|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Patel VL, Busch EL, Friebel TM, Cronin A,
Leslie G, McGuffog L, Adlard J, Agata S, Agnarsson BA, Ahmed M, et
al: Association of genomic domains in BRCA1 and BRCA2 with prostate
cancer risk and aggressiveness. Cancer Res. 80:624–638. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ziglioli F, Patera A, Isgrò G, Campobasso
D, Guarino G and Maestroni U: Impact of modifiable lifestyle risk
factors for prostate cancer prevention: A review of the literature.
Front Oncol. 13:12037912023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Varaprasad GL, Gupta VK, Prasad K, Kim E,
Tej MB, Mohanty P, Verma HK, Raju GSR, Bhaskar L and Huh YS: Recent
advances and future perspectives in the therapeutics of prostate
cancer. Exp Hematol Oncol. 12:802023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wasim S, Lee SY and Kim J: Complexities of
prostate cancer. Int J Mol Sci. 23:142572022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Catalona WJ: Screening for prostate
cancer. Lancet. 343:14371994.PubMed/NCBI
|
|
7
|
Heijnsdijk EA, Wever EM, Auvinen A,
Hugosson J, Ciatto S, Nelen V, Kwiatkowski M, Villers A, Páez A,
Moss SM, et al: Quality-of-life effects of prostate-specific
antigen screening. N Engl J Med. 367:595–605. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ma Y, Liu Z, Yu W, Huang H, Wang Y and Niu
Y: Investigating high-risk factors, precise diagnosis, and
treatment of castration-resistant prostate cancer (CRPC). Comb Chem
High Throughput Screen. 27:2598–2608. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cai M, Song XL, Li XA, Chen M, Guo J, Yang
DH, Chen Z and Zhao SC: Current therapy and drug resistance in
metastatic castration-resistant prostate cancer. Drug Resist Updat.
68:1009622023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang N, Kandalai S, Zhou X, Hossain F and
Zheng Q: Applying multi-omics toward tumor microbiome research.
Imeta. 2:e732023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
He X, Liu X, Zuo F, Shi H and Jing J:
Artificial intelligence-based multi-omics analysis fuels cancer
precision medicine. Semin Cancer Biol. 88:187–200. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sato G, Shirai Y, Namba S, Edahiro R,
Sonehara K, Hata T, Uemura M, Biobank Japan Project, Matsuda K,
Doki Y, et al: Pan-cancer and cross-population genome-wide
association studies dissect shared genetic backgrounds underlying
carcinogenesis. Nat Commun. 14:36712023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Uo T, Sprenger CC and Plymate SR: Androgen
receptor signaling and metabolic and cellular plasticity during
progression to castration resistant prostate cancer. Front Oncol.
10:5806172020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Robinson D, Van Allen EM, Wu YM, Schultz
N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC,
Attard G, et al: Integrative clinical genomics of advanced prostate
cancer. Cell. 161:1215–1228. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chi KN, Barnicle A, Sibilla C, Lai Z,
Corcoran C, Barrett JC, Adelman CA, Qiu P, Easter A, Dearden S, et
al: Detection of BRCA1, BRCA2, and ATM alterations in matched tumor
tissue and circulating tumor DNA in patients with prostate cancer
screened in PROfound. Clin Cancer Res. 29:81–91. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wokołorczyk D, Kluźniak W, Stempa K, Rusak
B, Huzarski T, Gronwald J, Gliniewicz K, Kashyap A, Morawska S,
Dębniak T, et al: PALB2 mutations and prostate cancer risk and
survival. Br J Cancer. 125:569–575. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Karlsson Q, Brook MN, Dadaev T, Wakerell
S, Saunders EJ, Muir K, Neal DE, Giles GG, MacInnis RJ, Thibodeau
SN, et al: Rare germline variants in ATM predispose to prostate
cancer: A PRACTICAL consortium study. Eur Urol Oncol. 4:570–579.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Alorjani M, Aburub M, Al-Trad B, Hamad MA,
AbuAlarja M, Bashir SA, Al-Batayneh K and Zoubi MA: The prevalence
of CHEK1 and CHEK2 mutations in prostate cancer: A Retrospective
cohort study. Med Arch. 77:8–12. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sharma M, Yang Z and Miyamoto H: Loss of
DNA mismatch repair proteins in prostate cancer. Medicine
(Baltimore). 99:e201242020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rusak B, Kluźniak W, Wokołorczykv D,
Stempa K, Kashyap A, Gronwald J, Huzarski T, Dębniak T, Jakubowska
A, Masojć B, et al: Inherited NBN mutations and prostate cancer
risk and survival. Cancer Res Treat. 51:1180–1187. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Maxwell KN, Cheng HH, Powers J, Gulati R,
Ledet EM, Morrison C, Le A, Hausler R, Stopfer J, Hyman S, et al:
Inherited TP53 variants and risk of prostate cancer. Eur Urol.
81:243–250. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Imada EL, Sanchez DF, Dinalankara W,
Vidotto T, Ebot EM, Tyekucheva S, Franco GR, Mucci LA, Loda M,
Schaeffer EM, et al: Transcriptional landscape of PTEN loss in
primary prostate cancer. BMC Cancer. 21:8562021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Goldberg H, Spratt D, Chandrasekar T,
Klaassen Z, Wallis CJD, Santiago-Jimenez M, Fishbane N, Davicioni
E, Noorani R, Ahmad AE, et al: Clinical-genomic characterization
unveils more aggressive disease features in elderly prostate cancer
patients with low-grade disease. Eur Urol Focus. 7:797–806. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ikeda S, Elkin SK, Tomson BN, Carter JL
and Kurzrock R: Next-generation sequencing of prostate cancer:
Genomic and pathway alterations, potential actionability patterns,
and relative rate of use of clinical-grade testing. Cancer Biol
Ther. 20:219–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kalampokis N, Zabaftis C, Spinos T,
Karavitakis M, Leotsakos I, Katafigiotis I, van der Poel H, Grivas
N and Mitropoulos D: Review on the role of BRCA mutations in
genomic screening and risk stratification of prostate cancer. Curr
Oncol. 31:1162–1169. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
He Y, Xu W, Xiao YT, Huang H, Gu D and Ren
S: Targeting signaling pathways in prostate cancer: Mechanisms and
clinical trials. Signal Transduct Target Ther. 7:1982022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
de Bono J, Mateo J, Fizazi K, Saad F,
Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, et al:
Olaparib for metastatic castration-resistant prostate cancer. N
Engl J Med. 382:2091–2102. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kulda V, Topolcan O, Kucera R, Kripnerova
M, Srbecka K, Hora M, Hes O, Klecka J, Babuska V, Rousarova M, et
al: Prognostic significance of TMPRSS2-ERG fusion gene in prostate
cancer. Anticancer Res. 36:4787–4793. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Song C and Chen H: Predictive significance
of TMRPSS2-ERG fusion in prostate cancer: A meta-analysis. Cancer
Cell Int. 18:1772018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Álvarez-Garcia V, Tawil Y, Wise HM and
Leslie NR: Mechanisms of PTEN loss in cancer: It's all about
diversity. Semin Cancer Biol. 59:66–79. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
LaTulippe E, Satagopan J, Smith A, Scher
H, Scardino P, Reuter V and Gerald WL: Comprehensive gene
expression analysis of prostate cancer reveals distinct
transcriptional programs associated with metastatic disease. Cancer
Res. 62:4499–4506. 2002.PubMed/NCBI
|
|
32
|
Itkonen HM, Urbanucci A, Martin SE, Khan
A, Mathelier A, Thiede B, Walker S and Mills IG: High OGT activity
is essential for MYC-driven proliferation of prostate cancer cells.
Theranostics. 9:2183–2197. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Prensner JR, Chen W, Han S, Iyer MK, Cao
Q, Kothari V, Evans JR, Knudsen KE, Paulsen MT, Ljungman M, et al:
The long non-coding RNA PCAT-1 promotes prostate cancer cell
proliferation through cMyc. Neoplasia. 16:900–908. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yang Y, Lv G, Xiu R, Yang H, Wang W, Yu P,
Zhang J, Ye L, Wang H and Tian J: Novel selective agents for the
degradation of AR/AR-V7 to treat advanced prostate cancer. Eur J
Med Chem. 271:1164002024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
de Wet L, Williams A, Gillard M, Kregel S,
Lamperis S, Gutgesell LC, Vellky JE, Brown R, Conger K, Paner GP,
et al: SOX2 mediates metabolic reprogramming of prostate cancer
cells. Oncogene. 41:1190–1202. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yi Q, Han X, Yu HG, Chen HY, Qiu D, Su J,
Lin R, Batist G and Wu JH: SC912 inhibits AR-V7 activity in
castration-resistant prostate cancer by targeting the androgen
receptor N-terminal domain. Oncogene. 43:1522–1533. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Verma P, Shukla N, Kumari S, Ansari MS,
Gautam NK and Patel GK: Cancer stem cell in prostate cancer
progression, metastasis and therapy resistance. Biochim Biophys
Acta Rev Cancer. 1878:1888872023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Grimm D, Bauer J, Wise P, Krüger M,
Simonsen U, Wehland M, Infanger M and Corydon TJ: The role of SOX
family members in solid tumours and metastasis. Semin Cancer Biol.
67((Pt 1)): 122–153. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fu Q, Wang F, Yang J, Sun W, Hu Z, Xu L,
Chu H, Wang X and Zhang W: Long non-coding RNA-PCGEM1 contributes
to prostate cancer progression by sponging microRNA miR-129-5p to
enhance chromatin licensing and DNA replication factor 1
expression. Bioengineered. 13:9411–9424. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mu X, Shen Z, Lin Y, Xiao J, Xia K, Xu C,
Chen B, Shi R, Zhu A, Sun X, et al: LncRNA-MALAT1 regulates cancer
glucose metabolism in prostate cancer via MYBL2/mTOR axis. Oxid Med
Cell Longev. 2022:86932592022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu X, Chen D, Yang F and Xing N: Quercetin
inhibits epithelial-to-mesenchymal transition (EMT) process and
promotes apoptosis in prostate cancer via downregulating lncRNA
MALAT1. Cancer Manag Res. 12:1741–1750. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zeng H, Huang Y, Liu Q, Liu H, Long T, Zhu
C and Wu X: MiR-145 suppresses the motility of prostate cancer
cells by targeting cadherin-2. Mol Cell Biochem. 476:3635–3646.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gui B, Hsieh CL, Kantoff PW, Kibel AS and
Jia L: Androgen receptor-mediated downregulation of microRNA-221
and −222 in castration-resistant prostate cancer. PLoS One.
12:e01841662017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ferreira M, Morais M, Medeiros R and
Teixeira AL: MicroRNAs as promising therapeutic agents against
prostate cancer resistant to castration-where are we now?
Pharmaceutics. 16:13472024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pungsrinont T, Kallenbach J and Baniahmad
A: Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and
resistance-mediating mechanism to therapy of prostate cancer. Int J
Mol Sci. 22:110882021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Eberlein C, Williamson SC, Hopcroft L, Ros
S, Moss JI, Kerr J, van Weerden WM, de Bruin EC, Dunn S, Willis B,
et al: Capivasertib combines with docetaxel to enhance anti-tumour
activity through inhibition of AKT-mediated survival mechanisms in
prostate cancer. Br J Cancer. 130:1377–1387. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Guan H, Liu C, Fang F, Huang Y, Tao T,
Ling Z, You Z, Han X, Chen S, Xu B and Chen M: MicroRNA-744
promotes prostate cancer progression through aberrantly activating
Wnt/β-catenin signaling. Oncotarget. 8:14693–14707. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang K, Wu R, Mei F, Zhou Y, He L, Liu Y,
Zhao X, You J, Liu B, Meng Q and Pei F: Phosphorylated
LASS2 inhibits prostate carcinogenesis via negative
regulation of Wnt/β-catenin signaling. J Cell Biochem. Apr
14–2021.(Epub ahead of print). View Article : Google Scholar
|
|
49
|
Marei HE, Hasan A, Pozzoli G and
Cenciarelli C: Cancer immunotherapy with immune checkpoint
inhibitors (ICIs): Potential, mechanisms of resistance, and
strategies for reinvigorating T cell responsiveness when resistance
is acquired. Cancer Cell Int. 23:642023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jia D, Zhao M, Zhang X, Cheng X, Wei Q,
Lou L, Zhao Y, Jin Q, Chen M and Zhang D: Transcriptomic analysis
reveals the critical role of chemokine signaling in the
anti-atherosclerosis effect of Xuefu Zhuyu decoction. J
Ethnopharmacol. 332:1182452024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Conley-LaComb MK, Saliganan A, Kandagatla
P, Chen YQ, Cher ML and Chinni SR: PTEN loss mediated Akt
activation promotes prostate tumor growth and metastasis via
CXCL12/CXCR4 signaling. Mol Cancer. 12:852013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hatano K and Nonomura N: Systemic
therapies for metastatic castration-resistant prostate cancer: An
updated review. World J Mens Health. 41:769–784. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
de Kouchkovsky I, Rao A, Carneiro BA,
Zhang L, Lewis C, Phone A, Small EJ, Friedlander T, Fong L, Paris
PL, et al: A phase Ib/II study of the CDK4/6 inhibitor ribociclib
in combination with docetaxel plus prednisone in metastatic
castration-resistant prostate cancer. Clin Cancer Res.
28:1531–1539. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Agarwal N, Castellano D, Alonso-Gordoa T,
Arranz Arija JA, Colomba E, Gravis G, Mourey L, Oudard S, Fléchon
A, González M, et al: A signal-finding study of abemaciclib in
heavily pretreated patients with metastatic castration-resistant
prostate cancer: Results from CYCLONE 1. Clin Cancer Res.
30:2377–2383. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tshering LF, Luo F, Russ S, Szenk M, Rubel
D, Tutuska K, Rail JG, Balázsi G, Shen MM and Talos F: Immune
mechanisms shape the clonal landscape during early progression of
prostate cancer. Dev Cell. 58:1071–1086.e8. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rebuzzi SE, Rescigno P, Catalano F,
Mollica V, Vogl UM, Marandino L, Massari F, Pereira Mestre R,
Zanardi E, Signori A, et al: Immune checkpoint inhibitors in
advanced prostate cancer: Current data and future perspectives.
Cancers (Basel). 14:12452022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shuken SR: An introduction to mass
spectrometry-based proteomics. J Proteome Res. 22:2151–2171. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Al-Daffaie FM, Al-Mudhafar SF, Alhomsi A,
Tarazi H, Almehdi AM, El-Huneidi W, Abu-Gharbieh E, Bustanji Y,
Alqudah MAY, Abuhelwa AY, et al: Metabolomics and proteomics in
prostate cancer research: Overview, analytical techniques, data
analysis, and recent clinical applications. Int J Mol Sci.
25:50712024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lee PY, Saraygord-Afshari N and Low TY:
The evolution of two-dimensional gel electrophoresis - from
proteomics to emerging alternative applications. J Chromatogr A.
1615:4607632020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi
X, Wu Z, Gao H, Cai X, Ruan G, et al: High-throughput proteomic
analysis of FFPE tissue samples facilitates tumor stratification.
Mol Oncol. 13:2305–2328. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Aurilio G, Cimadamore A, Mazzucchelli R,
Lopez-Beltran A, Verri E, Scarpelli M, Massari F, Cheng L, Santoni
M and Montironi R: Androgen receptor signaling pathway in prostate
cancer: from genetics to clinical applications. Cells. 9:26532020.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dai C, Dehm SM and Sharifi N: Targeting
the androgen signaling axis in prostate cancer. J Clin Oncol.
41:4267–4278. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Song Z, Zhou Q, Zhang JL, Ouyang J and
Zhang ZY: Marker Ki-67 is a potential biomarker for the diagnosis
and prognosis of prostate cancer based on two cohorts. World J Clin
Cases. 12:32–41. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xu L, Yin Y, Li Y, Chen X, Chang Y, Zhang
H, Liu J, Beasley J, McCaw P, Zhang H, et al: A glutaminase isoform
switch drives therapeutic resistance and disease progression of
prostate cancer. Proc Natl Acad Sci USA. 118:e20127481182021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jiang B, Zhang J, Zhao G, Liu M, Hu J, Lin
F, Wang J, Zhao W, Ma H, Zhang C, et al: Filamentous GLS1 promotes
ROS-induced apoptosis upon glutamine deprivation via insufficient
asparagine synthesis. Mol Cell. 82:1821–1835.e6. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tampio J, Montaser AB, Järvinen J,
Lehtonen M, Jalkanen AJ, Reinisalo M, Kokkola T, Terasaki T, Laakso
M, Rysä J, et al: The L-type amino acid transporter 1 enhances drug
delivery to the mouse pancreatic beta cell line (MIN6). Eur J Pharm
Sci. 203:1069372024. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chidley C, Darnell AM, Gaudio BL, Lien EC,
Barbeau AM, Vander Heiden MG and Sorger PK: A CRISPRi/a screening
platform to study cellular nutrient transport in diverse
microenvironments. Nat Cell Biol. 26:825–838. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xu M, Sakamoto S, Matsushima J, Kimura T,
Ueda T, Mizokami A, Kanai Y and Ichikawa T: Up-regulation of LAT1
during antiandrogen therapy contributes to progression in prostate
cancer cells. J Urol. 195:1588–1597. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Saito S, Ando K, Sakamoto S, Xu M, Yamada
Y, Rii J, Kanaoka S, Wei J, Zhao X, Pae S, et al: The LAT1
inhibitor JPH203 suppresses the growth of castration-resistant
prostate cancer through a CD24-mediated mechanism. Cancer Sci.
115:2461–2472. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hoter A, Rizk S and Naim HY: The multiple
roles and therapeutic potential of molecular chaperones in prostate
cancer. Cancers (Basel. 11:11942019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mori M, Hitora T, Nakamura O, Yamagami Y,
Horie R, Nishimura H and Yamamoto T: Hsp90 inhibitor induces
autophagy and apoptosis in osteosarcoma cells. Int J Oncol.
46:47–54. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rastogi S, Joshi A, Sato N, Lee S, Lee MJ,
Trepel JB and Neckers L: An update on the status of HSP90
inhibitors in cancer clinical trials. Cell Stress Chaperones.
29:519–539. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tausif YM, Thekkekkara D, Sai TE,
Jahagirdar V, Arjun HR, Meheronnisha HK, Babu A and Banerjee A:
Heat shock protein paradigms in cancer progression: future
therapeutic perspectives. 3 Biotech. 14:962024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Souza DS, Macheroni C, Pereira GJS,
Vicente CM and Porto CS: Molecular regulation of prostate cancer by
Galectin-3 and estrogen receptor. Front Endocrinol (Lausanne).
14:11241112023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Keizman D, Frenkel M, Peer A, Rosenbaum E,
Sarid D, Leibovitch I, Mano R, Yossepowitch O, Wolf I, Geva R, et
al: Modified citrus pectin treatment in non-metastatic
biochemically relapsed prostate cancer: Long-term results of a
prospective phase II study. Nutrients. 15:35332023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang F, Li Z, Feng X, Yang D and Lin M:
Advances in PSMA-targeted therapy for prostate cancer. Prostate
Cancer Prostatic Dis. 25:11–26. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yan Y, Zhuo H, Li T, Zhang J, Tan M and
Chen Y: Advancements in PSMA ligand radiolabeling for diagnosis and
treatment of prostate cancer: A systematic review. Front Oncol.
14:13736062024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bakht MK and Beltran H: Biological
determinants of PSMA expression, regulation and heterogeneity in
prostate cancer. Nat Rev Urol. 22:26–45. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fu P, Bu C, Cui B, Li N and Wu J:
Screening of differentially expressed genes and identification of
AMACR as a prognostic marker in prostate cancer. Andrologia.
53:e140672021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Carswell BM, Woda BA, Wang X, Li C,
Dresser K and Jiang Z: Detection of prostate cancer by
alpha-methylacyl CoA racemase (P504S) in needle biopsy specimens
previously reported as negative for malignancy. Histopathology.
48:668–673. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Quail DF and Walsh DA: Revolutionizing
cancer research with spatial proteomics and visual intelligence.
Nat Methods. 21:2216–2219. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Osmulski PA, Cunsolo A, Chen M, Qian Y,
Lin CL, Hung CN, Mahalingam D, Kirma NB, Chen CL, Taverna JA, et
al: Contacts with macrophages promote an aggressive nanomechanical
phenotype of circulating tumor cells in prostate cancer. Cancer
Res. 81:4110–4123. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hsieh WC, Budiarto BR, Wang YF, Lin CY,
Gwo MC, So DK, Tzeng YS and Chen SY: Spatial multi-omics analyses
of the tumor immune microenvironment. J Biomed Sci. 29:962022.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kowalczyk T, Ciborowski M, Kisluk J,
Kretowski A and Barbas C: Mass spectrometry based proteomics and
metabolomics in personalized oncology. Biochim Biophys Acta Mol
Basis Dis. 1866:1656902020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhong AB, Muti IH, Eyles SJ, Vachet RW,
Sikora KN, Bobst CE, Calligaris D, Stopka SA, Agar JN, Wu CL, et
al: Multiplatform metabolomics studies of human cancers with NMR
and mass spectrometry imaging. Front Mol Biosci. 9:7852322022.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li R, Li L, Xu Y and Yang J: Machine
learning meets omics: Applications and perspectives. Brief
Bioinform. 23:bbab4602022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ritterson Lew C, Guin S and Theodorescu D:
Targeting glycogen metabolism in bladder cancer. Nat Rev Urol.
12:383–391. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chetta P, Sriram R and Zadra G: Lactate as
key metabolite in prostate cancer progression: What are the
clinical implications? Cancers (Basel). 15:34732023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gatenby RA and Gillies RJ: Why do cancers
have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen L, Xu YX, Wang YS and Zhou JL: Lipid
metabolism, amino acid metabolism, and prostate cancer: A crucial
metabolic journey. Asian J Androl. 26:123–134. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zeković M, Bumbaširević U, Živković M and
Pejčić T: Alteration of lipid metabolism in prostate cancer:
Multifaceted oncologic implications. Int J Mol Sci. 24:13912023.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Škara L, Huđek Turković A, Pezelj I,
Vrtarić A, Sinčić N, Krušlin B and Ulamec M: Prostate cancer-focus
on cholesterol. Cancers (Basel). 13:46962021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yun SJ, Yan C, Jeong P, Kang HW, Kim YH,
Kim EA, Lee OJ, Kim WT, Moon SK, Kim IY, et al: Comparison of mRNA,
protein, and urinary nucleic acid levels of S100A8 and S100A9
between prostate cancer and BPH. Ann Surg Oncol. 22:2439–2445.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Srihari S, Kwong R, Tran K, Simpson R,
Tattam P and Smith E: Metabolic deregulation in prostate cancer.
Mol Omics. 14:320–329. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Singh R and Mills IG: The interplay
between prostate cancer genomics, metabolism, and the epigenome:
Perspectives and future prospects. Front Oncol. 11:7043532021.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Penney KL, Tyekucheva S, Rosenthal J, El
Fandy H, Carelli R, Borgstein S, Zadra G, Fanelli GN, Stefanizzi L,
Giunchi F, et al: Metabolomics of prostate cancer gleason score in
tumor tissue and serum. Mol Cancer Res. 19:475–484. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Salciccia S, Capriotti AL, Laganà A, Fais
S, Logozzi M, De Berardinis E, Busetto GM, Di Pierro GB, Ricciuti
GP, Del Giudice F, et al: Biomarkers in prostate cancer diagnosis:
from current knowledge to the role of metabolomics and exosomes.
Int J Mol Sci. 22:43672021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bansal N, Kumar M, Sankhwar SN and Gupta
A: Evaluation of prostate cancer tissue metabolomics: Would clinics
utilise it for diagnosis? Expert Rev Mol Med. 25:e262023.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lima AR, Carvalho M, Aveiro SS, Melo T,
Domingues MR, Macedo-Silva C, Coimbra N, Jerónimo C, Henrique R,
Bastos ML, et al: Comprehensive metabolomics and lipidomics
profiling of prostate cancer tissue reveals metabolic
dysregulations associated with disease development. J Proteome Res.
21:727–739. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Sirocchi C, Bogliolo A and Montagna S:
Medical-informed machine learning: Integrating prior knowledge into
medical decision systems. BMC Med Inform Decis Mak. 24 (Suppl
4):S1862024. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yu X, Liu R, Gao W, Wang X and Zhang Y:
Single-cell omics traces the heterogeneity of prostate cancer cells
and the tumor microenvironment. Cell Mol Biol Lett. 28:382023.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Murphy N, Shah P, Shih A, Khalili H, Liew
A, Zhu X and Lee A: Single-cell sequencing in genitourinary
malignancies. Adv Exp Med Biol. 1255:153–164. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lu J, Sheng Y, Qian W, Pan M, Zhao X and
Ge Q: scRNA-seq data analysis method to improve analysis
performance. IET Nanobiotechnol. 17:246–256. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Song H, Weinstein HNW, Allegakoen P,
Wadsworth MH II, Xie J, Yang H, Castro EA, Lu KL, Stohr BA, Feng
FY, et al: Single-cell analysis of human primary prostate cancer
reveals the heterogeneity of tumor-associated epithelial cell
states. Nat Commun. 13:1412022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Feng DC, Zhu WZ, Wang J, Li DX, Shi X,
Xiong Q, You J, Han P, Qiu S, Wei Q and Yang L: The implications of
single-cell RNA-seq analysis in prostate cancer: unraveling tumor
heterogeneity, therapeutic implications and pathways towards
personalized therapy. Mil Med Res. 11:212024.PubMed/NCBI
|
|
106
|
Amirifar L, Besanjideh M, Nasiri R,
Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi
M, Hosseini V, et al: Droplet-based microfluidics in biomedical
applications. Biofabrication. 14:0220012022. View Article : Google Scholar
|
|
107
|
Xin S, Liu X, Li Z, Sun X, Wang R, Zhang
Z, Feng X, Jin L, Li W, Tang C, et al: ScRNA-seq revealed an
immunosuppression state and tumor microenvironment heterogeneity
related to lymph node metastasis in prostate cancer. Exp Hematol
Oncol. 12:492023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Peng G, Wang C, Wang H, Qu M, Dong K, Yu
Y, Jiang Y, Gan S and Gao X: Gankyrin-mediated interaction between
cancer cells and tumor-associated macrophages facilitates prostate
cancer progression and androgen deprivation therapy resistance.
Oncoimmunology. 12:21734222023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet
K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke
MG and Fenta MD: Comprehensive review of drug resistance in
mammalian cancer stem cells: Implications for cancer therapy.
Cancer Cell Int. 24:4062024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hu WY, Hu DP, Xie L, Nonn L, Lu R, Abern
M, Shioda T and Prins GS: Keratin profiling by single-cell
RNA-sequencing identifies human prostate stem cell lineage
hierarchy and cancer stem-like cells. Int J Mol Sci. 22:81092021.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Muller L, Fauvet F, Chassot C, Angileri F,
Coutant A, Dégletagne C, Tonon L, Saintigny P, Puisieux A, Morel
AP, et al: EMT-driven plasticity prospectively increases cell-cell
variability to promote therapeutic adaptation in breast cancer.
Cancer Cell Int. 25:322025. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wei G, Zhu H, Zhou Y, Pan Y, Yi B and Bai
Y: Single-cell sequencing revealed metabolic reprogramming and its
transcription factor regulatory network in prostate cancer. Transl
Oncol. 44:1019252024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Nguyen AD, Haines C, Price MJ, Dalton TE,
Baëta CD, Hockenberry HA and Goodwin CR: Single-cell RNA sequencing
comparison of the human metastatic prostate spine tumor
microenvironment. STAR Protoc. 5:1028052024. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang L, Lee M, Maslov AY, Montagna C,
Vijg J and Dong X: Analyzing somatic mutations by single-cell
whole-genome sequencing. Nat Protoc. 19:487–516. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zheng K, Hai Y, Xi Y, Zhang Y, Liu Z, Chen
W, Hu X, Zou X and Hao J: Integrative multi-omics analysis unveils
stemness-associated molecular subtypes in prostate cancer and
pan-cancer: Prognostic and therapeutic significance. J Transl Med.
21:7892023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Nevedomskaya E and Haendler B: From omics
to multi-omics approaches for in-depth analysis of the molecular
mechanisms of prostate cancer. Int J Mol Sci. 23:62812022.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ren S, Li J, Dorado J, Sierra A,
González-Díaz H, Duardo A and Shen B: From molecular mechanisms of
prostate cancer to translational applications: Based on multi-omics
fusion analysis and intelligent medicine. Health Inf Sci Syst.
12:62023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Zhu Q, Zhao X, Zhang Y, Li Y, Liu S, Han
J, Sun Z, Wang C, Deng D, Wang S, et al: Single cell multi-omics
reveal intra-cell-line heterogeneity across human cancer cell
lines. Nat Commun. 14:81702023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Nabavizadeh A, Barkovich MJ, Mian A, Ngo
V, Kazerooni AF and Villanueva-Meyer JE: Current state of pediatric
neuro-oncology imaging, challenges and future directions.
Neoplasia. 37:1008862023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Huang J, Mao L, Lei Q and Guo AY:
Bioinformatics tools and resources for cancer and application. Chin
Med J (Engl). 137:2052–2064. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chakraborty S, Sharma G, Karmakar S and
Banerjee S: Multi-OMICS approaches in cancer biology: New era in
cancer therapy. Biochim Biophys Acta Mol Basis Dis.
1870:1671202024. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhou Y, Xiao X, Dong L, Tang C, Xiao G and
Xu L: Cooperative integration of spatially resolved multi-omics
data with COSMOS. Nat Commun. 16:272025. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Mohr AE, Ortega-Santos CP, Whisner CM,
Klein-Seetharaman J and Jasbi P: Navigating challenges and
opportunities in multi-omics integration for personalized
healthcare. Biomedicines. 12:14962024. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Viana JN, Pilbeam C, Howard M, Scholz B,
Ge Z, Fisser C, Mitchell I, Raman S and Leach J: Maintaining
high-touch in high-tech digital health monitoring and multi-omics
prognostication: ethical, equity, and societal considerations in
precision health for palliative care. OMICS. 27:461–473. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ramos-Lopez O, Martinez JA and Milagro FA:
Holistic integration of omics tools for precision nutrition in
health and disease. Nutrients. 14:40742022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ahmed Z: Practicing precision medicine
with intelligently integrative clinical and multi-omics data
analysis. Hum Genomics. 14:352020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Messina C, Giunta EF, Signori A, Rebuzzi
SE, Banna GL, Maniam A, Buti S, Cattrini C, Fornarini G, Bauckneht
M, et al: Combining PARP inhibitors and androgen receptor
signalling inhibitors in metastatic prostate cancer: A quantitative
synthesis and meta-analysis. Eur Urol Oncol. 7:179–188. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Markowski MC, Sternberg CN, Wang H, Wang
T, Linville L, Marshall CH, Sullivan R, King S, Lotan TL and
Antonarakis ES: TRIUMPH: Phase II trial of rucaparib monotherapy in
patients with metastatic hormone-sensitive prostate cancer
harboring germline homologous recombination repair gene mutations.
Oncologist. 29:794–800. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Gasmi A, Roubaud G, Dariane C, Barret E,
Beauval JB, Brureau L, Créhange G, Fiard G, Fromont G, Gauthé M, et
al: Overview of the development and use of akt inhibitors in
prostate cancer. J Clin Med. 11:1602021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Noori M, Azizi S, Mahjoubfar A, Abbasi
Varaki F, Fayyaz F, Mousavian AH, Bashash D, Kardoust Parizi M and
Kasaeian A: Efficacy and safety of immune checkpoint inhibitors for
patients with prostate cancer: A systematic review and
meta-analysis. Front Immunol. 14:11810512023. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wei Z, Han D, Zhang C, Wang S, Liu J, Chao
F, Song Z and Chen G: Deep learning-based multi-omics integration
robustly predicts relapse in prostate cancer. Front Oncol.
12:8934242022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Sinha A, Huang V, Livingstone J, Wang J,
Fox NS, Kurganovs N, Ignatchenko V, Fritsch K, Donmez N, Heisler
LE, et al: The proteogenomic landscape of curable prostate cancer.
Cancer Cell. 35:414–427.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Ozaki Y, Broughton P, Abdollahi H, Valafar
H and Blenda AV: Integrating omics data and AI for cancer diagnosis
and prognosis. Cancers (Basel). 16:24482024. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Baydoun A, Jia AY, Zaorsky NG, Kashani R,
Rao S, Shoag JE, Vince RA Jr, Bittencourt LK, Zuhour R, Price AT,
et al: Artificial intelligence applications in prostate cancer.
Prostate Cancer Prostatic Dis. 27:37–45. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Bian X, Wang W, Abudurexiti M, Zhang X, Ma
W, Shi G, Du L, Xu M, Wang X, Tan C, et al: Integration analysis of
single-cell multi-omics reveals prostate cancer heterogeneity. Adv
Sci (Weinh). 11:e23057242024. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Fonseca NM, Maurice-Dror C, Herberts C, Tu
W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schönlau
E, et al: Prediction of plasma ctDNA fraction and prognostic
implications of liquid biopsy in advanced prostate cancer. Nat
Commun. 15:18282024. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Armstrong L, Willoughby CE and McKenna DJ:
The suppression of the epithelial to mesenchymal transition in
prostate cancer through the targeting of MYO6 Using MiR-145-5p. Int
J Mol Sci. 25:43012024. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Yu B, Zuo X and Zhao C: Efficacy of
abiraterone combined with prednisone in castration-resistant
prostate cancer and its impact on miR-221/222 expression. Am J
Cancer Res. 14:4708–4716. 2024. View Article : Google Scholar : PubMed/NCBI
|