You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
|
Samadder P, Aithal R, Belan O and Krejci L: Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther. 161:111–131. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P, et al: Early detection of cancer. Science. 375:eaay90402022. View Article : Google Scholar : PubMed/NCBI |
|
|
Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, van de Velde CJ and Watanabe T: Colorectal cancer. Nat Rev Dis Primers. 1:150652015. View Article : Google Scholar : PubMed/NCBI |
|
|
Wahab MRA, Palaniyandi T, Ravi M, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD and Rajendran BK: Biomarkers and biosensors for early cancer diagnosis, monitoring and prognosis. Pathol Res Pract. 250:1548122023. View Article : Google Scholar : PubMed/NCBI |
|
|
Bizard AH and Hickson ID: The many lives of type IA topoisomerases. J Biol Chem. 295:7138–7153. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang JC: Cellular roles of DNA topoisomerases: A molecular perspective. Nat Rev Mol Cell Biol. 3:430–440. 2002. View Article : Google Scholar : PubMed/NCBI |
|
|
Schoeffler AJ and Berger JM: DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Q Rev Biophys. 41:41–101. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Forterre P and Gadelle D: Phylogenomics of DNA topoisomerases: Their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res. 37:679–692. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL and King GA: Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res. 49:5470–5492. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Uusküla-Reimand L and Wilson MD: Untangling the roles of TOP2A and TOP2B in transcription and cancer. Sci Adv. 8:eadd49202022. View Article : Google Scholar : PubMed/NCBI |
|
|
Vos SM, Tretter EM, Schmidt BH and Berger JM: All tangled up: How cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol. 12:827–841. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang JC, Caron PR and Kim RA: The role of DNA topoisomerases in recombination and genome stability: A double-edged sword? Cell. 62:403–406. 1990. View Article : Google Scholar : PubMed/NCBI |
|
|
Champoux JJ: DNA topoisomerases: Structure, function, and mechanism. Annu Rev Biochem. 70:369–413. 2001. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen SH, Chan NL and Hsieh TS: New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem. 82:139–170. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Laponogov I, Veselkov DA, Crevel IMT, Pan XS, Fisher LM and Sanderson MR: Structure of an ‘open’ clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res. 41:9911–9923. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Roca J and Wang JC: The capture of a DNA double helix by an ATP-dependent protein clamp: A key step in DNA transport by type II DNA topoisomerases. Cell. 71:833–840. 1992. View Article : Google Scholar : PubMed/NCBI |
|
|
Massé E and Drolet M: Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem. 274:16659–16664. 1999. View Article : Google Scholar : PubMed/NCBI |
|
|
Nitiss JL: DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer. 9:327–337. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Linka RM, Porter ACG, Volkov A, Mielke C, Boege F and Christensen MO: C-terminal regions of topoisomerase IIalpha and IIbeta determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res. 35:3810–3822. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Jenkins JR, Ayton P, Jones T, Davies SL, Simmons DL, Harris AL, Sheer D and Hickson ID: Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res. 20:5587–5592. 1992. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang M, Liang C, Chen Q, Yan H, Xu J, Zhao H, Yuan X, Liu J, Lin S, Lu W and Wang F: Histone H2A phosphorylation recruits topoisomerase IIα to centromeres to safeguard genomic stability. EMBO J. 39:e1018632020. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen T, Sun Y, Ji P, Kopetz S and Zhang W: Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene. 34:4019–4031. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Press MF, Sauter G, Buyse M, Bernstein L, Guzman R, Santiago A, Villalobos IE, Eiermann W, Pienkowski T, Martin M, et al: Alteration of topoisomerase II-alpha gene in human breast cancer: Association with responsiveness to anthracycline-based chemotherapy. J Clin Oncol. 29:859–867. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Heestand GM, Schwaederle M, Gatalica Z, Arguello D and Kurzrock R: Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients. Eur J Cancer. 83:80–87. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Ren L, Liu J, Gou K and Xing C: Copy number variation and high expression of DNA topoisomerase II alpha predict worse prognosis of cancer: A meta-analysis. J Cancer. 9:2082–2092. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Boot A, Liu M, Stantial N, Shah V, Yu W, Nitiss KC, Nitiss JL, Jinks-Robertson S and Rozen SG: Recurrent mutations in topoisomerase IIα cause a previously undescribed mutator phenotype in human cancers. Proc Natl Acad Sci USA. 119:e21140241192022. View Article : Google Scholar : PubMed/NCBI |
|
|
Gielniewski B, Poleszak K, Roura AJ, Szadkowska P, Jacek K, Krol SK, Guzik R, Wiechecka P, Maleszewska M, Kaza B, et al: Targeted sequencing of cancer-related genes reveals a recurrent TOP2A variant which affects DNA binding and coincides with global transcriptional changes in glioblastoma. Int J Cancer. 153:1003–1015. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Hua W, Sa KD, Zhang X, Jia LT, Zhao J, Yang AG, Zhang R, Fan J and Bian K: MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting topoisomerase II alpha. Biochem Biophys Res Commun. 463:1077–1083. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Du X, Xue Z, Lv J and Wang H: Expression of the topoisomerase II alpha (TOP2A) gene in lung adenocarcinoma cells and the association with patient outcomes. Med Sci Monit. 26:e9291202020. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang T, Lu J, Wang R, Cao W and Xu J: TOP2A promotes proliferation and metastasis of hepatocellular carcinoma regulated by miR-144-3p. J Cancer. 13:589–601. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Kou F, Sun H, Wu L, Li B, Zhang B, Wang X and Yang L: TOP2A promotes lung adenocarcinoma cells' malignant progression and predicts poor prognosis in lung adenocarcinoma. J Cancer. 11:2496–2508. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Bau JT and Kurz EU: Sodium salicylate is a novel catalytic inhibitor of human DNA topoisomerase II alpha. Biochem Pharmacol. 81:345–354. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Matias-Barrios VM, Radaeva M, Song Y, Alperstein Z, Lee AR, Schmitt V, Lee J, Ban F, Xie N, Qi J, et al: Discovery of new catalytic topoisomerase II inhibitors for anticancer therapeutics. Front Oncol. 10:6331422021. View Article : Google Scholar : PubMed/NCBI |
|
|
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Song J, Ma Q, Hu M, Qian D, Wang B and He N: The inhibition of miR-144-3p on cell proliferation and metastasis by targeting TOP2A in HCMV-positive glioblastoma cells. Molecules. 23:32592018. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang W, Blank A, Kremenetskaia I, Nitzsche A, Acker G, Vajkoczy P and Brandenburg S: CD13 expression affects glioma patient survival and influences key functions of human glioblastoma cell lines in vitro. BMC Cancer. 24:3692024. View Article : Google Scholar : PubMed/NCBI |
|
|
Yang H, Liu X, Zhu X, Zhang M, Wang Y, Ma M and Lv K: GINS1 promotes the proliferation and migration of glioma cells through USP15-mediated deubiquitination of TOP2A. iScience. 25:1049522022. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu Y, Ma J, Song JS, Zhou HY, Li JH, Luo C, Geng X and Zhao HX: DNA topoisomerase II alpha promotes the metastatic characteristics of glioma cells by transcriptionally activating β-catenin. Bioengineered. 13:2207–2216. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Fazeli S, Sakala M, Rakow-Penner R and Ojeda-Fournier H: Cancer in pregnancy: Breast cancer. Abdom Radiol (NY). 48:1645–1662. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A and Bray F: Cancer statistics for the year 2020: An overview. Int J Cancer. Apr 5–2021.(Epub ahead of print). View Article : Google Scholar |
|
|
Harbeck N and Gnant M: Breast cancer. Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Winters S, Martin C, Murphy D and Shokar NK: Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci. 151:1–32. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
Nielsen TO, Leung SCY, Rimm DL, Dodson A, Acs B, Badve S, Denkert C, Ellis MJ, Fineberg S, Flowers M, et al: Assessment of Ki67 in breast cancer: Updated recommendations from the international Ki67 in breast cancer working group. J Natl Cancer Inst. 113:808–819. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Lee Y, Ni J, Beretov J, Wasinger VC, Graham P and Li Y: Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer. 22:332023. View Article : Google Scholar : PubMed/NCBI |
|
|
Anderson DC and Kodukula K: Biomarkers in pharmacology and drug discovery. Biochem Pharmacol. 87:172–188. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Romero A, Martín M, Cheang MC, López García-Asenjo JA, Oliva B, He X, de la Hoya M, García Sáenz JÁ, Arroyo Fernández M, Díaz Rubio E, et al: Assessment of topoisomerase II α status in breast cancer by quantitative PCR, gene expression microarrays, immunohistochemistry, and fluorescence in situ hybridization. Am J Pathol. 178:1453–1460. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Hu H, Tong K, Tsang JY, Ko CW, Tam F, Loong TC and Tse GM: Subtyping of triple-negative breast cancers: Its prognostication and implications in diagnosis of breast origin. ESMO Open. 9:1029932024. View Article : Google Scholar : PubMed/NCBI |
|
|
Lee SB, Pan J, Xiong D, Palen K, Johnson B, Lubet RA, Shoemaker RH, Green JE, Fernando RI, Sei S, et al: Striking efficacy of a vaccine targeting TOP2A for triple-negative breast cancer immunoprevention. NPJ Precis Oncol. 7:1082023. View Article : Google Scholar : PubMed/NCBI |
|
|
Järvinen TAH and Liu ET: Topoisomerase IIalpha gene (TOP2A) amplification and deletion in cancer-more common than anticipated. Cytopathology. 14:309–313. 2003. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang J, Xu B, Yuan P, Zhang P, Li Q, Ma F and Fan Y: TOP2A amplification in breast cancer is a predictive marker of anthracycline-based neoadjuvant chemotherapy efficacy. Breast Cancer Res Treat. 135:531–537. 2012. View Article : Google Scholar : PubMed/NCBI |
|
|
Chaudhary P, Janmeda P and Pareek A, Chuturgoon AA, Sharma R and Pareek A: Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother. 173:1162942024. View Article : Google Scholar : PubMed/NCBI |
|
|
Monteiro Lde S, Bastos KX, Barbosa-Filho JM, de Athayde-Filho PF, Diniz Mde F and Sobral MV: Medicinal plants and other living organisms with antitumor potential against lung cancer. Evid Based Complement Alternat Med. 2014:6041522014. View Article : Google Scholar : PubMed/NCBI |
|
|
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI |
|
|
Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, et al: International association for the study of lung cancer/american thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 6:244–285. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Kaiser AM, Gatto A, Hanson KJ, Zhao RL, Raj N, Ozawa MG, Seoane JA, Bieging-Rolett KT, Wang M, Li I, et al: p53 governs an AT1 differentiation programme in lung cancer suppression. Nature. 619:851–859. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Wu J, Zhang L, Li W, Wang L, Jia Q, Shi F, Li K, Liao L, Shi Y and Wu S: The role of TOP2A in immunotherapy and vasculogenic mimicry in non-small cell lung cancer and its potential mechanism. Sci Rep. 13:109062023. View Article : Google Scholar : PubMed/NCBI |
|
|
Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, et al: Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 612:141–147. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen Y, Tang L, Huang W, Abisola FH, Zhang Y, Zhang G and Yao L: Identification of a prognostic cuproptosis-related signature in hepatocellular carcinoma. Biol Direct. 18:42023. View Article : Google Scholar : PubMed/NCBI |
|
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang J, Chenivesse X, Henglein B and Bréchot C: Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature. 343:555–557. 1990. View Article : Google Scholar : PubMed/NCBI |
|
|
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A and Roberts LR: A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Global Burden of Disease Liver Cancer Collaboration, . Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, Al-Raddadi R, Alvis-Guzman N, Amoako Y, et al: The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease study 2015. JAMA Oncol. 3:1683–1691. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Dong Y, Sun X, Zhang K, He X, Zhang Q, Song H, Xu M, Lu H and Ren R: Type IIA topoisomerase (TOP2A) triggers epithelial-mesenchymal transition and facilitates HCC progression by regulating Snail expression. Bioengineered. 12:12967–12979. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Panvichian R, Tantiwetrueangdet A, Angkathunyakul N and Leelaudomlipi S: TOP2A amplification and overexpression in hepatocellular carcinoma tissues. Biomed Res Int. 2015:3816022015. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang Z, Zhu Q, Li X, Ren X, Li J, Zhang Y, Zeng S, Xu L, Dong X and Zhai B: TOP2A inhibition reverses drug resistance of hepatocellular carcinoma to regorafenib. Am J Cancer Res. 12:4343–4360. 2022.PubMed/NCBI |
|
|
Wong N, Yeo W, Wong WL, Wong NL, Chan KY, Mo FK, Koh J, Chan SL, Chan AT, Lai PB, et al: TOP2A overexpression in hepatocellular carcinoma correlates with early age onset, shorter patients survival and chemoresistance. Int J Cancer. 124:644–652. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Feng J, Wei X, Liu Y, Zhang Y, Li G, Xu Y, Zhou P, Zhang J, Han X, Zhang C, et al: Identification of topoisomerase 2A as a novel bone metastasis-related gene in liver hepatocellular carcinoma. Aging (Albany NY). 15:13010–13040. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Shi W, Zhang S, Ma D, Yan D, Zhang G, Cao Y, Wang Z, Wu J and Jiang C: Targeting SphK2 reverses Acquired resistance of regorafenib in hepatocellular carcinoma. Front Oncol. 10:6942020. View Article : Google Scholar : PubMed/NCBI |
|
|
Krebs N, Klein L, Wegwitz F, Espinet E, Maurer HC, Tu M, Penz F, Küffer S, Xu X, Bohnenberger H, et al: Axon guidance receptor ROBO3 modulates subtype identity and prognosis via AXL-associated inflammatory network in pancreatic cancer. JCI Insight. 7:e1544752022. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang CY, Liu S and Yang M: Clinical diagnosis and management of pancreatic cancer: Markers, molecular mechanisms, and treatment options. World J Gastroenterol. 28:6827–6845. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Kawai M, Fukuda A, Otomo R, Obata S, Minaga K, Asada M, Umemura A, Uenoyama Y, Hieda N, Morita T, et al: Early detection of pancreatic cancer by comprehensive serum miRNA sequencing with automated machine learning. Br J Cancer. 131:1158–1168. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
Waleleng BJ, Adiwinata R, Wenas NT, Haroen H, Rotty L, Gosal F, Rotty L, Winarta J, Waleleng A and Simadibrata M: Screening of pancreatic cancer: Target population, optimal timing and how? Ann Med Surg (Lond). 84:1048142022.PubMed/NCBI |
|
|
Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Pei YF, Yin XM and Liu XQ: TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. Biochim Biophys Acta Mol Basis Dis. 1864:197–207. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu SL, Cai C, Yang ZY, Wu ZY, Wu XS, Wang XF, Dong P and Gong W: DGCR5 is activated by PAX5 and promotes pancreatic cancer via targeting miR-3163/TOP2A and activating Wnt/β-catenin pathway. Int J Biol Sci. 17:498–513. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Tanaka T, Okada R, Hozaka Y, Wada M, Moriya S, Satake S, Idichi T, Kurahara H, Ohtsuka T and Seki N: Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact of miR-30c-5p and miR-30c-2-3p regulation on oncogenic genes. Cancers (Basel). 12:27312020. View Article : Google Scholar : PubMed/NCBI |
|
|
Fang C, He W, Xu T, Dai J, Xu L and Sun F: Upregulation of lncRNA DGCR5 correlates with better prognosis and inhibits bladder cancer progression via transcriptionally facilitating P21 expression. J Cell Physiol. 234:6254–6262. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhou C, Bisseling TM, van der Post RS and Boleij A: The influence of Helicobacter pylori, proton pump inhibitor, and obesity on the gastric microbiome in relation to gastric cancer development. Comput Struct Biotechnol J. 23:186–198. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang XY and Zhang PY: Gastric cancer: Somatic genetics as a guide to therapy. J Med Genet. 54:305–312. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen YU, Yu Y, Lv M, Shi Q and Li X: E2F1-mediated up-regulation of TOP2A promotes viability, migration, and invasion, and inhibits apoptosis of gastric cancer cells. J Biosci. 47:842022. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu SJ, Dang HX, Lim DA, Feng FY and Maher CA: Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. 21:446–460. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Cui Y, Pu R, Ye J, Huang H, Liao D, Yang Y, Chen W, Yao Y and He Y: LncRNA FAM230B promotes gastric cancer growth and metastasis by regulating the miR-27a-5p/TOP2A axis. Dig Dis Sci. 66:2637–2650. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Kneis B, Wirtz S, Weber K, Denz A, Gittler M, Geppert C, Brunner M, Krautz C, Siebenhüner AR, Schierwagen R, et al: Colon cancer microbiome landscaping: Differences in right- and left-sided colon cancer and a tumor microbiome-Ileal microbiome association. Int J Mol Sci. 24:32652023. View Article : Google Scholar : PubMed/NCBI |
|
|
Li Y, Li B, Jiang R, Liao L, Zheng C, Yuan J, Zeng L, Hu K, Zhang Y, Mei W, et al: A novel screening method of DNA methylation biomarkers helps to improve the detection of colorectal cancer and precancerous lesions. Cancer Med. 12:20626–20638. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhu C, Zhang L, Zhao S, Dai W and Xu Y, Zhang Y, Zheng H, Sheng W and Xu Y: UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis. 12:5192021. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang R, Xu J, Zhao J and Bai JH: Proliferation and invasion of colon cancer cells are suppressed by knockdown of TOP2A. J Cell Biochem. 119:7256–7263. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Carvalho RF, do Canto LM, Cury SS, Frøstrup Hansen T, Jensen LH and Rogatto SR: Drug repositioning based on the reversal of gene expression signatures identifies TOP2A as a therapeutic target for rectal cancer. Cancers (Basel). 13:54922021. View Article : Google Scholar : PubMed/NCBI |
|
|
Coss A, Tosetto M, Fox EJ, Sapetto-Rebow B, Gorman S, Kennedy BN, Lloyd AT, Hyland JM, O'Donoghue DP, Sheahan K, et al: Increased topoisomerase IIalpha expression in colorectal cancer is associated with advanced disease and chemotherapeutic resistance via inhibition of apoptosis. Cancer Lett. 276:228–238. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Zou Q, Wu Y, Zhang S, Li S, Li S, Su Y, Zhang L, Li Q, Zou H, Zhang X, et al: Escherichia coli and HPV16 coinfection may contribute to the development of cervical cancer. Virulence. 15:23199622024. View Article : Google Scholar : PubMed/NCBI |
|
|
Meng Q, Zhang Y, Sun H, Yang X, Hao S, Liu B, Zhou H, Wang Y and Xu ZX: Human papillomavirus-16 E6 activates the pentose phosphate pathway to promote cervical cancer cell proliferation by inhibiting G6PD lactylation. Redox Biol. 71:1031082024. View Article : Google Scholar : PubMed/NCBI |
|
|
Schreiberhuber L, Barrett JE, Wang J, Redl E, Herzog C, Vavourakis CD, Sundström K, Dillner J and Widschwendter M: Cervical cancer screening using DNA methylation triage in a real-world population. Nat Med. 30:2251–2257. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
Lin Z, Li X, Shi H, Cao R, Zhu L, Dang C, Sheng Y, Fan W, Yang Z and Wu S: Decoding the tumor microenvironment and molecular mechanism: Unraveling cervical cancer subpopulations and prognostic signatures through scRNA-Seq and bulk RNA-seq analyses. Front Immunol. 15:13512872024. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhao Q, Li H, Zhu L, Hu S, Xi X, Liu Y, Liu J and Zhong T: Bioinformatics analysis shows that TOP2A functions as a key candidate gene in the progression of cervical cancer. Biomed Rep. 13:212020.PubMed/NCBI |
|
|
Wang B, Shen Y, Zou Y, Qi Z, Huang G, Xia S, Gao R, Li F and Huang Z: TOP2A promotes cell migration, invasion and epithelial-mesenchymal transition in cervical cancer via activating the PI3K/AKT signaling. Cancer Manag Res. 12:3807–3814. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang J, Yu X, Guo Y and Wang D: HPV16 E6 promoting cervical cancer progression through down-regulation of miR-320a to increase TOP2A expression. Cancer Med. 13:e68752024. View Article : Google Scholar : PubMed/NCBI |
|
|
Yu B, Chen L, Zhang W, Li Y, Zhang Y, Gao Y, Teng X, Zou L, Wang Q, Jia H, et al: TOP2A and CENPF are synergistic master regulators activated in cervical cancer. BMC Med Genomics. 13:1452020. View Article : Google Scholar : PubMed/NCBI |
|
|
Katsumata N, Yasuda M, Isonishi S, Takahashi F, Michimae H, Kimura E, Aoki D, Jobo T, Kodama S, Terauchi F, et al: Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (JGOG 3016): A randomised, controlled, open-label trial. Lancet Oncol. 14:1020–1026. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Geng D, Zhou Y and Wang M: Advances in the role of GPX3 in ovarian cancer (Review). Int J Oncol. 64:312024. View Article : Google Scholar : PubMed/NCBI |
|
|
Chekerov R, Klaman I, Zafrakas M, Könsgen D, Mustea A, Petschke B, Lichtenegger W, Sehouli J and Dahl E: Altered expression pattern of topoisomerase IIalpha in ovarian tumor epithelial and stromal cells after platinum-based chemotherapy. Neoplasia. 8:38–45. 2006. View Article : Google Scholar : PubMed/NCBI |
|
|
Chekerov R, Koensgen D, Klaman I, Rosenthal A, Oskay-Oezcelik G, Mustea A, Lightenegger W, Dahl E and Sehouli J: Tumor- and stromal cell-specific expression of topoisomerase IIα and HER-2/neu in primary and recurrent ovarian cancer: Results of a prospective study. Mol Med Rep. 2:1011–1016. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang K, Zheng X, Sun Y, Feng X, Wu X, Liu W, Gao C, Yan Y, Tian W and Wang Y: TOP2A modulates signaling via the AKT/mTOR pathway to promote ovarian cancer cell proliferation. Cancer Biol Ther. 25:23251262024. View Article : Google Scholar : PubMed/NCBI |
|
|
Gudbrandsdottir G, Aarstad HH, Bostad L, Hjelle KM, Aarstad HJ, Bruserud Ø, Tvedt THA and Beisland C: Serum levels of the IL-6 family of cytokines predict prognosis in renal cell carcinoma (RCC). Cancer Immunol Immunother. 70:19–30. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Piao XM, Byun YJ, Zheng CM, Song SJ, Kang HW, Kim WT and Yun SJ: A new treatment landscape for RCC: Association of the human microbiome with improved outcomes in RCC. Cancers (Basel). 15:9352023. View Article : Google Scholar : PubMed/NCBI |
|
|
Huang B, Ren J, Ma Q, Yang F, Pan X, Zhang Y, Liu Y, Wang C, Zhang D, Wei L, et al: A novel peptide PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via interacting with PPP1CA to inhibit AKT dephosphorylation and activate the AKT-mTOR signaling pathway. Mol Cancer. 23:342024. View Article : Google Scholar : PubMed/NCBI |
|
|
Ren J, Huang B, Li W, Wang Y, Pan X, Ma Q, Liu Y, Wang X, Liang C, Zhang Y, et al: RNA-binding protein IGF2BP2 suppresses metastasis of clear cell renal cell carcinoma by enhancing CKB mRNA stability and expression. Transl Oncol. 42:1019042024. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang L, Jin GZ and Li D: Tat-hspb1 suppresses clear cell renal cell carcinoma (ccRCC) growth via lysosomal membrane permeabilization. Cancers (Basel). 14:57102022. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang X, Zhang G, Xu L, Bai X, Zhang J, Chen L, Lu X, Yu S, Jin Z and Sun H: Prediction of World Health Organization/international society of urological pathology (WHO/ISUP) pathological grading of clear cell renal cell carcinoma by dual-layer spectral CT. Acad Radiol. 30:2321–2328. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Huang X, Jia Y, Shi H, Fan H, Sun L, Zhang H, Wang Y, Chen J, Han J, Wang M, et al: miR-30c-2-3p suppresses the proliferation of human renal cell carcinoma cells by targeting TOP2A. Asian Biomed (Res Rev News). 17:124–135. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang C, Qu Y, Xiao H, Xiao W and Liu J, Gao Y, Li M and Liu J: LncRNA SNHG3 promotes clear cell renal cell carcinoma proliferation and migration by upregulating TOP2A. Exp Cell Res. 384:1115952019. View Article : Google Scholar : PubMed/NCBI |
|
|
Parker AS, Eckel-Passow JE, Serie D, Hilton T, Parasramka M, Joseph RW, Wu KJ, Cheville JC and Leibovich BC: Higher expression of topoisomerase II alpha is an independent marker of increased risk of cancer-specific death in patients with clear cell renal cell carcinoma. Eur Urol. 66:929–935. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang Q, Liu J, Li R, Wang S, Xu Y, Wang Y, Zhang H, Zhou Y, Zhang X, Chen X, et al: Assessing the role of programmed cell death signatures and related gene TOP2A in progression and prognostic prediction of clear cell renal cell carcinoma. Cancer Cell Int. 24:1642024. View Article : Google Scholar : PubMed/NCBI |
|
|
Ashrafizadeh M, Hushmandi K, Hashemi M, Akbari ME, Kubatka P, Raei M, Koklesova L, Shahinozzaman M, Mohammadinejad R, Najafi M, et al: Role of microRNA/epithelial-to-mesenchymal transition axis in the metastasis of bladder cancer. Biomolecules. 10:11592020. View Article : Google Scholar : PubMed/NCBI |
|
|
Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A and Bray F: Bladder cancer incidence and mortality: A global overview and recent trends. Eur Urol. 71:96–108. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang X, Luo L, Xu J, Lu Q, Xia H, Huang Y, Zhang L, Xie L, Jiwa H, Liang S, et al: Echinatin inhibits tumor growth and synergizes with chemotherapeutic agents against human bladder cancer cells by activating p38 and suppressing Wnt/β-catenin pathways. Genes Dis. 11:1050–1065. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Hou J, Huang H, Xie J, Yu W, Hao H and Li H: KLHDC7B as a novel diagnostic biomarker in urine exosomal mRNA promotes bladder urothelial carcinoma cell proliferation and migration, inhibits apoptosis. Mol Carcinog. 63:286–300. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
Simon R, Atefy R, Wagner U, Forster T, Fijan A, Bruderer J, Wilber K, Mihatsch MJ, Gasser T and Sauter G: HER-2 and TOP2A coamplification in urinary bladder cancer. Int J Cancer. 107:764–772. 2003. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang F and Wu H: MiR-599 targeting TOP2A inhibits the malignancy of bladder cancer cells. Biochem Biophys Res Commun. 570:154–161. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Zeng S, Liu A, Dai L, Yu X, Zhang Z, Xiong Q, Yang J, Liu F, Xu J, Xue Y, et al: Prognostic value of TOP2A in bladder urothelial carcinoma and potential molecular mechanisms. BMC Cancer. 19:6042019. View Article : Google Scholar : PubMed/NCBI |
|
|
Schatten H: Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv Exp Med Biol. 1095:1–14. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Ilic D, Neuberger MM, Djulbegovic M and Dahm P: Screening for prostate cancer. Cochrane Database Syst Rev. 2013:Cd0047202013.PubMed/NCBI |
|
|
Temilola DO, Wium M, Paccez J, Salukazana AS, Out HH, Carbone GM, Kaestner L, Cacciatore S and Zerbini LF: Potential of miRNAs in plasma extracellular vesicle for the stratification of prostate cancer in a South African population. Cancers (Basel). 15:39682023. View Article : Google Scholar : PubMed/NCBI |
|
|
Moradi A, Srinivasan S, Clements J and Batra J: Beyond the biomarker role: Prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev. 38:333–346. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A and Mashele S: Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules. 27:57302022. View Article : Google Scholar : PubMed/NCBI |
|
|
Murphy AJ, Hughes CA, Barrett C, Magee H, Loftus B, O'Leary JJ and Sheils O: Low-level TOP2A amplification in prostate cancer is associated with HER2 duplication, androgen resistance, and decreased survival. Cancer Res. 67:2893–2898. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
de Resende MF, Vieira S, Chinen LTD, Chiappelli F, da Fonseca FP, Guimarães GC, Soares FA, Neves I, Pagotty S, Pellionisz PA, et al: Prognostication of prostate cancer based on TOP2A protein and gene assessment: TOP2A in prostate cancer. J Transl Med. 11:362013. View Article : Google Scholar : PubMed/NCBI |
|
|
Huang ZG, Sun Y, Chen G, Dang YW, Lu HP, He J, Cheng JW, He ML and Li SH: MiRNA-145-5p expression and prospective molecular mechanisms in the metastasis of prostate cancer. IET Syst Biol. 15:1–13. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Sritharan S and Sivalingam N: A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci. 278:1195272021. View Article : Google Scholar : PubMed/NCBI |
|
|
Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S and Pandey S: Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur J Med Chem. 259:1156762023. View Article : Google Scholar : PubMed/NCBI |
|
|
Guan J, Tan X, Jiao J, Lai S, Zhang H, Kan Q, He Z, Sun M and Sun J: Iron ion-coordinated carrier-free supramolecular co-nanoassemblies of dual DNA topoisomerase-targeting inhibitors for tumor suppression. Acta Biomater. 144:121–131. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Larsen AK, Escargueil AE and Skladanowski A: Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther. 99:167–181. 2003. View Article : Google Scholar : PubMed/NCBI |
|
|
Ratain MJ, Kaminer LS, Bitran JD, Larson RA, Le Beau MM, Skosey C, Purl S, Hoffman PC, Wade J, Vardiman JW, et al: Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood. 70:1412–1417. 1987. View Article : Google Scholar : PubMed/NCBI |
|
|
Montecucco A, Zanetta F and Biamonti G: Molecular mechanisms of etoposide. EXCLI J. 14:95–108. 2015.PubMed/NCBI |
|
|
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P and Prakash O: Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol. 10:16142019. View Article : Google Scholar : PubMed/NCBI |
|
|
Pedersen-Bjergaard J, Philip P, Larsen SO, Andersson M, Daugaard G, Ersbøll J, Hansen SW, Hou-Jensen K, Nielsen D, Sigsgaard TC, et al: Therapy-related myelodysplasia and acute myeloid leukemia. Cytogenetic characteristics of 115 consecutive cases and risk in seven cohorts of patients treated intensively for malignant diseases in the Copenhagen series. Leukemia. 7:1975–1986. 1993.PubMed/NCBI |
|
|
Bergant Loboda K, Janežič M, Štampar M, Žegura B, Filipič M and Perdih A: Substituted 4,5′-bithiazoles as catalytic inhibitors of human DNA topoisomerase IIα. J Chem Inf Model. 60:3662–3678. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Murphy MB, Kumar P, Bradley AM, Barton CE, Deweese JE and Mercer SL: Synthesis and evaluation of etoposide and podophyllotoxin analogs against topoisomerase IIα and HCT-116 cells. Bioorg Med Chem. 28:1157732020. View Article : Google Scholar : PubMed/NCBI |
|
|
Li J, Sun P, Huang T, He S, Li L and Xue G: Individualized chemotherapy guided by the expression of ERCC1, RRM1, TUBB3, TYMS and TOP2A genes versus classic chemotherapy in the treatment of breast cancer: A comparative effectiveness study. Oncol Lett. 21:212021. View Article : Google Scholar : PubMed/NCBI |
|
|
Hartmann JT and Lipp HP: Camptothecin and podophyllotoxin derivatives: Inhibitors of topoisomerase I and II-mechanisms of action, pharmacokinetics and toxicity profile. Drug Saf. 29:209–230. 2006. View Article : Google Scholar : PubMed/NCBI |
|
|
Xu X, Persson HL and Richardson DR: Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol. 68:261–271. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Bruno PM, Lu M, Dennis KA, Inam H, Moore CJ, Sheehe J, Elledge SJ, Hemann MT and Pritchard JR: The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. Proc Natl Acad Sci USA. 117:4053–4060. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Bossaert M, Pipier A, Riou JF, Noirot C, Nguyên LT, Serre RF, Bouchez O, Defrancq E, Calsou P, Britton S and Gomez D: Transcription-associated topoisomerase 2α (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. eLife. 10:e651842021. View Article : Google Scholar : PubMed/NCBI |
|
|
Olivieri M, Cho T, Álvarez-Quilón A, Li K, Schellenberg MJ, Zimmermann M, Hustedt N, Rossi SE, Adam S, Melo H, et al: A genetic map of the response to DNA damage in human cells. Cell. 182:481–496.e21. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Li TK and Liu LF: Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol. 41:53–77. 2001. View Article : Google Scholar : PubMed/NCBI |
|
|
Luo K, Yuan J, Chen J and Lou Z: Topoisomerase IIalpha controls the decatenation checkpoint. Nat Cell Biol. 11:204–210. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Sarogni P, Brindani N, Zamborlin A, Gonnelli A, Menicagli M, Mapanao AK, Munafò F, De Vivo M and Voliani V: Tumor growth-arrest effect of tetrahydroquinazoline-derivative human topoisomerase II-alpha inhibitor in HPV-negative head and neck squamous cell carcinoma. Sci Rep. 14:91502024. View Article : Google Scholar : PubMed/NCBI |
|
|
Morizane C, Machida N, Honma Y, Okusaka T, Boku N, Kato K, Nomura S, Hiraoka N, Sekine S, Taniguchi H, et al: Effectiveness of etoposide and cisplatin vs irinotecan and cisplatin therapy for patients with advanced neuroendocrine carcinoma of the digestive system: The TOPIC-NEC phase 3 randomized clinical trial. JAMA Oncol. 8:1447–1455. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Cheng Y, Fan Y, Zhao Y, Huang D, Li X, Zhang P, Kang M, Yang N, Zhong D, Wang Z, et al: Tislelizumab plus platinum and etoposide versus placebo plus platinum and etoposide as first-line treatment for extensive-stage SCLC (RATIONALE-312): A multicenter, double-blind, placebo-controlled, randomized, phase 3 clinical trial. J Thorac Oncol. 19:1073–1085. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
Pollack SM, Redman MW, Baker KK, Wagner MJ, Schroeder BA, Loggers ET, Trieselmann K, Copeland VC, Zhang S, Black G, et al: Assessment of doxorubicin and pembrolizumab in patients with advanced anthracycline-naive sarcoma: A phase 1/2 nonrandomized clinical trial. JAMA Oncol. 6:1778–1782. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Tap WD, Wagner AJ, Schöffski P, Martin-Broto J, Krarup-Hansen A, Ganjoo KN, Yen CC, Abdul Razak AR, Spira A, Kawai A, et al: Effect of doxorubicin plus olaratumab vs doxorubicin plus placebo on survival in patients with advanced soft tissue sarcomas: The ANNOUNCE randomized clinical trial. JAMA. 323:1266–1276. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Abou-Alfa GK, Shi Q, Knox JJ, Kaubisch A, Niedzwiecki D, Posey J, Tan BR Jr, Kavan P, Goel R, Lammers PE, et al: Assessment of treatment with sorafenib plus doxorubicin vs sorafenib alone in patients with advanced hepatocellular carcinoma: Phase 3 CALGB 80802 randomized clinical trial. JAMA Oncol. 5:1582–1588. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Yuan P, Kang Y, Ma F, Fan Y, Wang J, Wang X, Yue J, Luo Y, Zhang P, Li Q and Xu B: Effect of epirubicin plus paclitaxel vs epirubicin and cyclophosphamide followed by paclitaxel on disease-free survival among patients with operable ERBB2-negative and lymph node-positive breast cancer: A randomized clinical trial. JAMA Netw Open. 6:e2301222023. View Article : Google Scholar : PubMed/NCBI |
|
|
Egelston CA, Guo W, Yost SE, Ge X, Lee JS, Frankel PH, Cui Y, Ruel C, Schmolze D, Murga M, et al: Immunogenicity and efficacy of pembrolizumab and doxorubicin in a phase I trial for patients with metastatic triple-negative breast cancer. Cancer Immunol Immunother. 72:3013–3027. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Livingston MB, Jagosky MH, Robinson MM, Ahrens WA, Benbow JH, Farhangfar CJ, Foureau DM, Maxwell DM, Baldrige EA, Begic X, et al: Phase II study of pembrolizumab in combination with doxorubicin in metastatic and unresectable soft-tissue sarcoma. Clin Cancer Res. 27:6424–6431. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Singh V, Afshan T, Tyagi P, Varadwaj PK and Sahoo AK: Recent development of multi-targeted inhibitors of human topoisomerase II enzyme as potent cancer therapeutics. Int J Biol Macromol. 226:473–484. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu Y, Yu K, Zhang K, Niu M, Chen Q, Liu Y, Wang L, Zhang N, Li W, Zhong X, et al: O-GlcNAcylation promotes topoisomerase IIα catalytic activity in breast cancer chemoresistance. EMBO Rep. 24:e564582023. View Article : Google Scholar : PubMed/NCBI |
|
|
Amicuzi U, Grillo M, Stizzo M, Olivetta M, Tammaro S, Napolitano L, Reccia P, De Luca L, Rubinacci A, Della Rosa G, et al: Exploring the multifactorial landscape of penile cancer: A comprehensive analysis of risk factors. Diagnostics (Basel). 14:17902024. View Article : Google Scholar : PubMed/NCBI |
|
|
Heumos L, Schaar AC, Lance C, Litinetskaya A, Drost F, Zappia L, Lücken MD, Strobl DC, Henao J, Curion F, et al: Best practices for single-cell analysis across modalities. Nat Rev Genet. 24:550–572. 2023. View Article : Google Scholar : PubMed/NCBI |