|
1
|
Reck M, Rodríguez-Abreu D, Robinson AG,
Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe
S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive
non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho
BC, Turna HZ, Castro G Jr, Srimuninnimit V, Laktionov KK,
Bondarenko I, et al: Pembrolizumab versus chemotherapy for
previously untreated, PD-L1-expressing, locally advanced or
metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised,
open-label, controlled, phase 3 trial. Lancet. 393:1819–1830. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lorusso D, Xiang Y, Hasegawa K, Scambia G,
Leiva M, Ramos-Elias P, Acevedo A, Sukhin V, Cloven N, Pereira de
Santana Gomes AJ, et al: Pembrolizumab or placebo with
chemoradiotherapy followed by pembrolizumab or placebo for newly
diagnosed, high-risk, locally advanced cervical cancer
(ENGOT-cx11/GOG-3047/KEYNOTE-A18): Overall survival results from a
randomised, double-blind, placebo-controlled, phase 3 trial.
Lancet. 404:1321–1332. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Choueiri TK, Tomczak P, Park SH, Venugopal
B, Ferguson T, Symeonides SN, Hajek J, Chang YH, Lee JL, Sarwar N,
et al: Overall survival with adjuvant pembrolizumab in renal-cell
carcinoma. N Engl J Med. 390:1359–1371. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu
K: Combination strategies with PD-1/PD-L1 blockade: Current
advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Vesely MD, Zhang T and Chen L: Resistance
mechanisms to anti-PD cancer immunotherapy. Annu Rev Immunol.
40:45–74. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Peng DH, Rodriguez BL, Diao L, Chen L,
Wang J, Byers LA, Wei Y, Chapman HA, Yamauchi M, Behrens C, et al:
Collagen promotes anti-PD-1/PD-L1 resistance in cancer through
LAIR1-dependent CD8+ T cell exhaustion. Nature Commun. 11:45202020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yu M, Peng Z, Qin M, Liu Y, Wang J, Zhang
C, Lin J, Dong T, Wang L, Li S, et al: Interferon-γ induces tumor
resistance to anti-PD-1 immunotherapy by promoting YAP phase
separation. Mol Cell. 81:1216–1230.e9. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhou X, Zou L, Liao H, Luo J, Yang T, Wu
J, Chen W, Wu K, Cen S, Lv D, et al: Abrogation of HnRNP L enhances
anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8+
T cell-mediated ferroptosis in castration-resistant prostate
cancer. Acta Pharm Sin B. 12:692–707. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jiang Z, Lim SO, Yan M, Hsu JL, Yao J, Wei
Y, Chang SS, Yamaguchi H, Lee HH, Ke B, et al: TYRO3 induces
anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and
tumoral ferroptosis. J Clin Invest. 131:e1394342021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhou X, Lin J, Shao Y, Zheng H, Yang Y, Li
S, Fan X, Hong H, Mao Z, Xue P, et al: Targeting PLCG2 suppresses
tumor progression, orchestrates the tumor immune microenvironment
and potentiates immune checkpoint blockade therapy for colorectal
cancer. Int J Biol Sci. 20:5548–5575. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dai Y, Guo Z, Leng D, Jiao G, Chen K, Fu
M, Liu Y, Shen Q, Wang Q, Zhu L and Zhao Q: Metal-coordinated
NIR-II nanoadjuvants with nanobody conjugation for potentiating
immunotherapy by tumor metabolism reprogramming. Adv Sci (Weinh).
11:e24048862024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pavlova Natalya N and Thompson Craig B:
The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nisar H, Sanchidrián González PM, Brauny
M, Labonté FM, Schmitz C, Roggan MD, Konda B and Hellweg CE:
Hypoxia changes energy metabolism and growth rate in non-small cell
lung cancer cells. Cancers (Basel). 15:24722023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li X, Wenes M, Romero P, Huang SCC, Fendt
SM and Ho PC: Navigating metabolic pathways to enhance antitumour
immunity and immunotherapy. Nat Rev Clin Oncol. 16:425–441. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang Y, Zhai Z, Duan J, Wang X, Zhong J,
Wu L, Li A, Cao M, Wu Y, Shi H, et al: Lactate: The mediator of
metabolism and immunosuppression. Front Endocrinol (Lausanne).
13:9014952022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shergold AL, Millar R and Nibbs RJB:
Understanding and overcoming the resistance of cancer to PD-1/PD-L1
blockade. Pharmacol Res. 145:1042582019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cao Z, Xu D, Harding J, Chen W, Liu X,
Wang Z, Wang L, Qi T, Chen S, Guo X, et al: Lactate oxidase
nanocapsules boost T cell immunity and efficacy of cancer
immunotherapy. Sci Transl Med. 15:eadd27122023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Qian Y, Galan-Cobo A, Guijarro I, Dang M,
Molkentine D, Poteete A, Zhang F, Wang Q, Wang J, Parra E, et al:
MCT4-dependent lactate secretion suppresses antitumor immunity in
LKB1-deficient lung adenocarcinoma. Cancer Cell. 41:1363–1380.e7.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gordon SR, Maute RL, Dulken BW, Hutter G,
George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, et al:
PD-1 expression by tumour-associated macrophages inhibits
phagocytosis and tumour immunity. Nature. 545:495–499. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Marasco M, Berteotti A, Weyershaeuser J,
Thorausch N, Sikorska J, Krausze J, Brandt HJ, Kirkpatrick J, Rios
P, Schamel WW, et al: Molecular mechanism of SHP2 activation by
PD-1 stimulation. Sci Adv. 6:eaay44582020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yokosuka T, Takamatsu M,
Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M and Saito T:
Programmed cell death 1 forms negative costimulatory microclusters
that directly inhibit T cell receptor signaling by recruiting
phosphatase SHP2. J Exp Med. 209:1201–1217. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ruiz de Galarreta M, Bresnahan E,
Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela
V, Casanova-Acebes M, Dhainaut M, et al: β-Catenin activation
promotes immune escape and resistance to anti-PD-1 therapy in
hepatocellular carcinoma. Cancer Discov. 9:1124–1141. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhou L, Mudianto T, Ma X, Riley R and
Uppaluri R: Targeting EZH2 enhances antigen presentation, antitumor
Immunity, and circumvents anti-PD-1 resistance in head and neck
cancer. Clin Cancer Res. 26:290–300. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rosenthal R, Cadieux EL, Salgado R, Bakir
MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, et
al: Neoantigen-directed immune escape in lung cancer evolution.
Nature. 567:479–485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tumeh PC, Harview CL, Yearley JH, Shintaku
IP, Taylor EJM, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu
V, et al: PD-1 blockade induces responses by inhibiting adaptive
immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kwon M, An M, Klempner SJ, Lee H, Kim KM,
Sa JK, Cho HJ, Hong JY, Lee T, Min YW, et al: Determinants of
response and intrinsic resistance to PD-1 blockade in
microsatellite instability-high gastric cancer. Cancer Discov.
11:2168–2185. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Skoulidis F, Goldberg ME, Greenawalt DM,
Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco
SE, Gay L, et al: STK11/LKB1 mutations and PD-1 inhibitor
resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov.
8:822–835. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Messaoudene M, Pidgeon R, Richard C, Ponce
M, Diop K, Benlaifaoui M, Nolin-Lapalme A, Cauchois F, Malo J,
Belkaid W, et al: A natural polyphenol exerts antitumor activity
and circumvents anti-PD-1 resistance through effects on the gut
microbiota. Cancer Discov. 12:1070–1087. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lei Q, Wang D, Sun K, Wang L and Zhang Y:
Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors.
Front Cell Dev Biol. 8:6722020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Murciano-Goroff YR, Warner AB and Wolchok
JD: The future of cancer immunotherapy: Microenvironment-targeting
combinations. Cell Res. 30:507–519. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zou W and Green DR: Beggars banquet:
Metabolism in the tumor immune microenvironment and cancer therapy.
Cell Metab. 35:1101–1113. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang ZH, Peng WB, Zhang P, Yang XP and
Zhou Q: Lactate in the tumour microenvironment: From immune
modulation to therapy. EBioMedicine. 73:1036272021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jedlička M, Feglarová T, Janstová L,
Hortová-Kohoutková M and Frič J: Lactate from the tumor
microenvironment-A key obstacle in NK cell-based immunotherapies.
Front Immunol. 13:9320552022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kumagai S, Koyama S, Itahashi K,
Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono
H, et al: Lactic acid promotes PD-1 expression in regulatory T
cells in highly glycolytic tumor microenvironments. Cancer Cell.
40:201–218.e9. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Warburg O, Wind F and Negelein E: Über den
stoffwechsel von tumoren im körper. Klin Wochenschr. 5:829–832.
1926. View Article : Google Scholar
|
|
37
|
Paul S, Ghosh S and Kumar S: Tumor
glycolysis, an essential sweet tooth of tumor cells. Semin Cancer
Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Luo B, Song L, Chen L, Cai Y, Zhang M and
Wang S: Ganoderic acid D attenuates gemcitabine resistance of
triple-negative breast cancer cells by inhibiting glycolysis via
HIF-1alpha destabilization. Phytomedicine. 129:1556752024.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mossmann D, Park S and Hall MN: mTOR
signalling and cellular metabolism are mutual determinants in
cancer. Nat Rev Cancer. 18:744–757. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhang P, Wan Y, Ma J, Gong J, Zhong Z, Cui
Y, Zhang H, Da Y, Ma J, Li C, et al: Epigenetic silencing of LDHB
promotes hepatocellular carcinoma by remodeling the tumor
microenvironment. Cancer Immunol Immunother. 73:1272024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hong SM, Lee YK, Park I, Kwon SM, Min S
and Yoon G: Lactic acidosis caused by repressed lactate
dehydrogenase subunit B expression down-regulates mitochondrial
oxidative phosphorylation via the pyruvate dehydrogenase (PDH)-PDH
kinase axis. J Biol Chem. 294:7810–7820. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yue J, Xu J, Yin Y, Shu Y, Li Y, Li T, Zou
Z, Wang Z, Li F, Zhang M, et al: Targeting the PDK/PDH axis to
reverse metabolic abnormalities by structure-based virtual
screening with in vitro and in vivo experiments. Int J Biol
Macromol. 262:1299702024. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y,
Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health
and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tian LR, Lin MZ, Zhong HH, Cai YJ, Li B,
Xiao ZC and Shuai XT: Nanodrug regulates lactic acid metabolism to
reprogram the immunosuppressive tumor microenvironment for enhanced
cancer immunotherapy. Biomater Sci. 10:3892–3900. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tasdogan A, Faubert B, Ramesh V,
Ubellacker JM, Shen B, Solmonson A, Murphy MM, Gu Z, Gu W, Martin
M, et al: Metabolic heterogeneity confers differences in melanoma
metastatic potential. Nature. 577:115–120. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hui S, Ghergurovich JM, Morscher RJ, Jang
C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan, Yanxiang Guo J, et
al: Glucose feeds the TCA cycle via circulating lactate. Nature.
551:115–118. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Faubert B, Li KY, Cai L, Hensley CT, Kim
J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al:
Lactate metabolism in human lung tumors. Cell. 171:358–371.e9.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pérez-Escuredo J, Dadhich RK, Dhup S,
Cacace A, Van Hée VF, De Saedeleer CJ, Sboarina M, Rodriguez F,
Fontenille MJ, Brisson L, et al: Lactate promotes glutamine uptake
and metabolism in oxidative cancer cells. Cell Cycle. 15:72–83.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X,
Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate
promotes tumorigenesis by modulating MOESIN lactylation and
enhancing TGF-β signaling in regulatory T cells. Cell Rep.
39:1109862022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ippolito L, Comito G, Parri M, Iozzo M,
Duatti A, Virgilio F, Lorito N, Bacci M, Pardella E, Sandrini G, et
al: Lactate rewires lipid metabolism and sustains a
metabolic-epigenetic axis in prostate cancer. Cancer Res.
82:1267–1282. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xie D, Zhu S and Bai L: Lactic acid in
tumor microenvironments causes dysfunction of NKT cells by
interfering with mTOR signaling. Sci China Life Sci. 59:1290–1296.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen D, Liu P, Lu X, Li J, Qi D, Zang L,
Lin J, Liu Y, Zhai S, Fu D, et al: Pan-cancer analysis implicates
novel insights of lactate metabolism into immunotherapy response
prediction and survival prognostication. J Exp Clin Cancer Res.
43:1252024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Marciscano AE and Anandasabapathy N: The
role of dendritic cells in cancer and anti-tumor immunity. Semin
Immunol. 52:1014812021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Christofides A, Strauss L, Yeo A, Cao C,
Charest A and Boussiotis VA: The complex role of tumor-infiltrating
macrophages. Nat Immunol. 23:1148–1156. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B,
Yang J, Pan J, Hu S, Zhang C, et al: Tumor-derived lactate induces
M2 macrophage polarization via the activation of the ERK/STAT3
signaling pathway in breast cancer. Cell Cycle. 17:428–438. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y,
Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2
polarization of tumor-associated macrophages promotes the invasion
of pituitary adenoma by secreting CCL17. Theranostics.
11:3839–3852. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q,
Saghatelian A, Siegwart DJ and Wan Y: Gpr132 sensing of lactate
mediates tumor-macrophage interplay to promote breast cancer
metastasis. Proc Natl Acad Sci USA. 114:580–585. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Jiang H, Wei H, Wang H, Wang Z, Li J, Ou
Y, Xiao X, Wang W, Chang A, Sun W, et al: Zeb1-induced metabolic
reprogramming of glycolysis is essential for macrophage
polarization in breast cancer. Cell Death Dis. 13:2062022.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Colegio OR, Chu NQ, Szabo AL, Chu T,
Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC,
Phillips GM, et al: Functional polarization of tumour-associated
macrophages by tumour-derived lactic acid. Nature. 513:559–563.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang
P, Chen S, Du J, Wang B, Cai Y, et al: Targeting SRSF10 might
inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy
in hepatocellular carcinoma. Cancer Commun (Lond). 44:1231–1260.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang J, Muri J, Fitzgerald G, Gorski T,
Gianni-Barrera R, Masschelein E, D'Hulst G, Gilardoni P, Turiel G,
Fan Z, et al: Endothelial lactate controls muscle regeneration from
ischemia by inducing M2-like macrophage polarization. Cell Metab.
31:1136–1153.e7. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Morrissey SM, Zhang F, Ding C,
Montoya-Durango DE, Hu X, Yang C, Wang Z, Yuan F, Fox M, Zhang HG,
et al: Tumor-derived exosomes drive immunosuppressive macrophages
in a pre-metastatic niche through glycolytic dominant metabolic
reprogramming. Cell Metab. 33:2040–2058.e10. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tang H, Liang Y, Anders RA, Taube JM, Qiu
X, Mulgaonkar A, Liu X, Harrington SM, Guo J, Xin Y, et al: PD-L1
on host cells is essential for PD-L1 blockade-mediated tumor
regression. J Clin Invest. 128:580–588. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Del Prete A, Salvi V, Soriani A,
Laffranchi M, Sozio F, Bosisio D and Sozzani S: Dendritic cell
subsets in cancer immunity and tumor antigen sensing. Cell Mol
Immunol. 20:432–447. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
See P, Dutertre CA, Chen J, Gunther P,
McGovern N, Irac SE, Gunawan M, Beyer M, Händler K, Duan K, et al:
Mapping the human DC lineage through the integration of
high-dimensional techniques. Science. 356:eaag30092017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rigamonti A, Villar J and Segura E:
Monocyte differentiation within tissues: A renewed outlook. Trends
Immunol. 44:999–1013. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Peng X, He Y, Huang J, Tao Y and Liu S:
Metabolism of dendritic cells in tumor microenvironment: for
immunotherapy. Front Immunol. 12:6134922021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Monti M, Vescovi R, Consoli F, Farina D,
Moratto D, Berruti A, Specchia C and Vermi W: Plasmacytoid
dendritic cell impairment in metastatic melanoma by lactic
acidosis. Cancers (Basel). 12:20852020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Brown TP, Bhattacharjee P, Ramachandran S,
Sivaprakasam S, Ristic B, Sikder MOF and Ganapathy V: The lactate
receptor GPR81 promotes breast cancer growth via a paracrine
mechanism involving antigen-presenting cells in the tumor
microenvironment. Oncogene. 39:3292–3304. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Plebanek MP, Xue Y, Nguyen YV, DeVito NC,
Wang X, Holtzhausen A, Beasley GM, Theivanthiran B and Hanks BA: A
lactate-SREBP2 signaling axis drives tolerogenic dendritic cell
maturation and promotes cancer progression. Sci Immunol.
9:eadi41912024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang Z, Xu F, Hu J, Zhang H, Cui L, Lu W,
He W, Wang X, Li M, Zhang H, et al: Modulation of lactate-lysosome
axis in dendritic cells by clotrimazole potentiates antitumor
immunity. J Immunother Cancer. 9:e0021552021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu Y, Wang F, Peng D, Zhang D, Liu L, Wei
J, Yuan J, Zhao L, Jiang H, Zhang T, et al: Activation and
antitumor immunity of CD8+ T cells are supported by the glucose
transporter GLUT10 and disrupted by lactic acid. Sci Transl Med.
16:eadk73992024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen Y, Gao J, Ma M, Wang K, Liu F, Yang
F, Yang F, Zou X, Cheng Z and Wu D: The potential role of CMC1 as
an immunometabolic checkpoint in T cell immunity. Oncoimmunology.
13:23449052024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sasaki K, Nishina S, Yamauchi A, Fukuda K,
Hara Y, Yamamura M, Egashira K and Hino K: Nanoparticle-mediated
delivery of 2-deoxy-D-glucose induces antitumor immunity and
cytotoxicity in liver tumors in mice. Cell Mol Gastroenterol
Hepatol. 11:739–762. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cappellesso F, Orban MP, Shirgaonkar N,
Berardi E, Serneels J, Neveu MA, Di Molfetta D, Piccapane F,
Caroppo R, Debellis L, et al: Targeting the bicarbonate transporter
SLC4A4 overcomes immunosuppression and immunotherapy resistance in
pancreatic cancer. Nat Cancer. 3:1464–1483. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Fang Y, Liu W, Tang Z, Ji X, Zhou Y, Song
S, Tian M, Tao C, Huang R, Zhu G, et al: Monocarboxylate
transporter 4 inhibition potentiates hepatocellular carcinoma
immunotherapy through enhancing T cell infiltration and immune
attack. Hepatology. 77:109–123. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Liu H, Liang Z, Cheng S, Huang L, Li W,
Zhou C, Zheng X, Li S, Zeng Z and Kang L: Mutant KRAS drives immune
evasion by sensitizing cytotoxic T-cells to activation-induced cell
death in colorectal cancer. Adv Sci (Weinh). 10:e22037572023.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kaymak I, Luda KM, Duimstra LR, Ma EH,
Longo J, Dahabieh MS, Faubert B, Oswald BM, Watson MJ,
Kitchen-Goosen SM, et al: Carbon source availability drives
nutrient utilization in CD8(+) T cells. Cell Metab.
34:1298–1311.e6. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Notarangelo G, Spinelli JB, Perez EM,
Baker GJ, Kurmi K, Elia I, Stopka SA, Baquer G, Lin JR, Golby AJ,
et al: Oncometabolite d-2HG alters T cell metabolism to impair
CD8(+) T cell function. Science. 377:1519–1529. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang H, Grzywacz B, Sukovich D, McCullar
V, Cao Q, Lee AB, Blazar BR, Cornfield DN, Miller JS and Verneris
MR: The unexpected effect of cyclosporin A on CD56+CD16- and
CD56+CD16+ natural killer cell subpopulations. Blood.
110:1530–1539. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Miao L, Lu C, Zhang B, Li H, Zhao X, Chen
H, Liu Y and Cui X: Advances in metabolic reprogramming of NK cells
in the tumor microenvironment on the impact of NK therapy. J Transl
Med. 22:2292024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ge W, Meng L, Cao S, Hou C, Zhu X, Huang
D, Li Q, Peng Y and Jiang K: The SIX1/LDHA axis promotes lactate
accumulation and leads to NK cell dysfunction in pancreatic cancer.
J Immunol Res. 2023:68916362023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Luo Z, Huang X, Xu X, Wei K, Zheng Y, Gong
K and Li W: Decreased LDHB expression in breast tumor cells causes
NK cell activation and promotes tumor progression. Cancer Biol Med.
21:513–540. 2024.PubMed/NCBI
|
|
84
|
Brand A, Singer K, Koehl GE, Kolitzus M,
Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et
al: LDHA-associated lactic acid production blunts tumor
immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S,
Ahmadvand M, Aghdaei HA, Ebrahimi-Barough S, Ai J, Zali MR, Verdi J
and Baghaei K: Adaptive NK cell therapy modulated by anti-PD-1
antibody in gastric cancer model. Front Pharmacol. 12:7330752021.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sun Z, Tao W, Guo X, Jing C, Zhang M, Wang
Z, Kong F, Suo N, Jiang S and Wang H: Construction of a
lactate-related prognostic signature for predicting prognosis,
tumor microenvironment, and immune response in kidney renal clear
cell carcinoma. Front Immunol. 13:8189842022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wagner NB, Forschner A, Leiter U, Garbe C
and Eigentler TK: S100B and LDH as early prognostic markers for
response and overall survival in melanoma patients treated with
anti-PD-1 or combined anti-PD-1 plus anti-CTLA-4 antibodies. Br J
Cancer. 119:339–346. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Heuser C, Renner K, Kreutz M and Gattinoni
L: Targeting lactate metabolism for cancer immunotherapy-a matter
of precision. Semin Cancer Biol. 88:32–45. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ding Y, Yang J, Wei H, Wang J, Huang S,
Yang S, Guo Y, Li B and Shuai X: Construction of pH-sensitive
nanovaccines encapsulating tumor cell lysates and immune adjuvants
for breast cancer therapy. Small. 19:e23014202023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen S, Zhou X, Yang X, Li W, Li S, Hu Z,
Ling C, Shi R, Liu J, Chen G, et al: Dual blockade of lactate/GPR81
and PD-1/PD-L1 pathways enhances the anti-tumor effects of
metformin. Biomolecules. 11:13732021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ji P, Jin XK, Deng XC, Zhang SM, Liang JL,
Li QR, Chen WH and Zhang XZ: Metabolic regulation-mediated
reversion of the tumor immunosuppressive microenvironment for
potentiating cooperative metabolic therapy and immunotherapy. Nano
Lett. 24:4691–701. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Renner K, Bruss C, Schnell A, Koehl G,
Becker HM, Fante M, Menevse AN, Kauer N, Blazquez R, Hacker L, et
al: Restricting glycolysis preserves T Cell effector functions and
augments checkpoint therapy. Cell Rep. 29:135–150.e9. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin
Y, Zheng J, Lin Y, Lin P, Zhao X and Cui L: Metabolic gatekeepers:
Harnessing tumor-derived metabolites to optimize T cell-based
immunotherapy efficacy in the tumor microenvironment. Cell Death
Dis. 15:7752024. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z,
Zhao J, Wu Y, Tang J and Yao M: Metabolic reprogramming in tumor
immune microenvironment: Impact on immune cell function and
therapeutic implications. Cancer Lett. 597:2170762024. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang
J, Zhao S, Li M and Tong X: Mechanisms of regulation of glycolipid
metabolism by natural compounds in plants: Effects on short-chain
fatty acids. Nutr Metab (Lond). 21:492024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang J, Yang Y, Shao F, Meng Y, Guo D, He
J and Lu Z: Acetate reprogrammes tumour metabolism and promotes
PD-L1 expression and immune evasion by upregulating c-Myc. Nat
Metab. 6:914–932. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bose S, Ramesh V and Locasale JW: Acetate
metabolism in physiology, cancer, and beyond. Trends Cell Biol.
29:695–703. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Burgdorf S, Porubsky S, Marx A and Popovic
ZV: Cancer acidity and hypertonicity contribute to dysfunction of
tumor-associated dendritic cells: Potential impact on antigen
cross-presentation machinery. Cancers (Basel). 12:24032020.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shang S, Wang MZ, Xing Z, He N and Li S:
Lactate regulators contribute to tumor microenvironment and predict
prognosis in lung adenocarcinoma. Front Immunol. 13:10249252022.
View Article : Google Scholar : PubMed/NCBI
|