety and efficacy of topical infliximab in a mouse model of ocular surface scarring. Invest Ophthalmol Vis Sci. 54:1680–1688. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Zhang Q, Lu Y, Proulx ST, Guo R, Yao Z, Schwarz EM, Boyce BF and Xing L: Increased lymphangiogenesis in joints of mice with inflammatory arthritis. Arthritis Res Ther. 9:R1182007. View Article : Google Scholar : PubMed/NCBI

61 

Ji RC: Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci. 69:897–914. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Ji RC: Lymphatic endothelial cells, inflammatory lymphangiogenesis, and prospective players. Curr Med Chem. 14:2359–2368. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Hos D, Bucher F, Regenfuss B, Dreisow ML, Bock F, Heindl LM, Eming SA and Cursiefen C: IL-10 indirectly regulates corneal lymphangiogenesis and resolution of inflammation via macrophages. Am J Pathol. 186:159–171. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Nakao S, Kuwano T, Tsutsumi-Miyahara C, Ueda S, Kimura YN, Hamano S, Sonoda KH, Saijo Y, Nukiwa T, Strieter RM, et al: Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest. 115:2979–2991. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Lu P, Li L, Liu G, Zhang X and Mukaida N: Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist. Invest Ophthalmol Vis Sci. 50:4761–4768. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Doz E, Noulin N, Boichot E, Guénon I, Fick L, Le Bert M, Lagente V, Ryffel B, Schnyder B, Quesniaux VF and Couillin I: Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol. 180:1169–1178. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Reuer T, Schneider AC, Cakir B, Bühler AD, Walz JM, Lapp T, Lange C, Agostini H, Schlunck G, Cursiefen C, et al: Semaphorin 3F Modulates Corneal Lymphangiogenesis and Promotes Corneal Graft Survival. Invest Ophthalmol Vis Sci. 59:5277–5284. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Wang X, Abraham S, McKenzie JAG, Jeffs N, Swire M, Tripathi VB, Luhmann UFO, Lange CAK, Zhai Z, Arthur HM, et al: LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature. 499:306–311. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Zhang J, Zhu L, Fang J, Ge Z and Li X: LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation. J Exp Clin Cancer Res. 35:292016. View Article : Google Scholar : PubMed/NCBI

70 

Hu H, Wang S, He Y, Shen S, Yao B, Xu D, Liu X and Zhang Y: The role of bone morphogenetic protein 4 in corneal injury repair. Exp Eye Res. 212:1087692021. View Article : Google Scholar : PubMed/NCBI

71 

Rezzola S, Di Somma M, Corsini M, Leali D, Ravelli C, Polli VAB, Grillo E, Presta M and Mitola S: VEGFR2 activation mediates the pro-angiogenic activity of BMP4. Angiogenesis. 22:521–533. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Shokirova H, Inomata T, Saitoh T, Zhu J, Fujio K, Okumura Y, Yanagawa A, Fujimoto K, Sung J, Eguchi A, et al: Topical administration of the kappa opioid receptor agonist nalfurafine suppresses corneal neovascularization and inflammation. Sci Rep. 11:86472021. View Article : Google Scholar : PubMed/NCBI

73 

Liu Y, Shu Y, Yin L, Xie T, Zou J, Zhan P, Wang Y, Wei T, Zhu L, Yang X, et al: Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Exp Eye Res. 207:1085682021. View Article : Google Scholar : PubMed/NCBI

74 

Song HB, Park SY, Ko JH, Park JW, Yoon CH, Kim DH, Kim JH, Kim MK, Lee RH, Prockop DJ and Oh JY: Mesenchymal Stromal Cells Inhibit Inflammatory Lymphangiogenesis in the Cornea by Suppressing Macrophage in a TSG-6-Dependent Manner. Mol Ther. 26:162–172. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Bai Y, Jiao X, Hu J, Xue W, Zhou Z and Wang W: WTAP promotes macrophage recruitment and increases VEGF secretion via N6-methyladenosine modification in corneal neovascularization. Biochim Biophys Acta Mol Basis Dis. 1869:1667082023. View Article : Google Scholar : PubMed/NCBI

76 

Zhang W, Schönberg A, Bock F and Cursiefen C: Posttransplant VEGFR1R2 Trap Eye Drops Inhibit Corneal (Lymph)angiogenesis and Improve Corneal Allograft Survival in Eyes at High Risk of Rejection. Transl Vis Sci Technol. 11:62022. View Article : Google Scholar : PubMed/NCBI

77 

Zhang W, Schönberg A, Hamdorf M, Georgiev T, Cursiefen C and Bock F: Preincubation of donor tissue with a VEGF cytokine trap promotes subsequent high-risk corneal transplant survival. Br J Ophthalmol. 106:1617–1626. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Le VNH, Hos D, Hou Y, Witt M, Barkovskiy M, Bock F and Cursiefen C: VEGF TrapR1R2 Suspended in the Semifluorinated Alkane F6H8 Inhibits Inflammatory Corneal Hem- and Lymphangiogenesis. Transl Vis Sci Technol. 9:152020. View Article : Google Scholar : PubMed/NCBI

79 

Salabarria AC, Koch M, Schönberg A, Zinser E, Hos D, Hamdorf M, Imhof T, Braun G, Cursiefen C and Bock F: Topical VEGF-C/D Inhibition Prevents Lymphatic Vessel Ingrowth into Cornea but Does Not Improve Corneal Graft Survival. J Clin Med. 9:12702020. View Article : Google Scholar : PubMed/NCBI

80 

Han Y, Sengupta S, Lee BJ, Cho H, Kim J, Choi HG, Dash U, Kim JH, Kim ND, Kim JH and Sim T: Identification of a Unique Resorcylic Acid Lactone Derivative That Targets Both Lymphangiogenesis and Angiogenesis. J Med Chem. 62:9141–9160. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Cho YK, Shin EY, Uehara H and Ambati B: The Effect of 0.5% Timolol Maleate on Corneal(Lymph)Angiogenesis in a Murine Suture Model. J Ocul Pharmacol Ther. 34:403–409. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Cho YK, Shin EY, Uehara H and Ambati B: Antiangiogenesis Effect of Albendazole on the Cornea. J Ocul Pharmacol Ther. 35:254–261. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Ellenberg D, Azar DT, Hallak JA, Tobaigy F, Han KY, Jain S, Zhou Z and Chang JH: Novel aspects of corneal angiogenic and lymphangiogenic privilege. Prog Retin Eye Res. 29:208–248. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Tzeng HE, Chang AC, Tsai CH, Wang SW and Tang CH: Basic fibroblast growth factor promotes VEGF-C-dependent lymphangiogenesis via inhibition of miR-381 in human chondrosarcoma cells. Oncotarget. 7:38566–38578. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, Henderson JE, Bikfalvi A, Detmar M and Hong YK: Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: A role for FGF signaling in lymphangiogenesis. Mol Biol Cell. 17:576–584. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Hellström M, Phng LK and Gerhardt H: VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr. 1:133–136. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Kofler NM, Shawber CJ, Kangsamaksin T, Reed HO, Galatioto J and Kitajewski J: Notch signaling in developmental and tumor angiogenesis. Genes Cancer. 2:1106–1116. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Food and Drug Administration, . Drug Approvals and Databases. https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databasesOctober 20–2024

89 

Imamura K, Yoshida W, Seshima F, Aoki H, Yamashita K, Kitamura Y, Murakami T, Ambiru M, Bizenjima T, Katayama A, et al: Periodontal regenerative therapy using recombinant human fibroblast growth factor (rhFGF)-2 in combination with carbonate apatite granules or rhFGF-2 alone: 12-month randomized controlled trial. Clin Oral Investig. 28:5742024. View Article : Google Scholar : PubMed/NCBI

90 

Clark AJ, Mullooly N, Safitri D, Harris M, de Vries T, MaassenVanDenBrink A, Poyner DR, Gianni D, Wigglesworth M and Ladds G: CGRP, adrenomedullin and adrenomedullin 2 display endogenous GPCR agonist bias in primary human cardiovascular cells. Commun Biol. 4:7762021. View Article : Google Scholar : PubMed/NCBI

91 

Zhu S, Zidan A, Pang K, Musayeva A, Kang Q and Yin J: Promotion of corneal angiogenesis by sensory neuron-derived calcitonin gene-related peptide. Exp Eye Res. 220:1091252022. View Article : Google Scholar : PubMed/NCBI

92 

Majima M, Ito Y, Hosono K and Amano H: CGRP/CGRP Receptor Antibodies: Potential adverse effects due to blockade of neovascularization? Trends Pharmacol Sci. 40:11–21. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Li S, Shi S, Xia F, Ha Y, Luisi J, Gupta PK, Merkley KH, Motamedi M, Liu H and Zhang W: CXCR3 deletion aggravates corneal neovascularization in a corneal alkali-burn model. Exp Eye Res. 225:1092652022. View Article : Google Scholar : PubMed/NCBI

94 

Nibbs RJ and Graham GJ: Immune regulation by atypical chemokine receptors. Nat Rev Immunol. 13:815–829. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Chevigné A, Janji B, Meyrath M, Reynders N, D'Uonnolo G, Uchański T, Xiao M, Berchem G, Ollert M, Kwon YJ, et al: CXCL10 Is an Agonist of the CC Family Chemokine Scavenger Receptor ACKR2/D6. Cancers (Basel). 13:10542021. View Article : Google Scholar : PubMed/NCBI

96 

Muramatsu M, Osawa T, Miyamura Y, Nakagawa S, Tanaka T, Kodama T, Aburatani H, Sakai J, Ryeom S and Minami T: Loss of Down syndrome critical region-1 leads to cholesterol metabolic dysfunction that exaggerates hypercholesterolemia in ApoE-null background. J Biol Chem. 296:1006972021. View Article : Google Scholar : PubMed/NCBI

97 

Ren Y, Dong X, Zhao H, Feng J, Chen B, Zhou Y, Peng Y, Zhang L, Zhou Q, Li Y, et al: Myeloid-derived suppressor cells improve corneal graft survival through suppressing angiogenesis and lymphangiogenesis. Am J Transplant. 21:552–566. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Ren Y, Dong X, Liu Y, Kang H, Guan L, Huang Y, Zhu X, Tian J, Chen B, Jiang B and He Y: Rapamycin antagonizes angiogenesis and lymphangiogenesis through myeloid-derived suppressor cells in corneal transplantation. Am J Transplant. 23:1359–1374. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Wei C, Mi Y, Sun L, Luo J, Zhang J, Gao Y, Yu X, Ge H and Liu P: Cannabidiol alleviates suture-induced corneal pathological angiogenesis and inflammation by inducing myeloid-derived suppressor cells. Int Immunopharmacol. 137:1124292024. View Article : Google Scholar : PubMed/NCBI

100 

Kang H, Feng J, Peng Y, Liu Y, Yang Y, Wu Y, Huang J, Jie Y, Chen B and He Y: Human mesenchymal stem cells derived from adipose tissue showed a more robust effect than those from the umbilical cord in promoting corneal graft survival by suppressing lymphangiogenesis. Stem Cell Res Ther. 14:3282023. View Article : Google Scholar : PubMed/NCBI

101 

Yu F, Gong D, Yan D, Wang H, Witman N, Lu Y, Fu W and Fu Y: Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol Ther. 31:2454–2471. 2023. View Article : Google Scholar : PubMed/NCBI

102 

Zhu J, Inomata T, Fujimoto K, Uchida K, Fujio K, Nagino K, Miura M, Negishi N, Okumura Y, Akasaki Y, et al: Ex Vivo-Induced bone marrow-derived myeloid suppressor cells prevent corneal allograft rejection in mice. Invest Ophthalmol Vis Sci. 62:32021. View Article : Google Scholar : PubMed/NCBI

103 

Zhu Y, Reinach PS, Ge C, Li Y, Wu B, Xie Q, Tong L and Chen W: Corneal collagen cross-linking pretreatment mitigates injury-induced inflammation, hemangiogenesis and lymphangiogenesis in vivo. Transl Vis Sci Technol. 10:112021. View Article : Google Scholar : PubMed/NCBI

104 

Hou Y, Le VNH, Tóth G, Siebelmann S, Horstmann J, Gabriel T, Bock F and Cursiefen C: UV light crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk corneal transplant survival. Am J Transplant. 18:2873–2884. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Dietrich-Ntoukas T, Bock F, Onderka J, Hos D, Bachmann BO, Zahn G and Cursiefen C: Selective, Temporary Postoperative Inhibition of Lymphangiogenesis by Integrin α5β1 blockade improves allograft survival in a murine model of high-risk corneal transplantation. J Clin Med. 13:44182024. View Article : Google Scholar : PubMed/NCBI

106 

Farooq AV and Shukla D: Herpes simplex epithelial and stromal keratitis: An epidemiologic update. Surv Ophthalmol. 57:448–462. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Park PJ, Chang M, Garg N, Zhu J, Chang JH and Shukla D: Corneal lymphangiogenesis in herpetic stromal keratitis. Surv Ophthalmol. 60:60–71. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Yu T, Schuette F, Christofi M, Forrester JV, Graham GJ and Kuffova L: The atypical chemokine receptor-2 fine-tunes the immune response in herpes stromal keratitis. Front Immunol. 13:10542602022. View Article : Google Scholar : PubMed/NCBI

109 

Anderson C, Zhou Q and Wang S: An alkali-burn injury model of corneal neovascularization in the mouse. J Vis Exp. 86:511592014.

110 

Oh S, Seo M, Choi JS, Joo CK and Lee SK: MiR-199a/b-5p Inhibits Lymphangiogenesis by Targeting Discoidin Domain Receptor 1 in Corneal Injury. Mol Cells. 41:93–102. 2018.PubMed/NCBI

111 

Li Y, Chen A, Hong A, Xiong S, Chen X and Xie Q: Shark Cartilage-Derived Anti-Angiogenic Peptide Inhibits Corneal Neovascularization. Bioengineering (Basel). 11:6932024. View Article : Google Scholar : PubMed/NCBI

112 

Adams RH and Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 8:464–478. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Z, Zhao R, Wu X, Ma Y and He Y: Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review). Mol Med Rep 31: 47, 2025.
APA
Zhang, Z., Zhao, R., Wu, X., Ma, Y., & He, Y. (2025). Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review). Molecular Medicine Reports, 31, 47. https://doi.org/10.3892/mmr.2024.13412
MLA
Zhang, Z., Zhao, R., Wu, X., Ma, Y., He, Y."Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review)". Molecular Medicine Reports 31.2 (2025): 47.
Chicago
Zhang, Z., Zhao, R., Wu, X., Ma, Y., He, Y."Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review)". Molecular Medicine Reports 31, no. 2 (2025): 47. https://doi.org/10.3892/mmr.2024.13412
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Z, Zhao R, Wu X, Ma Y and He Y: Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review). Mol Med Rep 31: 47, 2025.
APA
Zhang, Z., Zhao, R., Wu, X., Ma, Y., & He, Y. (2025). Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review). Molecular Medicine Reports, 31, 47. https://doi.org/10.3892/mmr.2024.13412
MLA
Zhang, Z., Zhao, R., Wu, X., Ma, Y., He, Y."Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review)". Molecular Medicine Reports 31.2 (2025): 47.
Chicago
Zhang, Z., Zhao, R., Wu, X., Ma, Y., He, Y."Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review)". Molecular Medicine Reports 31, no. 2 (2025): 47. https://doi.org/10.3892/mmr.2024.13412
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team