|
1
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG,
Li C, Yao L, Li QL, Yang XB, Ren LH, et al: Viral sepsis:
Diagnosis, clinical features, pathogenesis, and clinical
considerations. Mil Med Res. 11:782024.PubMed/NCBI
|
|
2
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The third international consensus
definitions for sepsis and septic shock (Sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Evans L, Rhodes A, Alhazzani W, Antonelli
M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M,
Prescott HC, et al: Surviving sepsis campaign: International
guidelines for management of sepsis and septic shock 2021.
Intensive Care Med. 47:1181–1247. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Scheer C, Gründling M and Kuhn SO: Do not
forget the blood cultures! Intensive Care Med. 48:509–510. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rudd KE, Johnson SC, Agesa KM, Shackelford
KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer
S, et al: Global, regional, and national sepsis incidence and
mortality, 1990–2017: Analysis for the global burden of disease
study. Lancet. 395:200–211. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dantes RB, Kaur H, Bouwkamp BA, Haass KA,
Patel P, Dudeck MA, Srinivasan A, Magill SS, Wilson WW, Whitaker M,
et al: Sepsis program activities in acute care hospitals-national
healthcare safety network, United States, 2022. MMWR Morb Mortal
Wkly Rep. 72:907–911. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Weng L, Xu Y, Yin P, Wang Y, Chen Y, Liu
W, Li S, Peng JM, Dong R, Hu XY, et al: National incidence and
mortality of hospitalized sepsis in China. Crit Care. 27:842023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang R, Xu Y, Fang Y, Wang C, Xue Y, Wang
F, Cheng J, Ren H, Wang J, Guo W, et al: Pathogenetic mechanisms of
septic cardiomyopathy. J Cell Physiol. 237:49–58. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hollenberg SM and Singer M:
Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol.
18:424–434. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tang D, Kang R, Berghe TV, Vandenabeele P
and Kroemer G: The molecular machinery of regulated cell death.
Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Khatun J, Gelles JD and Chipuk JE: Dynamic
death decisions: How mitochondrial dynamics shape cellular
commitment to apoptosis and ferroptosis. Dev Cell. 59:2549–2565.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen X, Li J, Kang R, Klionsky DJ and Tang
D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gao M, Yi J, Zhu J, Minikes AM, Monian P,
Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol
Cell. 73:354–363.e3. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ahola S and Langer T: Ferroptosis in
mitochondrial cardiomyopathy. Trends Cell Biol. 34:150–160. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Song J, Fang X, Zhou K, Bao H and Li L:
Sepsis induced cardiac dysfunction and pathogenetic mechanisms
(Review). Mol Med Rep. 28:2272023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ye H, Hu H, Zhou X, Dong M and Ren J:
Targeting ferroptosis in the maintenance of mitochondrial
homeostasis in the realm of septic cardiomyopathy. Curr Opin
Pharmacol. 74:1024302024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Carbone F, Liberale L, Preda A, Schindler
TH and Montecucco F: Septic cardiomyopathy: From pathophysiology to
the clinical setting. Cells. 11:28332022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Martin L, Derwall M, Al Zoubi S,
Zechendorf E, Reuter DA, Thiemermann C and Schuerholz T: The septic
heart: Current understanding of molecular mechanisms and clinical
implications. Chest. 155:427–437. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hiraiwa H, Kasugai D, Okumura T and
Murohara T: Clinical implications of septic cardiomyopathy: A
narrative review. Medicine (Baltimore). 103:e379402024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang J, Wang XT, Liu DW, Zhang HM and Su
LX: Induction and deduction in sepsis-induced cardiomyopathy: Five
typical categories. Chin Med J (Engl). 133:2205–2211. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liu H, Xu C, Hu Q and Wang Y:
Sepsis-induced cardiomyopathy: Understanding pathophysiology and
clinical implications. Arch Toxicol. Nov 27–2024.(Epub ahead of
print).
|
|
23
|
Fan D and Wu R: Mechanisms of the septic
heart: From inflammatory response to myocardial edema. J Mol Cell
Cardiol. 195:73–82. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lim GB: Cardiac-resident macrophages
protect against sepsis-induced cardiomyopathy. Nat Rev Cardiol.
20:1412023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hernández-Jiménez E, Plata-Menchaca EP,
Berbel D, López de Egea G, Dastis-Arias M, García-Tejada L, Sbraga
F, Malchair P, García Muñoz N, Larrad Blasco A, et al: Assessing
sepsis-induced immunosuppression to predict positive blood
cultures. Front Immunol. 15:14475232024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tang H, Qin S, Li Z, Gao W, Tang M and
Dong X: Early immune system alterations in patients with septic
shock. Front Immunol. 14:11268742023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bi CF, Liu J, Yang LS and Zhang JF:
Research progress on the mechanism of sepsis induced myocardial
injury. J Inflamm Res. 15:4275–4290. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yang Z, Ji S, Liu L, Liu S, Wang B, Ma Y
and Cao X: Promotion of TLR7-MyD88-dependent inflammation and
autoimmunity in mice through stem-loop changes in Lnc-Atg16l1. Nat
Commun. 15:102242024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M,
Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy:
New insights and translational implications. Signal Transduct
Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Siebeler R, de Winther MPJ and Hoeksema
MA: The regulatory landscape of macrophage interferon signaling in
inflammation. J Allergy Clin Immunol. 152:326–337. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang Y, Li X, Dai Y, Han Y, Wei X, Wei G,
Chen W, Kong S, He Y, Liu H, et al: Neutrophil N1 polarization
induced by cardiomyocyte-derived extracellular vesicle miR-9-5p
aggravates myocardial ischemia/reperfusion injury. J
Nanobiotechnology. 22:6322024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liang L, Liu S, Wu Q, Chen R, Jiang S and
Yang Z: m6A-mediated upregulation of miRNA-193a aggravates
cardiomyocyte apoptosis and inflammatory response in sepsis-induced
cardiomyopathy via the METTL3/miRNA-193a/BCL2L2 pathway. Exp Cell
Res. 430:1137122023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Flemming A: Insights into immune
cell-fibroblast communication in heart disease. Nat Rev Immunol.
24:8492024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Brown DA, Perry JB, Allen ME, Sabbah HN,
Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors
AA, et al: Expert consensus document: Mitochondrial function as a
therapeutic target in heart failure. Nat Rev Cardiol. 14:238–250.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stanzani G, Duchen MR and Singer M: The
role of mitochondria in sepsis-induced cardiomyopathy. Biochim
Biophys Acta Mol Basis Dis. 1865:759–773. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lin Y, Xu Y and Zhang Z: Sepsis-induced
myocardial dysfunction (SIMD): The pathophysiological mechanisms
and therapeutic strategies targeting mitochondria. Inflammation.
43:1184–1200. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fan Y, Guan B, Xu J, Zhang H, Yi L and
Yang Z: Role of toll-like receptor-mediated pyroptosis in
sepsis-induced cardiomyopathy. Biomed Pharmacother. 167:1154932023.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ni D, Lin X, Deng C, Yuan L, Li J, Liu Y,
Liang P and Jiang B: Energy metabolism: From physiological changes
to targets in sepsis-induced cardiomyopathy. Hellenic J Cardiol.
80:96–106. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu F, Zhang YT, Teng F, Li HH and Guo SB:
S100a8/a9 contributes to sepsis-induced cardiomyopathy by
activating ERK1/2-Drp1-mediated mitochondrial fission and
respiratory dysfunction. Int Immunopharmacol. 115:1097162023.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Vilas-Boas EA, Cabral-Costa JV, Ramos VM,
Caldeira da Silva CC and Kowaltowski AJ: Goldilocks calcium
concentrations and the regulation of oxidative phosphorylation: Too
much, too little, or just right. J Biol Chem. 299:1029042023.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li Y, Feng YF, Liu XT, Li YC, Zhu HM, Sun
MR, Li P, Liu B and Yang H: Songorine promotes cardiac
mitochondrial biogenesis via Nrf2 induction during sepsis. Redox
Biol. 38:1017712021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ajoolabady A, Chiong M, Lavandero S,
Klionsky DJ and Ren J: Mitophagy in cardiovascular diseases:
Molecular mechanisms, pathogenesis, and treatment. Trends Mol Med.
28:836–849. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang Y, Jasper H, Toan S, Muid D, Chang X
and Zhou H: Mitophagy coordinates the mitochondrial unfolded
protein response to attenuate inflammation-mediated myocardial
injury. Redox Biol. 45:1020492021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen S, Li Q, Shi H, Li F, Duan Y and Guo
Q: New insights into the role of mitochondrial dynamics in
oxidative stress-induced diseases. Biomed Pharmacother.
178:1170842024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen A, Huang H, Fang S and Hang Q: ROS: A
‘booster’ for chronic inflammation and tumor metastasis. Biochim
Biophys Acta Rev Cancer. 1879:1891752024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu
Y and Zhang H: ROS fine-tunes the function and fate of immune
cells. Int Immunopharmacol. 119:1100692023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kuroshima T, Kawaguchi S and Okada M:
Current perspectives of mitochondria in sepsis-induced
cardiomyopathy. Int J Mol Sci. 25:47102024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Del Re DP, Amgalan D, Linkermann A, Liu Q
and Kitsis RN: Fundamental mechanisms of regulated cell death and
implications for heart disease. Physiol Rev. 99:1765–1817. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sheng SY, Li JM, Hu XY and Wang Y:
Regulated cell death pathways in cardiomyopathy. Acta Pharmacol
Sin. 44:1521–1535. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jarocki M, Turek K, Saczko J, Tarek M and
Kulbacka J: Lipids associated with autophagy: Mechanisms and
therapeutic targets. Cell Death Discov. 10:4602024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Iba T, Helms J, Maier CL, Ferrer R and
Levy JH: Autophagy and autophagic cell death in sepsis: Friend or
foe? J Intensive Care. 12:412024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li J, Teng D, Jia W, Gong L, Dong H, Wang
C, Zhang L, Xu B, Wang W, Zhong L, et al: PLD2 deletion ameliorates
sepsis-induced cardiomyopathy by suppressing cardiomyocyte
pyroptosis via the NLRP3/caspase 1/GSDMD pathway. Inflamm Res.
73:1033–1046. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu X, Li Y, Zhang S and Zhou X:
Ferroptosis as a novel therapeutic target for cardiovascular
disease. Theranostics. 11:3052–3059. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang Z, Liu Y, Li Z, Feng S, Lin S, Ge Z,
Fan Y, Wang Y, Wang X and Mao J: Coronary microvascular dysfunction
and cardiovascular disease: Pathogenesis, associations and
treatment strategies. Biomed Pharmacother. 164:1150112023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Piamsiri C, Fefelova N, Pamarthi SH,
Gwathmey JK, Chattipakorn SC, Chattipakorn N and Xie LH: Potential
roles of IP3 receptors and calcium in programmed cell death and
implications in cardiovascular diseases. Biomolecules. 14:13342024.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang J, Zhang R, Jiang X, Lv J, Li Y, Ye
H, Liu W, Wang G, Zhang C, Zheng N, et al: Toll-like receptor
4-induced ryanodine receptor 2 oxidation and sarcoplasmic reticulum
Ca2+ leakage promote cardiac contractile dysfunction in
sepsis. J Biol Chem. 293:794–807. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Carrara M, Ferrario M, Bollen Pinto B and
Herpain A: The autonomic nervous system in septic shock and its
role as a future therapeutic target: A narrative review. Ann
Intensive Care. 11:802021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Z, Zhang D, Lin Q and Cui X:
Therapeutically fine-tuning autonomic nervous system to treat
sepsis: A new perspective on the immunomodulatory effects of
acupuncture. J Inflamm Res. 17:4373–4387. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu S and Chong W: Roles of LncRNAs in
regulating mitochondrial dysfunction in septic cardiomyopathy.
Front Immunol. 12:8020852021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sun S, Shen J, Jiang J, Wang F and Min J:
Targeting ferroptosis opens new avenues for the development of
novel therapeutics. Signal Transduct Target Ther. 8:3722023.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao
N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell
Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen X, Yu C, Kang R, Kroemer G and Tang
D: Cellular degradation systems in ferroptosis. Cell Death Differ.
28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Su Z, Liu Y, Wang L and Gu W: Regulation
of SLC7A11 as an unconventional checkpoint in tumorigenesis through
ferroptosis. Genes Dis. 12:1012542024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen J, Ma B, Yang Y, Wang B, Hao J and
Zhou X: Disulfidptosis decoded: A journey through cell death
mysteries, regulatory networks, disease paradigms and future
directions. Biomark Res. 12:452024. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan
X and Wu C: Application of glutathione depletion in cancer therapy:
Enhanced ROS-based therapy, ferroptosis, and chemotherapy.
Biomaterials. 277:1211102021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang H, Guo M, Wei H and Chen Y: Targeting
p53 pathways: Mechanisms, structures, and advances in therapy.
Signal Transduct Target Ther. 8:922023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Song X, Zhu S, Chen P, Hou W, Wen Q, Liu
J, Xie Y, Liu J, Klionsky DJ, Kroemer G, et al: AMPK-mediated BECN1
phosphorylation promotes ferroptosis by directly blocking system
Xc− activity. Curr Biol. 28:2388–2399.e5.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ichihara G, Katsumata Y, Sugiura Y,
Matsuoka Y, Maeda R, Endo J, Anzai A, Shirakawa K, Moriyama H,
Kitakata H, et al: MRP1-dependent extracellular release of
glutathione induces cardiomyocyte ferroptosis after
ischemia-reperfusion. Circ Res. 133:861–876. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen C, Xie B, Li Z, Chen L, Chen Y, Zhou
J, Ju S, Zhou Y, Zhang X, Zhuo W, et al: Fascin enhances the
vulnerability of breast cancer to erastin-induced ferroptosis. Cell
Death Dis. 13:1502022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gan B: Mitochondrial regulation of
ferroptosis. J Cell Biol. 220:e2021050432021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu Y, Wan Y, Jiang Y, Zhang L and Cheng
W: GPX4: The hub of lipid oxidation, ferroptosis, disease and
treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu J, Tang D and Kang R: Targeting GPX4
in ferroptosis and cancer: Chemical strategies and challenges.
Trends Pharmacol Sci. 45:666–670. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tang Z, Li J, Peng L, Xu F, Tan Y, He X,
Zhu C, Zhang ZM, Zhang Z, Sun P, et al: Novel covalent probe
selectively targeting glutathione peroxidase 4 in vivo: Potential
applications in pancreatic cancer therapy. J Med Chem.
67:1872–1887. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Giustizieri M, Petrillo S, D'Amico J,
Torda C, Quatrana A, Vigevano F, Specchio N, Piemonte F and
Cherubini E: The ferroptosis inducer RSL3 triggers interictal
epileptiform activity in mice cortical neurons. Front Cell
Neurosci. 17:12137322023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen T, Leng J, Tan J, Zhao Y, Xie S, Zhao
S, Yan X, Zhu L, Luo J, Kong L and Yin Y: Discovery of novel potent
covalent glutathione peroxidase 4 inhibitors as highly selective
ferroptosis inducers for the treatment of triple-negative breast
cancer. J Med Chem. 66:10036–10059. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang Y, Swanda RV, Nie L, Liu X, Wang C,
Lee H, Lei G, Mao C, Koppula P, Cheng W, et al: mTORC1 couples
cyst(e)ine availability with GPX4 protein synthesis and ferroptosis
regulation. Nat Commun. 12:15892021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ru Q, Li Y, Chen L, Wu Y, Min J and Wang
F: Iron homeostasis and ferroptosis in human diseases: Mechanisms
and therapeutic prospects. Signal Transduct Target Ther. 9:2712024.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Grange C, Lux F, Brichart T, David L,
Couturier A, Leaf DE, Allaouchiche B and Tillement O: Iron as an
emerging therapeutic target in critically ill patients. Crit Care.
27:4752023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Stockwell BR: Ferroptosis turns 10:
Emerging mechanisms, physiological functions, and therapeutic
applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Roemhild K, von Maltzahn F, Weiskirchen R,
Knüchel R, von Stillfried S and Lammers T: Iron metabolism:
Pathophysiology and pharmacology. Trends Pharmacol Sci. 42:640–656.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Salnikow K: Role of iron in cancer. Semin
Cancer Biol. 76:189–194. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zou Y, Yang A, Chen B, Deng X, Xie J, Dai
D, Zhang J, Tang H, Wu T, Zhou Z, et al: crVDAC3 alleviates
ferroptosis by impeding HSPB1 ubiquitination and confers
trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug
Resist Updat. 77:1011262024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang F, Wang J, Shen Y, Li H, Rausch WD
and Huang X: Iron dyshomeostasis and ferroptosis: A new alzheimer's
disease hypothesis? Front Aging Neurosci. 14:8305692022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Brown CW, Amante JJ, Chhoy P, Elaimy AL,
Liu H, Zhu LJ, Baer CE, Dixon SJ and Mercurio AM: Prominin2 drives
ferroptosis resistance by stimulating iron export. Dev Cell.
51:575–586.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen F, Kang R, Tang D and Liu J:
Ferroptosis: Principles and significance in health and disease. J
Hematol Oncol. 17:412024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gasmi A, Bjørklund G, Mujawdiya PK,
Semenova Y, Piscopo S and Peana M: Coenzyme Q10 in aging
and disease. Crit Rev Food Sci Nutr. 64:3907–3919. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Doll S, Freitas FP, Shah R, Aldrovandi M,
da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius
E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis
suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Bersuker K, Hendricks JM, Li Z, Magtanong
L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al:
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit
ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Nakamura T, Hipp C, Santos Dias Mourão A,
Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E,
Lytton E, Emler D, et al: Phase separation of FSP1 promotes
ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Roh JL: Targeting ferroptosis suppressor
protein 1 in cancer therapy: Implications and perspectives, with
emphasis on head and neck cancer. Crit Rev Oncol Hematol.
202:1044402024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu Y, Lu S, Wu LL, Yang L, Yang L and
Wang J: The diversified role of mitochondria in ferroptosis in
cancer. Cell Death Dis. 14:5192023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee
H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated
ferroptosis defence is a targetable vulnerability in cancer.
Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mishima E, Nakamura T, Zheng J, Zhang W,
Mourão ASD, Sennhenn P and Conrad M: DHODH inhibitors sensitize to
ferroptosis by FSP1 inhibition. Nature. 619:E9–E18. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liang D, Feng Y, Zandkarimi F, Wang H,
Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR and Jiang X: Ferroptosis
surveillance independent of GPX4 and differentially regulated by
sex hormones. Cell. 186:2748–2764.e22. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
No authors listed. Sex hormone signaling
suppresses ferroptosis via phospholipid remodeling. Cancer Discov.
13:17592023. View Article : Google Scholar
|
|
96
|
Nakamura T and Conrad M: Exploiting
ferroptosis vulnerabilities in cancer. Nat Cell Biol. 26:1407–1419.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhang W, Dai J, Hou G, Liu H, Zheng S,
Wang X, Lin Q, Zhang Y, Lu M, Gong Y, et al: SMURF2 predisposes
cancer cell toward ferroptosis in GPX4-independent manners by
promoting GSTP1 degradation. Mol Cell. 83:4352–4369.e8. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Micangeli G, Menghi M, Profeta G, Tarani
F, Mariani A, Petrella C, Barbato C, Ferraguti G, Ceccanti M,
Tarani L and Fiore M: The impact of oxidative stress on pediatrics
syndromes. Antioxidants (Basel). 11:19832022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Fang X, Ardehali H, Min J and Wang F: The
molecular and metabolic landscape of iron and ferroptosis in
cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Cheng X, Yu C, Yang X, Wang F and Min J: A
panoramic view of ferroptosis in cardiovascular disease. Kidney Dis
(Basel). 9:173–186. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu G, Xie X, Liao W, Chen S, Zhong R, Qin
J, He P and Xie J: Ferroptosis in cardiovascular disease. Biomed
Pharmacother. 170:1160572024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fang W, Xie S and Deng W: Ferroptosis
mechanisms and regulations in cardiovascular diseases in the past,
present, and future. Cell Biol Toxicol. 40:172024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR,
Deng Y, Luo GQ, Ding S, Li N and Geng Q: Mitochondrial quality
control in human health and disease. Mil Med Res.
11:322024.PubMed/NCBI
|
|
104
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z,
Xiang Y, Ying X, Sun J, Huang Q and Ai K: Revitalizing ancient
mitochondria with nano-strategies: Mitochondria-remedying nanodrugs
concentrate on disease control. Adv Mater. 36:e23082392024.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Conrad M and Proneth B: Broken hearts:
Iron overload, ferroptosis and cardiomyopathy. Cell Res.
29:263–264. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liu C, Zou Q, Tang H, Liu J, Zhang S, Fan
C, Zhang J, Liu R, Liu Y, Liu R, et al: Melanin nanoparticles
alleviate sepsis-induced myocardial injury by suppressing
ferroptosis and inflammation. Bioact Mater. 24:313–321.
2022.PubMed/NCBI
|
|
107
|
Liu R, Li F, Hao S, Hou D, Zeng X, Huang
H, Sethi G, Guo J and Duan C: Low-dose olaparib improves septic
cardiac function by reducing ferroptosis via accelerated mitophagy
flux. Pharmacol Res. 200:1070562024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Dan Z, Shi X, Shu C, Zhu R, Wang Y and Zhu
H: 4-amino-2-trifluoromethyl-phenyl retinate alleviates
lipopolysaccharide-induced acute myocardial injury through
activation of the KLF4/p62 axis. Cell Signal. 114:1110012024.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kanwar P, Samtani H, Sanyal SK, Srivastava
AK, Suprasanna P and Pandey GK: VDAC and its interacting partners
in plant and animal systems: An overview. Crit Rev Biotechnol.
40:715–732. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
She H, Tan L, Du Y, Zhou Y, Guo N, Zhang
J, Du Y, Wang Y, Wu Z, Ma C, et al: VDAC2 malonylation participates
in sepsis-induced myocardial dysfunction via mitochondrial-related
ferroptosis. Int J Biol Sci. 19:3143–3158. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yu H, Liu J, Bu X, Ma Z, Yao Y, Li J,
Zhang T, Song W, Xiao X, Sun Y, et al: Targeting METTL3 reprograms
the tumor microenvironment to improve cancer immunotherapy. Cell
Chem Biol. 31:776–791.e7. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Shen H, Xie K, Tian Y and Wang X:
N6-methyladenosine writer METTL3 accelerates the sepsis-induced
myocardial injury by regulating m6A-dependent ferroptosis.
Apoptosis. 28:514–524. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Cao G, Zeng Y, Zhao Y, Lin L, Luo X, Guo
L, Zhang Y and Cheng Q: H2S regulation of ferroptosis attenuates
sepsis-induced cardiomyopathy. Mol Med Rep. 26:3352022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Guo L, Li P, Wang Y, Wang J, Lei J, Zhao
J, Wu X, He W, Jia J, Miao J, et al: Yiqifumai injection
ameliorated sepsis-induced cardiomyopathy by inhibition of
ferroptosis via XCT/GPX4 axis. Shock. 61:638–645. 2024.PubMed/NCBI
|
|
115
|
Jiang L, Kon N, Li T, Wang SJ, Su T,
Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated
activity during tumour suppression. Nature. 520:57–62. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mukherjee R, Tetri LH, Li SJ, Fajardo G,
Ostberg NP, Tsegay KB, Gera K, Cornell TT, Bernstein D,
Mochly-Rosen D and Haileselassie B: Drp1/p53 interaction mediates
p53 mitochondrial localization and dysfunction in septic
cardiomyopathy. J Mol Cell Cardiol. 177:28–37. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Gao N, Tang AL, Liu XY, Chen J and Zhang
GQ: p53-dependent ferroptosis pathways in sepsis. Int
Immunopharmacol. 118:1100832023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Lin X, Zhao X, Chen Q, Wang X, Wu Y and
Zhao H: Quercetin ameliorates ferroptosis of rat cardiomyocytes via
activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate
sepsis-induced cardiomyopathy. Int J Mol Med. 52:1162023.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Qin S, Ren Y, Feng B, Wang X, Liu J, Zheng
J, Li K, Chen M, Chen T, Mei H and Fu X: ANXA1sp protects against
sepsis-induced myocardial injury by inhibiting ferroptosis-induced
cardiomyocyte death via SIRT3-mediated p53 deacetylation. Mediators
Inflamm. 2023:66389292023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Gao M, Monian P, Pan Q, Zhang W, Xiang J
and Jiang X: Ferroptosis is an autophagic cell death process. Cell
Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Mishima E and Conrad M: Nutritional and
metabolic control of ferroptosis. Annu Rev Nutr. 42:275–309. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhu M, Peng L, Huo S, Peng D, Gou J, Shi
W, Tao J, Jiang T, Jiang Y, Wang Q, et al: STAT3 signaling promotes
cardiac injury by upregulating NCOA4-mediated ferritinophagy and
ferroptosis in high-fat-diet fed mice. Free Radic Biol Med.
201:111–125. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang Y, Ding H, Zheng Y, Wei X, Yang X,
Wei H, Tian Y, Sun X, Wei W, Ma J, et al: Alleviated NCOA4-mediated
ferritinophagy protected RA FLSs from ferroptosis in
lipopolysaccharide-induced inflammation under hypoxia. Inflamm Res.
73:363–379. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C,
Wu H, Deng W, Shen D and Tang Q: Ferritinophagy-mediated
ferroptosis is involved in sepsis-induced cardiac injury. Free
Radic Biol Med. 160:303–318. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Babaei-Abraki S, Karamali F and
Nasr-Esfahani MH: Ferroptosis: The functions of Nrf2 in human
embryonic stem cells. Cell Signal. 106:1106542023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Chang LC, Chiang SK, Chen SE, Yu YL, Chou
RH and Chang WC: Heme oxygenase-1 mediates BAY 11-7085 induced
ferroptosis. Cancer Lett. 416:124–137. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang
CF, Li Y and Zhang Z: Dexmedetomidine alleviated sepsis-induced
myocardial ferroptosis and septic heart injury. Mol Med Rep.
22:175–184. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Pietrangelo A: Ferroportin disease:
Pathogenesis, diagnosis and treatment. Haematologica.
102:1972–1984. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wang J, Guan P, Chen Y, Xu M, Wang N and
Ji E: Cyclovirobuxine D pretreatment ameliorates septic heart
injury through mitigation of ferroptosis. Exp Ther Med. 26:4072023.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Kong C, Ni X, Wang Y, Zhang A, Zhang Y,
Lin F, Li S, Lv Y, Zhu J, Yao X, et al: ICA69 aggravates
ferroptosis causing septic cardiac dysfunction via STING
trafficking. Cell Death Discov. 8:1872022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Gu Q, Xu F, Orgil BO, Khuchua Z,
Munkhsaikhan U, Johnson JN, Alberson NR, Pierre JF, Black DD, Dong
D, et al: Systems genetics analysis defines importance of
TMEM43/LUMA for cardiac- and metabolic-related pathways. Physiol
Genomics. 54:22–35. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Chen Z, Cao Z, Gui F, Zhang M, Wu X, Peng
H, Yu B, Li W, Ai F and Zhang J: TMEM43 protects against
sepsis-induced cardiac injury via inhibiting ferroptosis in mice.
Cells. 11:29922022. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Deng W, Ren G, Luo J, Gao S, Huang W, Liu
W and Ye S: TRPM7 mediates endoplasmic reticulum stress and
ferroptosis in sepsis-induced myocardial injury. J Bioenerg
Biomembr. 55:207–217. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L,
Chen S, Si J, Liu Y, Sha D, Xu B and Ni J: Ceria nanozyme
coordination with curcumin for treatment of sepsis-induced cardiac
injury by inhibiting ferroptosis and inflammation. J Adv Res.
63:159–170. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Jiao Y, Zhang Q, Zhang J, Zha Y, Wang J,
Li Y and Zhang S: Platelet-rich plasma ameliorates
lipopolysaccharide-induced cardiac injury by inflammation and
ferroptosis regulation. Front Pharmacol. 13:10266412022. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zhou B, Zhang J, Chen Y, Liu Y, Tang X,
Xia P, Yu P and Yu S: Puerarin protects against sepsis-induced
myocardial injury through AMPK-mediated ferroptosis signaling.
Aging (Albany NY). 14:3617–3632. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Xiao Y, Yu Y, Hu L, Yang Y, Yuan Y, Zhang
W, Luo J and Yu L: Correction to: Matrine alleviates sepsis-induced
myocardial injury by inhibiting ferroptosis and apoptosis.
Inflammation. 47:15452024. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Fang X, Fu W, Zou B and Zhang F:
Tectorigenin relieved sepsis-induced myocardial ferroptosis by
inhibiting the expression of Smad3. Toxicol Res (Camb). 12:520–526.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Zeng Y, Cao G, Lin L, Zhang Y, Luo X, Ma
X, Aiyisake A and Cheng Q: Resveratrol attenuates sepsis-induced
cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2
pathway. J Invest Surg. 36:21575212023. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Wang X, Simayi A, Fu J, Zhao X and Xu G:
Resveratrol mediates the miR-149/HMGB1 axis and regulates the
ferroptosis pathway to protect myocardium in endotoxemia mice. Am J
Physiol Endocrinol Metab. 323:E21–E32. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Gao J, Luo T and Wang J: Gene
interfered-ferroptosis therapy for cancers. Nat Commun.
12:53112021. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Vinik Y, Maimon A, Dubey V, Raj H,
Abramovitch I, Malitsky S, Itkin M, Ma'ayan A, Westermann F,
Gottlieb E, et al: Programming a ferroptosis-to-apoptosis
transition landscape revealed ferroptosis biomarkers and repressors
for cancer therapy. Adv Sci (Weinh). 11:e23072632024. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Huang Y, Li L, Li Y, Lu N, Qin H, Wang R,
Li W, Cheng Z, Li Z, Kang P, et al: Knockdown of LncRNA Lcn2-204
alleviates sepsis-induced myocardial injury by regulation of iron
overload and ferroptosis. J Mol Cell Cardiol. 192:79–93. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Song J, Ren K, Zhang D, Lv X, Sun L, Deng
Y and Zhu H: A novel signature combing cuproptosis- and
ferroptosis-related genes in sepsis-induced cardiomyopathy. Front
Genet. 14:11707372023. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu
QR, Liu JC, Lai SQ and Huang H: Exploring dysregulated
ferroptosis-related genes in septic myocardial injury based on
human heart transcriptomes: Evidence and new insights. J Inflamm
Res. 16:995–1015. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Lin H, Ji F, Lin KQ, Zhu YT, Yang W, Zhang
LH, Zhao JG and Pei YH: LPS-aggravated ferroptosis via disrupting
circadian rhythm by Bmal1/AKT/p53 in sepsis-induced myocardial
injury. Inflammation. 46:1133–1143. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Xu Y and Bu G: Identification of two novel
ferroptosis-associated targets in sepsis-induced cardiac injury:
Hmox1 and Slc7a11. Front Cardiovasc Med. 10:11859242023. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Lu SM, Yang B, Tan ZB, Wang HJ, Xie JD,
Xie MT, Jiang WH, Huang JZ, Li J, Zhang L, et al: TaoHe ChengQi
decoction ameliorates sepsis-induced cardiac dysfunction through
anti-ferroptosis via the Nrf2 pathway. Phytomedicine.
129:1555972024. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Lu JS, Wang JH, Han K and Li N: Nicorandil
regulates ferroptosis and mitigates septic cardiomyopathy via
TLR4/SLC7A11 signaling pathway. Inflammation. 47:975–988. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Singh D, Singh R and Akindele AJ:
Therapeutic potential of nicorandil beyond anti-anginal drug: A
review on current and future perspectives. Heliyon. 10:e289222024.
View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Zeng T, Zhou Y, Yu Y, Wang JW, Wu Y, Wang
X, Zhu L, Zhou LM and Wan LH: rmMANF prevents sepsis-associated
lung injury via inhibiting endoplasmic reticulum stress-induced
ferroptosis in mice. Int Immunopharmacol. 114:1096082023.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Jiang W, Ren J, Zhou H, He R, Li D, Xiong
R, He Z and Cheng D: TMEM16A deficiency in alveolar type 2
epithelial cells protected against endoplasmic reticulum
stress-induced ferroptosis during acute lung injury. Int
Immunopharmacol. 125:1112082023. View Article : Google Scholar : PubMed/NCBI
|