Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2025 Volume 31 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 31 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review)

  • Authors:
    • Weitong Sun
    • Shize Ma
    • Dongdong Meng
    • Chaoxing Wang
    • Jinbo Zhang
  • View Affiliations / Copyright

    Affiliations: College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China, Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China
    Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 133
    |
    Published online on: March 19, 2025
       https://doi.org/10.3892/mmr.2025.13498
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The intestinal microbiota represents a diverse population that serves a key role in colorectal cancer (CRC) and its treatment outcomes. Advancements in sequencing have revealed notable shifts in microbial composition and diversity among individuals with CRC. Concurrently, animal models have elucidated the involvement of specific microbes such as Lactobacillus fragilis, Escherichia coli and Fusobacterium nucleatum in the progression of CRC. The present review aimed to highlight contributions of intestinal microbiota to the pathogenesis of CRC, the effects of traditional treatments on intestinal microbiota and the potential for microbiota modulation as a therapeutic strategy for CRC.
View Figures

Figure 1

Figure 2

View References

1 

Zhang C, Stampfl-Mattersberger M, Ruckser R and Sebesta C: Colorectal cancer. Wien Med Wochenschr. 173:216–220. 2023.(In German). View Article : Google Scholar : PubMed/NCBI

2 

Yu CY, Han JX, Zhang J, Jiang P, Shen C, Guo F, Tang J, Yan T, Tian X, Zhu X, et al: A 16q22.1 variant confers susceptibility to colorectal cancer as a distal regulator of ZFP90. Oncogene. 39:1347–1360. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Chaplin A, Rodriguez RM, Segura-Sampedro JJ, Ochogavía-Seguí A, Romaguera D and Barceló-Coblijn G: Insights behind the relationship between colorectal cancer and obesity: Is visceral adipose tissue the missing link. Int J Mol Sci. 23:131282022. View Article : Google Scholar : PubMed/NCBI

4 

Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T and Przybyłowicz KE: A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers (Basel). 13:20252021. View Article : Google Scholar : PubMed/NCBI

5 

Wang F, Sun N, Zeng H, Gao Y, Zhang N and Zhang W: Selenium deficiency leads to inflammation, autophagy, endoplasmic reticulum stress, apoptosis and contraction abnormalities via affecting intestinal flora in intestinal smooth muscle of mice. Front Immunol. 13:9476552022. View Article : Google Scholar : PubMed/NCBI

6 

Tang Y, Zhang X, Wang Y, Guo Y, Zhu P, Li G, Zhang J, Ma Q and Zhao L: Dietary ellagic acid ameliorated Clostridium perfringens-induced subclinical necrotic enteritis in broilers via regulating inflammation and cecal microbiota. J Anim Sci Biotechnol. 13:472022. View Article : Google Scholar : PubMed/NCBI

7 

Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N and Maleki-Kakelar H: The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci. 344:1225292024. View Article : Google Scholar : PubMed/NCBI

8 

Lu Y, Luo X, Yang D, Li Y, Gong T, Li B, Cheng J, Chen R, Guo X and Yuan W: Effects of probiotic supplementation on related side effects after chemoradiotherapy in cancer patients. Front Oncol. 12:10321452022. View Article : Google Scholar : PubMed/NCBI

9 

Lehouritis P, Stanton M, McCarthy FO, Jeavons M and Tangney M: Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J Control Release. 222:9–17. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Xiong H, Wang J, Chang Z, Hu H, Yuan Z, Zhu Y, Hu Z, Wang C, Liu Y, Wang Y, et al: Gut microbiota display alternative profiles in patients with early-onset colorectal cancer. Front Cell Infect Microbiol. 12:10369462022. View Article : Google Scholar : PubMed/NCBI

11 

Sánchez-Alcoholado L, Laborda-Illanes A, Otero A, Ordóñez R, González-González A, Plaza-Andrades I, Ramos-Molina B, Gómez-Millán J and Queipo-Ortuño MI: Relationships of gut microbiota composition, short-chain fatty acids and polyamines with the pathological response to neoadjuvant radiochemotherapy in colorectal cancer patients. Int J Mol Sci. 22:95492021. View Article : Google Scholar : PubMed/NCBI

12 

Bi D, Zhu Y, Gao Y, Li H, Zhu X, Wei R, Xie R, Cai C, Wei Q and Qin H: Profiling fusobacterium infection at high taxonomic resolution reveals lineage-specific correlations in colorectal cancer. Nat Commun. 13:33362022. View Article : Google Scholar : PubMed/NCBI

13 

Castro-Mejía JL, O'Ferrall S, Krych Ł, O'Mahony E, Namusoke H, Lanyero B, Kot W, Nabukeera-Barungi N, Michaelsen KF, Mølgaard C, et al: Restitution of gut microbiota in Ugandan children administered with probiotics (Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12) during treatment for severe acute malnutrition. Gut Microbes. 11:855–867. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Park YE and Kim JH: Revolutionizing gut health: exploring the role of gut microbiota and the potential of microbiome-based therapies in lower gastrointestinal diseases. Kosin Med J. 38:98–106. 2023. View Article : Google Scholar

15 

Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J and Furet JP: Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 6:e163932011. View Article : Google Scholar : PubMed/NCBI

16 

Fong W, Li Q and Yu J: Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene. 39:4925–4943. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Cheng Y, Ling Z and Li L: The intestinal microbiota and colorectal cancer. Front Immunol. 11:6150562020. View Article : Google Scholar : PubMed/NCBI

18 

Grigoryan H, Schiffman C, Gunter MJ, Naccarati A, Polidoro S, Dagnino S, Dudoit S, Vineis P and Rappaport SM: Cys34 adductomics links colorectal cancer with the gut microbiota and redox biology. Cancer Res. 79:6024–6031. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Ying HQ, Chen W, Xiong CF, Wang Y, Li XJ and Cheng XX: Quantification of fibrinogen-to-pre-albumin ratio provides an integrating parameter for differential diagnosis and risk stratification of early-stage colorectal cancer. Cancer Cell Int. 22:1372022. View Article : Google Scholar : PubMed/NCBI

20 

Song C, Duan F, Ju T, Qin Y, Zeng D, Shan S, Shi Y, Zhang Y and Lu W: Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota. Commun Biol. 5:6802022. View Article : Google Scholar : PubMed/NCBI

21 

Li R, Huang X, Yang L, Liang X, Huang W, Lai KP and Zhou L: Integrated analysis reveals the targets and mechanisms in immunosuppressive effect of mesalazine on ulcerative colitis. Front Nutr. 9:8676922022. View Article : Google Scholar : PubMed/NCBI

22 

Fan H, Hao X, Gao Y, Yang J, Liu A, Su Y and Xia Y: Nodosin exerts an anti-colorectal cancer effect by inhibiting proliferation and triggering complex cell death in vitro and in vivo. Front Pharmacol. 13:9432722022. View Article : Google Scholar : PubMed/NCBI

23 

Wan F, Zhong R, Wang M, Zhou Y, Chen Y, Yi B, Hou F, Liu L, Zhao Y, Chen L and Zhang H: Caffeic acid supplement alleviates colonic inflammation and oxidative stress potentially through improved gut microbiota community in mice. Front Microbiol. 12:7842112021. View Article : Google Scholar : PubMed/NCBI

24 

Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD and Guglietta S: Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer. 10:e0047172022. View Article : Google Scholar : PubMed/NCBI

25 

Leonard WJ and Spolski R: Interleukin-21: A modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol. 5:688–698. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Takahashi J, Yamamoto M, Yasukawa H, Nohara S, Nagata T, Shimozono K, Yanai T, Sasaki T, Okabe K, Shibata T, et al: Interleukin-22 directly activates myocardial STAT3 (Signal Transducer and Activator of Transcription-3) signaling pathway and prevents myocardial ischemia reperfusion injury. J Am Heart Assoc. 9:e0148142020. View Article : Google Scholar : PubMed/NCBI

27 

Xiao Z, Liu L, Pei X, Sun W, Jin Y, Yang ST and Wang M: A potential probiotic for diarrhea: Clostridium tyrobutyricum protects against LPS-induced epithelial dysfunction via IL-22 Produced By Th17 cells in the ileum. Front Immunol. 12:7582272021. View Article : Google Scholar : PubMed/NCBI

28 

Zhao Q, Cheng X, Guo J, Bi Y, Kuang L, Ren J, Zhong J, Pan L, Zhang X, Guo Y, et al: MLKL inhibits intestinal tumorigenesis by suppressing STAT3 signaling pathway. Int J Biol Sci. 17:869–881. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Xiaoyu P, Chao G, Lihua D and Pengyu C: Gut bacteria affect the tumoral immune milieu: Distorting the efficacy of immunotherapy or not? Gut Microbes. 11:691–705. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Karstens KF, Kempski J, Giannou AD, Pelczar P, Steglich B, Steurer S, Freiwald E, Woestemeier A, Konczalla L, Tachezy M, et al: Anti-inflammatory microenvironment of esophageal adenocarcinomas negatively impacts survival. Cancer Immunol Immunother. 6:1043–1056. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Liou CJ, Chen YL, Yu MC, Yeh KW, Shen SC and Huang WC: Sesamol alleviates airway hyperresponsiveness and oxidative stress in asthmatic mice. Antioxidants (Basel). 9:2952020. View Article : Google Scholar : PubMed/NCBI

32 

Wang H, Huang J, Ding Y, Zhou J, Gao G, Han H, Zhou J, Ke L, Rao P, Chen T and Zhang L: Nanoparticles isolated from porcine bone soup ameliorated dextran sulfate sodium-induced colitis and regulated gut microbiota in mice. Front Nutr. 9:8214042022. View Article : Google Scholar : PubMed/NCBI

33 

Wang K, Guo J, Chang X and Gui S: Painong-san extract alleviates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota, restoring intestinal barrier function and attenuating TLR4/NF-κB signaling cascades. J Pharm Biomed Anal. 209:1145292022. View Article : Google Scholar : PubMed/NCBI

34 

Bai J, Zhao J, Al-Ansi W, Wang J, Xue L, Liu J, Wang Y, Fan M, Qian H, Li Y and Wang L: Oat β-glucan alleviates DSS-induced colitis via regulating gut microbiota metabolism in mice. Food Funct. 12:8976–8993. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al: A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 15:1016–1022. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Tian L, Long F, Hao Y, Li B, Li Y, Tang Y, Li J, Zhao Q, Chen J and Liu M: A cancer associated fibroblasts-related six-gene panel for anti-PD-1 therapy in melanoma driven by weighted correlation network analysis and supervised machine learning. Front Med (Lausanne). 9:8803262022. View Article : Google Scholar : PubMed/NCBI

37 

Nyiramana MM, Cho SB, Kim EJ, Kim MJ, Ryu JH, Nam HJ, Kim NG, Park SH, Choi YJ, Kang SS, et al: Sea hare hydrolysate-induced reduction of human non-small cell lung cancer cell growth through regulation of macrophage polarization and non-apoptotic regulated cell death pathways. Cancers (Basel). 12:7262020. View Article : Google Scholar : PubMed/NCBI

38 

Dmitrieva-Posocco O, Dzutsev A, Posocco DF, Hou V, Yuan W, Thovarai V, Mufazalov IA, Gunzer M, Shilovskiy IP, Khaitov MR, et al: Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity. 50:166–180.e7. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Hahn YI, Saeidi S, Kim SJ, Park SY, Song NY, Zheng J, Kim DH, Lee HB, Han W, Noh DY, et al: STAT3 stabilizes IKKα protein through direct interaction in transformed and cancerous human breast epithelial cells. Cancers (Basel). 13:822020. View Article : Google Scholar : PubMed/NCBI

40 

Franz A, Coscia F, Shen C, Charaoui L, Mann M and Sander C: Molecular response to PARP1 inhibition in ovarian cancer cells as determined by mass spectrometry based proteomics. J Ovarian Res. 14:1402021. View Article : Google Scholar : PubMed/NCBI

41 

Pan Z, He Y, Zhu W, Xu T, Hu X and Huang P: A dynamic transcription factor signature along the colorectal adenoma-carcinoma sequence in patients with co-occurrent adenoma and carcinoma. Front Oncol. 11:5974472021. View Article : Google Scholar : PubMed/NCBI

42 

Icard P, Fournel L, Wu Z, Alifano M and Lincet H: Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 44:490–501. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Tian X, Wei W, Cao Y, Ao T, Huang F, Javed R, Wang X, Fan J, Zhang Y, Liu Y, et al: Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis. J Cell Mol Med. 26:693–708. 2022. View Article : Google Scholar : PubMed/NCBI

44 

Kim BR, Ha J, Kang E and Cho S: Regulation of signal transducer and activator of transcription 3 activation by dual-specificity phosphatase3. BMB Rep. 53:335–340. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Zhang M, Dai Z, Zhao X, Wang G and Lai R: Anticarin β inhibits human glioma progression by suppressing cancer stemness via STAT3. Front Oncol. 11:7156732021. View Article : Google Scholar : PubMed/NCBI

46 

Shen J, Zhang M, Zhang K, Qin Y, Liu M, Liang S, Chen D and and Peng M: Effect of Angelica polysaccharide on mouse myeloid-derived suppressor cells. Front Immunol. 13:9892302022. View Article : Google Scholar : PubMed/NCBI

47 

Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, Alshubramy MA, Abdel-Motaal M, Majrashi TA, Asem M, Nabil A, Eldehna WM and Sharaky M: Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors. J Enzyme Inhib Med Chem. 38:176–191. 2023. View Article : Google Scholar : PubMed/NCBI

48 

Yu J, Li S, Guo J, Xu Z, Zheng J and Sun X: Farnesoid X receptor antagonizes Wnt/β-catenin signaling in colorectal tumorigenesis. Cell Death Dis. 11:6402020. View Article : Google Scholar : PubMed/NCBI

49 

McPherson J, Hu C, Begum K, Wang W, Lancaster C, Gonzales-Luna AJ, Loveall C, Silverman MH, Alam MJ and Garey KW: Functional and metagenomic evaluation of ibezapolstat for early evaluation of anti-recurrence effects in clostridioides difficile infection. Antimicrob Agents Chemother. 66:e02244212022. View Article : Google Scholar : PubMed/NCBI

50 

Bernstein H, Bernstein C, Payne CM and Dvorak K: Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 15:3329–3340. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Wang X, Ye P, Fang L, Ge S, Huang F, Polverini PJ, Heng W, Zheng L, Hu Q, Yan F and Wang W: Active smoking induces aberrations in digestive tract microbiota of rats. Front Cell Infect Microbiol. 11:7372042021. View Article : Google Scholar : PubMed/NCBI

52 

Maarsingh JD, Łaniewski P and Herbst-Kralovetz MM: Immunometabolic and potential tumor-promoting changes in 3D cervical cell models infected with bacterial vaginosis-associated bacteria. Commun Biol. 5:7252022. View Article : Google Scholar : PubMed/NCBI

53 

Sánchez-Quintero MJ, Rodríguez-Díaz C, Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E and López-Gómez C: Role of mitochondria in inflammatory bowel diseases: A systematic review. Int J Mol Sci. 24:171242023. View Article : Google Scholar : PubMed/NCBI

54 

Huang D, Jing G and Zhu S: Regulation of mitochondrial respiration by hydrogen sulfide. Antioxidants (Basel). 12:16442023. View Article : Google Scholar : PubMed/NCBI

55 

Blachier F, Andriamihaja M, Larraufie P, Ahn E, Lan A and Kim E: Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am J Physiol Gastrointest Liver Physiol. 320:G125–G135. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Roudsari LC and West JL: Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev. 97:250–259. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Wang Z, Lan R, Xu Y, Zuo J, Han X, Phouthapane V, Luo Z and Miao J: Taurine alleviates streptococcus uberis-induced inflammation by activating autophagy in mammary epithelial cells. Front Immunol. 12:6311132021. View Article : Google Scholar : PubMed/NCBI

58 

Karpiński TM, Ożarowski M and Stasiewicz M: Carcinogenic microbiota and its role in colorectal cancer development. Semin Cancer Biol. 86:420–430. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Zhang S, Bian H, Li X, Wu H, Bi Q, Yan Y and Wang Y: Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis. Oncol Rep. 35:2825–2832. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Kelly D, Yang L and Pei Z: Gut microbiota, fusobacteria, and colorectal cancer. Diseases. 6:1092018. View Article : Google Scholar : PubMed/NCBI

61 

Kiziltan T, Baran A, Kankaynar M, Şenol O, Sulukan E, Yildirim S and Ceyhun SB: Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Arch Toxicol. 96:1089–1099. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Bulanda S and Janoszka B: Consumption of thermally processed meat containing carcinogenic compounds (Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines) versus a risk of some cancers in humans and the possibility of reducing their formation by natural food additives-a literature review. Int J Environ Res Public Health. 19:47812022. View Article : Google Scholar : PubMed/NCBI

63 

Liu R, Lin X, Li Z, Li Q and Bi K: Quantitative metabolomics for investigating the value of polyamines in the early diagnosis and therapy of colorectal cancer. Oncotarget. 9:4583–4592. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Meng X, Peng J, Xie X, Yu F, Wang W, Pan Q, Jin H, Huang X, Yu H, Li S, et al: Roles of lncRNA LVBU in regulating urea cycle/polyamine synthesis axis to promote colorectal carcinoma progression. Oncogene. 41:4231–4243. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Auvray F, Perrat A, Arimizu Y, Chagneau CV, Bossuet-Greif N, Massip C, Brugère H, Nougayrède JP, Hayashi T, Branchu P, et al: Insights into the acquisition of the pks island and production of colibactin in the Escherichia coli population. Microb Genom. 7:0005792021.PubMed/NCBI

66 

Chagneau CV, Payros D, Tang-Fichaux M, Auvray F, Nougayrède JP and Oswald E: The pks island: A bacterial swiss army knife? Colibactin: Beyond DNA damage and cancer. Trends Microbiol. 30:1146–1159. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Wami H, Wallenstein A, Sauer D, Stoll M, von Bünau R, Oswald E, Müller R and Dobrindt U: Insights into evolution and coexistence of the colibactin-and yersiniabactin secondary metabolite determinants in enterobacterial populations. Microb Genom. 7:0005772021.PubMed/NCBI

68 

Lopès A, Billard E, Casse AH, Villéger R, Veziant J, Roche G, Carrier G, Sauvanet P, Briat A, Pagès F, et al: Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int J Cancer. 146:3147–3159. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Salesse L, Lucas C, Hoang MHT, Sauvanet P, Rezard A, Rosenstiel P, Damon-Soubeyrand C, Barnich N, Godfraind C, Dalmasso G and Nguyen HTT: Colibactin-producing escherichia coli induce the formation of invasive carcinomas in a chronic inflammation-associated mouse model. Cancers (Basel). 13:20602021. View Article : Google Scholar : PubMed/NCBI

70 

Dahmus JD, Kotler DL, Kastenberg DM and Kistler CA: The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J Gastrointest Oncol. 9:769–777. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Oh H, Kim J, Park J, Choi Z, Hong J, Jeon BY, Ka H and Hong M: Structure-based molecular characterization of a putative aspartic proteinase from Bacteroides fragilis. Biochem Biophys Res Commun. 738:1505472024. View Article : Google Scholar : PubMed/NCBI

72 

Lee CG, Hwang S, Gwon SY, Park C, Jo M, Hong JE and Rhee KJ: Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the E-Cadherin/β-Catenin/NF-κB dependent pathway. Biomedicines. 10:8272022. View Article : Google Scholar : PubMed/NCBI

73 

Valguarnera E and Wardenburg JB: Good gone bad: One toxin away from disease for bacteroides fragilis. J Mol Biol. 432:765–785. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Ko SH, Jeon JI, Woo HA and Kim JM: Bacteroides fragilis enterotoxin upregulates heme oxygenase-1 in dendritic cells via reactive oxygen species-, mitogen-activated protein kinase-, and Nrf2-dependent pathway. World J Gastroenterol. 26:291–306. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Bao Y, Tang J, Qian Y, Sun T, Chen H, Chen Z, Sun D, Zhong M, Chen H, Hong J, et al: Long noncoding RNA BFAL1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal cancer via the RHEB/mTOR pathway. Cell Death Dis. 10:6752019. View Article : Google Scholar : PubMed/NCBI

76 

Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL and Casero RA Jr: Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 108:15354–15359. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, Chung L, Finard BB, Wu X, Fathi P, et al: The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10:421–433. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Knippel RJ, Drewes JL and Sears CL: The cancer microbiome: recent highlights and knowledge gaps. Cancer Discov. 11:2378–2395. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 491:254–258. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Zhang J, Wu S, Wang Q, Yuan Q, Li Y, Reboredo-Rodríguez P, Varela-López A, He Z, Wu F, Hu H and Liu X: Oxidative stress amelioration of novel peptides extracted from enzymatic hydrolysates of Chinese pecan cake. Int J Mol Sci. 23:120862022. View Article : Google Scholar : PubMed/NCBI

81 

Zhang L, Yang L, Luo Y, Dong L and Chen F: Acrylamide-induced hepatotoxicity through oxidative stress: mechanisms and interventions. Antioxid Redox Signal. 38:1122–1137. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Kong Y, Li M, Liang G, Linhai Y, Li S, Zhuang Y, Ruomin L, Xiumei C and Guiqin W: Effects of dietary curcumin inhibit deltamethrin-induced oxidative stress, inflammation and cell apoptosis in Channa argus via Nrf2 and NF-κB signaling pathways. Aquaculture. 540:7367442021. View Article : Google Scholar

83 

Luan C, Lu Z, Chen J, Chen M, Zhao R and Li X: Thalidomide alleviates apoptosis, oxidative damage and inflammation induced by pemphigus vulgaris IgG in HaCat cells and neonatal mice through MyD88. Drug Des Devel Ther. 17:2821–2839. 2023. View Article : Google Scholar : PubMed/NCBI

84 

Wu J, Li Q and Fu X: Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl Oncol. 12:846–851. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Dariya B, Aliya S, Merchant N, Alam A and Nagaraju GP: Colorectal cancer biology, diagnosis, and therapeutic approaches. Crit Rev Oncog. 25:71–94. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Wang Y, Su M, Chen Y, Huang X, Ruan L, Lv Q and Li L: Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne). 14:12342802023. View Article : Google Scholar : PubMed/NCBI

87 

Huang Z, Chen Y and Zhang Y: Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci. 45:842020. View Article : Google Scholar : PubMed/NCBI

88 

Lad SB, Upadhyay M, Thorat P, Nair D, Moseley GW, Srivastava S, Pradeepkumar PI and Kondabagil K: Biochemical reconstitution of the mimiviral base excision repair pathway. J Mol Biol. 435:1681882023. View Article : Google Scholar : PubMed/NCBI

89 

Triner D, Devenport SN, Ramakrishnan SK, Ma X, Frieler RA, Greenson JK, Inohara N, Nunez G, Colacino JA, Mortensen RM and Shah YM: Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice. Gastroenterology. 156:1467–1482. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Huang JR, Wang ST, Wei MN, Liu K, Fu JW, Xing ZH and Shi Z: Piperlongumine alleviates mouse colitis and colitis-associated colorectal cancer. Front Pharmacol. 11:5868852020. View Article : Google Scholar : PubMed/NCBI

91 

Wang CZ, Zhang CF, Luo Y, Yao H, Yu C, Chen L, Yuan J, Huang WH, Wan JY, Zeng J, et al: Baicalein, an enteric microbial metabolite, suppresses gut inflammation and cancer progression in ApcMin/+ mice. Clin Transl Oncol. 22:1013–1022. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Ahlawat S, Kumar P, Mohan H, Goyal S and Sharma KK: Inflammatory bowel disease: Tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol. 47:254–273. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Brasiel PGA, Dutra Luquetti SCP, Peluzio MDCG, Novaes RD and Gonçalves RV: Preclinical evidence of probiotics in colorectal carcinogenesis: A systematic review. Dig Dis Sci. 65:3197–3210. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Hor YY, Lew LC, Jaafar MH, Lau AS, Ong JS, Kato T, Nakanishi Y, Azzam G, Azlan A, Ohno H and Liong MT: Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacol Res. 146:1043122019. View Article : Google Scholar : PubMed/NCBI

95 

Dong Y, Zhu J, Zhang M, Ge S and Zhao L: Probiotic Lactobacillus salivarius Ren prevent dimethylhydrazine-induced colorectal cancer through protein kinase B inhibition. Appl Microbiol Biotechnol. 104:7377–7389. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Reis SK, Socca EAR, de Souza BR, Genaro SC, Durán N and Fávaro WJ: Effects of probiotic supplementation on chronic inflammatory process modulation in colorectal carcinogenesis. Tissue Cell. 87:1022932024. View Article : Google Scholar : PubMed/NCBI

97 

Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML and Santerre A: immunomodulatory effect of lactobacillus casei in a murine model of colon carcinogenesis. Probiotics Antimicrob Proteins. 12:1012–1024. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Agah S, Alizadeh AM, Mosav M, Ranji P, Khavari-Daneshvar H, Ghasemian F, Bahmani S and Tavassoli A: More protection of lactobacillus acidophilus than bifidobacterium bifidum probiotics on azoxymethane-induced mouse colon cancer. Probiotics Antimicrob Proteins. 11:857–864. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Samanta S: Potential impacts of prebiotics and probiotics on cancer prevention. Anticancer Agents Med Chem. 22:605–628. 2022. View Article : Google Scholar : PubMed/NCBI

100 

Abu-Ghazaleh N, Chua WJ and Gopalan V: Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol. 36:75–88. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Śliżewska K, Markowiak-Kopeć P and Śliżewska W: The role of probiotics in cancer prevention. Cancers (Basel). 13:202020. View Article : Google Scholar : PubMed/NCBI

102 

Yixia Y, Sripetchwandee J, Chattipakorn N and Chattipakorn SC: The alterations of microbiota and pathological conditions in the gut of patients with colorectal cancer undergoing chemotherapy. Anaerobe. 68:1023612021. View Article : Google Scholar : PubMed/NCBI

103 

Freedman JC, Li J, Mi E and McClane BA: Identification of an important orphan histidine kinase for the initiation of sporulation and enterotoxin production by clostridium perfringens type F strain SM101. mBio. 10:e02674–18. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z and Fu W: Progress in the study of colorectal cancer caused by altered gut microbiota after cholecystectomy. Front Endocrinol (Lausanne). 13:8159992022. View Article : Google Scholar : PubMed/NCBI

105 

Nowak A, Śliżewska K, Błasiak J and Libudzisz Z: The influence of Lactobacillus casei DN 114 001 on the activity of faecal enzymes and genotoxicity of faecal water in the presence of heterocyclic aromatic amines. Anaerobe. 30:129–136. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Verma A and Shukla G: Probiotics lactobacillus rhamnosus GG, lactobacillus acidophilus suppresses DMH-induced procarcinogenic fecal enzymes and preneoplastic aberrant crypt foci in early colon carcinogenesis in sprague dawley rats. Nutr Cancer. 65:84–91. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Zhu J, Zhu C, Ge S, Zhang M, Jiang L, Cui J and Ren F: L actobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1, 2-dimethylhydrazine-induced rat model. J Appl Microbiol. 117:208–216. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Mohania D, Kansal VK, Sagwal R, Batish VK, Grover S and Shah D: Anticarcinogenic effect of probiotic dahi and piroxicam on DMH-induced colorectal carcinogenesis in wistar rats. American J Cancer Ther Pharm. 1:8–24. 2013.

109 

Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, Hoops SL, Soraisham A, Vayalumkal J, Dersch-Mills D, et al: Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 30:696–711.e5. 2022. View Article : Google Scholar : PubMed/NCBI

110 

Drago L: Probiotics and colon cancer. Microorganisms. 7:662019. View Article : Google Scholar : PubMed/NCBI

111 

Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V and Namdar A: Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 234:17127–17143. 2019. View Article : Google Scholar : PubMed/NCBI

112 

Derebasi BN, Davran Bulut S, Aksoy Erden B, Sadeghian N, Taslimi P and Celebioglu HU: Effects of p-coumaric acid on probiotic properties of Lactobacillus acidophilus LA-5 and lacticaseibacillus rhamnosus GG. Arch Microbiol. 206:2232024. View Article : Google Scholar : PubMed/NCBI

113 

Dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL and Peluzio MD: Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res. 37:1–19. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Ho Do M, Seo YS and Park HY: Polysaccharides: Bowel health and gut microbiota. Crit Rev Food Sci Nutr. 61:1212–1224. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Roberfroid M: Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Crit Rev Food Sci Nutr. 33:103–148. 1993. View Article : Google Scholar : PubMed/NCBI

116 

Yeung CY, Chiang Chiau JS, Cheng ML, Chan WT, Chang SW, Chang YH, Jiang CB and Lee HC: Modulations of probiotics on gut microbiota in a 5-fluorouracil-induced mouse model of mucositis. J Gastroenterol Hepatol. 35:806–814. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B and Bromberg JS: Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes. 15:22911642023. View Article : Google Scholar : PubMed/NCBI

118 

Gyles CL: Shiga toxin-producing Escherichia coli: An overview. J Anim Sci. 85:E45–E62. 2007. View Article : Google Scholar : PubMed/NCBI

119 

Pearce SC, Weber GJ, van Sambeek DM, Soares JW, Racicot K and Breault DT: Intestinal enteroids recapitulate the effects of short-chain fatty acids on the intestinal epithelium. PLoS One. 15:e02302312020. View Article : Google Scholar : PubMed/NCBI

120 

Ji J and Yang H: Using probiotics as supplementation for Helicobacter pylori antibiotic therapy. Int J Mol Sci. 21:11362020. View Article : Google Scholar : PubMed/NCBI

121 

Fayol-Messaoudi D, Berger CN, Coconnier-Polter MH, Liévin-Le Moal V and Servin AL: pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against salmonella enterica serovar typhimurium. Appl Environ Microbiol. 71:6008–6013. 2005. View Article : Google Scholar : PubMed/NCBI

122 

Li Y, Yang S, Lun J, Gao J, Gao X, Gong Z, Wan Y, He X and Cao H: Inhibitory effects of the lactobacillus rhamnosus GG effector Protein HM0539 on inflammatory response through the TLR4/MyD88/NF-ĸB axis. Front Immunol. 11:5514492020. View Article : Google Scholar : PubMed/NCBI

123 

Paone P and Cani PD: Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut. 69:2232–2243. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Olli KE, Rapp C, O'Connell L, Collins CB, McNamee EN, Jensen O, Jedlicka P, Allison KC, Goldberg MS, Gerich ME, et al: Muc5ac expression protects the colonic barrier in experimental colitis. Inflamm Bowel Dis. 26:1353–1367. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Kufe DW: MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis. 41:1173–1183. 2020. View Article : Google Scholar : PubMed/NCBI

126 

Martens EC, Neumann M and Desai MS: Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 16:457–470. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N and Blanquet-Diot S: Experimental models to study intestinal microbes-mucus interactions in health and disease. FEMS Microbiol Rev. 43:457–489. 2019. View Article : Google Scholar : PubMed/NCBI

128 

Fang J, Wang H, Zhou Y, Zhang H, Zhou H and Zhang X: Slimy partners: The mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med. 53:772–787. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Ohland CL and MacNaughton WK: Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 298:G807–G819. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Ren C, Zhang Q, de Haan BJ, Faas MM, Zhang H and de Vos P: Protective effects of lactic acid bacteria on gut epithelial barrier dysfunction are toll like receptor 2 and protein kinase C dependent. Food Funct. 11:1230–1234. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Wan Z, Wang L, Chen Z, Ma X, Yang X, Zhang J and Jiang Z: In vitro evaluation of swine-derived Lactobacillus reuteri: Probiotic properties and effects on intestinal porcine epithelial cells challenged with enterotoxigenic Escherichia coli K88. J Microbiol Biotechnol. 26:1018–1025. 2016. View Article : Google Scholar : PubMed/NCBI

132 

Gu MJ, Song SK, Lee IK, Ko S, Han SE, Bae S, Ji SY, Park BC, Song KD, Lee HK, et al: Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. Vet Res. 47:252016. View Article : Google Scholar : PubMed/NCBI

133 

Yang F, Wang A, Zeng X, Hou C, Liu H and Qiao S: Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol. 15:322015. View Article : Google Scholar : PubMed/NCBI

134 

Kim SH, Jeung W, Choi ID, Jeong JW, Lee DE, Huh CS, Kim GB, Hong SS, Shim JJ, Lee JL, et al: Lactic acid bacteria improves Peyer's patch cell-mediated immunoglobulin A and tight-junction expression in a destructed gut microbial environment. J Microbiol Biotechnol. 26:1035–1045. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Zhao Q and Elson CO: Adaptive immune education by gut microbiota antigens. Immunology. 154:28–37. 2018. View Article : Google Scholar : PubMed/NCBI

136 

Koboziev I, Webb CR, Furr KL and Grisham MB: Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med. 68:122–133. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E and Perdigón G: Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab. 74:115–124. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Foo NP, Ou Yang H, Chiu HH, Chan HY, Liao CC, Yu CK and Wang YJ: Probiotics prevent the development of 1, 2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. J Agric Food Chem. 59:13337–13345. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Foey A, Habil N, Strachan A and Beal J: Lacticaseibacillus casei strain shirota modulates macrophage-intestinal epithelial cell co-culture barrier integrity, bacterial sensing and inflammatory cytokines. Microorganisms. 10:20872022. View Article : Google Scholar : PubMed/NCBI

140 

Wong WY, Chan BD, Sham TT, Lee MM, Chan CO, Chau CT, Mok DK, Kwan YW and Tai WC: Lactobacillus casei strain shirota ameliorates dextran sulfate sodium-induced colitis in mice by increasing taurine-conjugated bile acids and inhibiting NF-κB signaling via stabilization of IκBα. Front Nutr. 9:8168362022. View Article : Google Scholar : PubMed/NCBI

141 

Santiago-López L, Hernández-Mendoza A, Vallejo-Cordoba B, Mata-Haro V, Wall-Medrano A and González-Córdova AF: Milk fermented with lactobacillus fermentum ameliorates indomethacin-induced intestinal inflammation: An exploratory study. Nutrients. 11:16102019. View Article : Google Scholar : PubMed/NCBI

142 

Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E and Delfino DV: Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol. 198:1149302022. View Article : Google Scholar : PubMed/NCBI

143 

Fotiadis CI, Stoidis CN, Spyropoulos BG and Zografos ED: Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer. World J Gastroenterol. 14:6453–6457. 2008. View Article : Google Scholar : PubMed/NCBI

144 

Rossi M, Keshavarzian A and Bishehsari F: Nutraceuticals in colorectal cancer: A mechanistic approach. Eur J Pharmacol. 833:396–402. 2018. View Article : Google Scholar : PubMed/NCBI

145 

El-Deeb NM, Yassin AM, Al-Madboly LA and El-Hawiet A: A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb Cell Fact. 17:292018. View Article : Google Scholar : PubMed/NCBI

146 

Shi Y, Meng L, Zhang C, Zhang F and Fang Y: Extracellular vesicles of Lacticaseibacillus paracasei PC-H1 induce colorectal cancer cells apoptosis via PDK1/AKT/Bcl-2 signaling pathway. Microbiol Res. 255:1269212021. View Article : Google Scholar : PubMed/NCBI

147 

Jin K, Qian C, Lin J and Liu B: Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front Oncol. 13:10998112023. View Article : Google Scholar : PubMed/NCBI

148 

Kang YJ, Jang JY, Kwon YH, Lee JH, Lee S, Park Y, Jung YS, Im E, Moon HR, Chung HY and Kim ND: MHY2245, a sirtuin inhibitor, induces cell cycle arrest and apoptosis in HCT116 human colorectal cancer cells. Int J Mol Sci. 23:15902022. View Article : Google Scholar : PubMed/NCBI

149 

Artale S, Grillo N, Lepori S, Butti C, Bovio A, Barzaghi S, Colombo A, Castiglioni E, Barbarini L, Zanlorenzi L, et al: A nutritional approach for the management of chemotherapy-induced diarrhea in patients with colorectal cancer. Nutrients. 14:18012022. View Article : Google Scholar : PubMed/NCBI

150 

Burns AJ and Rowland IR: Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat Res. 551:233–243. 2004. View Article : Google Scholar : PubMed/NCBI

151 

Pop OL, Suharoschi R and Gabbianelli R: Biodetoxification and protective properties of probiotics. Microorganisms. 10:12782022. View Article : Google Scholar : PubMed/NCBI

152 

Zhang XB and Ohta Y: Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J Dairy Sci. 74:1477–1481. 1991. View Article : Google Scholar : PubMed/NCBI

153 

Shao X, Xu B, Chen C, Li P and Luo H: The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food: A review. Crit Rev Food Sci Nutr. 62:5950–5963. 2022. View Article : Google Scholar : PubMed/NCBI

154 

Nowak A and Libudzisz Z: Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur J Nutr. 48:419–427. 2009. View Article : Google Scholar : PubMed/NCBI

155 

Terahara M, Meguro S and Kaneko T: Effects of lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Biosci Biotechnol Biochem. 62:197–200. 1998. View Article : Google Scholar : PubMed/NCBI

156 

Orrhage K, Sillerström E, Gustafsson JA, Nord CE and Rafter J: Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res. 311:239–248. 1994. View Article : Google Scholar : PubMed/NCBI

157 

Lázaro Á, Vila-Donat P and Manyes L: Emerging mycotoxins and preventive strategies related to gut microbiota changes: Probiotics, prebiotics, and postbiotics-a systematic review. Food Funct. 15:8998–9023. 2024. View Article : Google Scholar : PubMed/NCBI

158 

Liu L, Xie M and Wei D: Biological detoxification of mycotoxins: Current status and future advances. Int J Mol Sci. 23:10642022. View Article : Google Scholar : PubMed/NCBI

159 

Cuevas-González PF, González-Córdova AF, Vallejo-Cordoba B, Aguilar-Toalá JE, Hall FG, Urbizo-Reyes UC, Liceaga AM, Hernandez-Mendoza A and García HS: Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents-a review. Crit Rev Food Sci Nutr. 62:160–180. 2022. View Article : Google Scholar : PubMed/NCBI

160 

El-Nezami HS, Chrevatidis A, Auriola S, Salminen S and Mykkänen H: Removal of common fusarium toxins in vitro by strains of lactobacillus and propionibacterium. Food Addit Contam. 19:680–686. 2002. View Article : Google Scholar : PubMed/NCBI

161 

Zoghi A, Khosravi-Darani K and Sohrabvandi S: Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chem. 14:84–98. 2014. View Article : Google Scholar : PubMed/NCBI

162 

Massoud R and Zoghi A: Potential probiotic strains with heavy metals and mycotoxins bioremoval capacity for application in foodstuffs. J Appl Microbiol. 133:1288–1307. 2022. View Article : Google Scholar : PubMed/NCBI

163 

Lopez J and Tait SW: Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer. 112:957–962. 2015. View Article : Google Scholar : PubMed/NCBI

164 

Su S, Chhabra G, Singh CK, Ndiaye MA and Ahmad N: PLK1 inhibition-based combination therapies for cancer management. Transl Oncol. 16:1013322022. View Article : Google Scholar : PubMed/NCBI

165 

Sankarapandian V, Venmathi Maran BA, Rajendran RL, Jogalekar MP, Gurunagarajan S, Krishnamoorthy R, Gangadaran P and Ahn BC: An update on the effectiveness of probiotics in the prevention and treatment of cancer. Life (Basel). 12:592022.PubMed/NCBI

166 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

167 

Kiraz Y, Adan A, Kartal Yandim M and Baran Y: Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 37:8471–8486. 2016. View Article : Google Scholar : PubMed/NCBI

168 

Chen HH, Luo CW, Chen YL, Chiang JY, Huang CR, Wang YT, Chen CH, Guo J and Yip HK: Probiotic-facilitated cytokine-induced killer cells suppress peritoneal carcinomatosis and liver metastasis in colorectal cancer cells. Int J Biol Sci. 20:6162–6180. 2024. View Article : Google Scholar : PubMed/NCBI

169 

Karimi Ardestani S, Tafvizi F and Tajabadi Ebrahimi M: Heat-killed probiotic bacteria induce apoptosis of HT-29 human colon adenocarcinoma cell line via the regulation of Bax/Bcl2 and caspases pathway. Hum Exp Toxicol. 38:1069–1081. 2019. View Article : Google Scholar : PubMed/NCBI

170 

Baghbani-Arani F, Asgary V and Hashemi A: Cell-free extracts of Lactobacillus acidophilus and Lactobacillus delbrueckii display antiproliferative and antioxidant activities against HT-29 cell line. Nutr Cancer. 72:1390–1399. 2020. View Article : Google Scholar : PubMed/NCBI

171 

Cotter PD, Ross RP and Hill C: Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol. 11:95–105. 2013. View Article : Google Scholar : PubMed/NCBI

172 

Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, Akutsu H, Tanabe H and Kohgo Y: Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 7:123652016. View Article : Google Scholar : PubMed/NCBI

173 

Thirabunyanon M, Boonprasom P and Niamsup P: Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett. 31:571–576. 2009. View Article : Google Scholar : PubMed/NCBI

174 

Khosrovan Z, Haghighat S and Mahdavi M: The probiotic bacteria induce apoptosis in breast and colon cancer cells: An immunostimulatory effect. Immunoregulation. 3:37–50. 2020. View Article : Google Scholar

175 

Alshuail N, Alehaideb Z, Alghamdi S, Suliman R, Al-Eidi H, Ali R, Barhoumi T, Almutairi M, Alwhibi M, Alghanem B, et al: Achillea fragrantissima (Forssk.) Sch.Bip flower dichloromethane extract exerts anti-proliferative and pro-apoptotic properties in human triple-negative breast cancer (MDA-MB-231) cells: In vitro and in silico studies. Pharmaceuticals (Basel). 15:10602022. View Article : Google Scholar : PubMed/NCBI

176 

Asoudeh-Fard A, Barzegari A, Dehnad A, Bastani S, Golchin A and Omidi Y: Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. Bioimpacts. 7:193–198. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Isazadeh A, Hajazimian S, Shadman B, Safaei S, Bedoustani AB, Chavoshi R, Shanehbandi D, Mashayekhi M, Nahaei M and Baradaran B: Anti-cancer effects of probiotic lactobacillus acidophilus for colorectal cancer cell line caco-2 through apoptosis induction. Pharm Sci. 27:262–267. 2021. View Article : Google Scholar

178 

Yavari M and Ahmadizadeh C: Effect of the cellular extract of co-cultured lactobacillus casei on BAX and Human β-Defensin 2 genes expression in HT29 cells. Intern Med Today. 26:364–381. 2020.

179 

Małaczewska J and Kaczorek-Łukowska E: Nisin-A lantibiotic with immunomodulatory properties: A review. Peptides. 137:1704792021. View Article : Google Scholar : PubMed/NCBI

180 

Singh A, Alexander SG and Martin S: Gut microbiome homeostasis and the future of probiotics in cancer immunotherapy. Front Immunol. 14:11144992023. View Article : Google Scholar : PubMed/NCBI

181 

Liu YC, Wu CR and Huang TW: Preventive effect of probiotics on oral mucositis induced by cancer treatment: A systematic review and meta-analysis. Int J Mol Sci. 23:132682022. View Article : Google Scholar : PubMed/NCBI

182 

Nazir Y, Hussain SA, Abdul Hamid A and Song Y: Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. Biomed Res Int. 2018:34284372018. View Article : Google Scholar : PubMed/NCBI

183 

Arora M, Baldi A, Kapila N, Bhandari S and Jeet K: Impact of probiotics and prebiotics on colon cancer: Mechanistic insights and future approaches. Curr Cancer Ther Rev. 15:27–36. 2019. View Article : Google Scholar

184 

Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W and Cao H: Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Lett. 526:225–235. 2022. View Article : Google Scholar : PubMed/NCBI

185 

Zhang S, Wang H and Zhu MJ: A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 196:249–254. 2019. View Article : Google Scholar : PubMed/NCBI

186 

Wong JM, De Souza R, Kendall CW, Emam A and Jenkins DJ: Colonic health: Fermentation and short chain fatty acids. J Clin Gastroenterol. 40:235–243. 2006. View Article : Google Scholar : PubMed/NCBI

187 

Bhogoju S and Nahashon S: Recent advances in probiotic application in animal health and nutrition: A review. Agriculture. 12:3042022. View Article : Google Scholar

188 

Encarnação JC, Abrantes AM, Pires AS and Botelho MF: Revisit dietary fiber on colorectal cancer: Butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 34:465–478. 2015. View Article : Google Scholar : PubMed/NCBI

189 

Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q and Chen W: Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact. 19:232020. View Article : Google Scholar : PubMed/NCBI

190 

Lu SY, Liu Y, Tang S, Zhang W, Yu Q, Shi C and Cheong KL: Gracilaria lemaneiformis polysaccharides alleviate colitis by modulating the gut microbiota and intestinal barrier in mice. Food Chem X. 13:1001972022. View Article : Google Scholar : PubMed/NCBI

191 

Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O and Laszczyńska M: Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 66:1–12. 2019.PubMed/NCBI

192 

Yoo JY, Groer M, Dutra SVO, Sarkar A and McSkimming DI: Gut microbiota and immune system interactions. Microorganisms. 8:15872020. View Article : Google Scholar : PubMed/NCBI

193 

Woo V and Alenghat T: Epigenetic regulation by gut microbiota. Gut Microbes. 14:20224072022. View Article : Google Scholar : PubMed/NCBI

194 

Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K and Santibanez JF: Targeting histone deacetylases: Opportunities for cancer treatment and chemoprevention. Pharmaceutics. 14:2092022. View Article : Google Scholar : PubMed/NCBI

195 

Faghfoori Z, Gargari BP, Gharamaleki AS, Bagherpour H and Khosroushahi AY: Cellular and molecular mechanisms of probiotics effects on colorectal cancer. J Funct Foods. 18:463–472. 2015. View Article : Google Scholar

196 

Sanaei M and Kavoosi F: Effect of sodium butyrate on p16INK4a, p14ARF, p15INK4b, Class I HDACs (HDACs 1, 2, 3) Class II HDACs (HDACs 4, 5, 6), Cell growth inhibition and apoptosis induction in pancreatic cancer AsPC-1 and colon cancer HCT-116 cell lines. Asian Pac J Cancer Prev. 23:795–802. 2022. View Article : Google Scholar : PubMed/NCBI

197 

Chai L, Luo Q, Cai K, Wang K and Xu B: Reduced fecal short-chain fatty acids levels and the relationship with gut microbiota in IgA nephropathy. BMC Nephrol. 22:2092021. View Article : Google Scholar : PubMed/NCBI

198 

Piotrowska M, Binienda A and Fichna J: The role of fatty acids in Crohn's disease pathophysiology-An overview. Mol Cell Endocrinol. 538:1114482021. View Article : Google Scholar : PubMed/NCBI

199 

Haase S, Haghikia A, Wilck N, Müller DN and Linker RA: Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 154:230–238. 2018. View Article : Google Scholar : PubMed/NCBI

200 

Ni D, Tan J, Niewold P, Spiteri AG, Pinget GV, Stanley D, King NJC and Macia L: Impact of dietary fiber on west nile virus infection. Front Immunol. 13:7844862022. View Article : Google Scholar : PubMed/NCBI

201 

Shanmugam G, Rakshit S and Sarkar K: HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol. 16:1013122022. View Article : Google Scholar : PubMed/NCBI

202 

Lee SY, Kang JH, Kim JH, Jeong JW, Kim HW, Oh DH, Yoon SH and Hur SJ: Relationship between gut microbiota and colorectal cancer: Probiotics as a potential strategy for prevention. Food Res Int. 156:1113272022. View Article : Google Scholar : PubMed/NCBI

203 

Althagafi HA: The potential anticancer potency of kolaviron on colorectal adenocarcinoma (Caco-2) cells. Anticancer Agents Med Chem. 24:1097–1108. 2024. View Article : Google Scholar : PubMed/NCBI

204 

Jiang X, Li S, Qiu X, Cong J, Zhou J and Miu W: Curcumin inhibits cell viability and increases apoptosis of SW620 human colon adenocarcinoma cells via the caudal type homeobox-2 (CDX2)/Wnt/β-catenin pathway. Med Sci Monit. 25:7451–7458. 2019. View Article : Google Scholar : PubMed/NCBI

205 

Huang C, Deng W, Xu HZ, Zhou C, Zhang F, Chen J, Bao Q, Zhou X, Liu M, Li J and Liu C: Short-chain fatty acids reprogram metabolic profiles with the induction of reactive oxygen species production in human colorectal adenocarcinoma cells. Comput Struct Biotechnol J. 21:1606–1620. 2023. View Article : Google Scholar : PubMed/NCBI

206 

Zeng H, Hamlin SK, Safratowich BD, Cheng WH and Johnson LK: Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: Linking dietary fiber to cancer prevention. Nutr Res. 83:63–72. 2020. View Article : Google Scholar : PubMed/NCBI

207 

Aziz T, Sarwar A, Daudzai Z, Naseeb J, Din JU, Aftab U, Saidal A, Ghani M, Khan AA, Naz S, et al: Conjugated fatty acids (CFAS) production via various bacterial strains and their applications. A review. J Chil Chem Soc. 67:5445–5452. 2022. View Article : Google Scholar

208 

Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C and Chen W: Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res. 93:1012572024. View Article : Google Scholar : PubMed/NCBI

209 

Liu XX, Zhang HY, Song X, Yang Y, Xiong ZQ, Xia YJ and Ai LZ: Reasons for the differences in biotransformation of conjugated linoleic acid by Lactobacillus plantarum. J Dairy Sci. 104:11466–11473. 2021. View Article : Google Scholar : PubMed/NCBI

210 

Qian Y, Chun ZJ, Liu ZY and Xu L: Probiotics in gastrointestinal cancer: Antitumoral effects and molecular mechanisms of action. Zhonghua Nei Ke Za Zhi. 61:1167–1171. 2022.(In Chinese). PubMed/NCBI

211 

Cho HJ, Kim WK, Kim EJ, Jung KC, Park S, Lee HS, Tyner AL and Park JH: Conjugated linoleic acid inhibits cell proliferation and ErbB3 signaling in HT-29 human colon cell line. Am J Physiol Gastrointest Liver Physiol. 284:G996–G1005. 2003. View Article : Google Scholar : PubMed/NCBI

212 

Chen Y, Ma W, Zhao J, Stanton C, Ross RP, Zhang H, Chen W and Yang B: Lactobacillus plantarum ameliorates colorectal cancer by ameliorating the intestinal barrier through the CLA-PPAR-γ axis. J Agric Food Chem. 72:19766–19785. 2024. View Article : Google Scholar : PubMed/NCBI

213 

Dachev M, Bryndová J, Jakubek M, Moučka Z and Urban M: The effects of conjugated linoleic acids on cancer. Processes. 9:4542021. View Article : Google Scholar

214 

Shahzad MMK, Felder M, Ludwig K, Van Galder HR, Anderson ML, Kim J, Cook ME, Kapur AK and Patankar MS: Trans10, cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src. PLoS One. 13:e01895242018. View Article : Google Scholar : PubMed/NCBI

215 

Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, et al: Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int. 172:1131582023. View Article : Google Scholar : PubMed/NCBI

216 

Saber A, Alipour B, Faghfoori Z and Yari Khosroushahi A: Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol. 43:96–115. 2017. View Article : Google Scholar : PubMed/NCBI

217 

Basak S and Duttaroy AK: Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients. 12:19132020. View Article : Google Scholar : PubMed/NCBI

218 

Mei Y, Chen H, Yang B, Zhao J, Zhang H and Chen W: Research progress on conjugated linoleic acid bio-conversion in Bifidobacterium. Int J Food Microbiol. 369:1095932022. View Article : Google Scholar : PubMed/NCBI

219 

Chen Y, Yang B, Ross RP, Jin Y, Stanton C, Zhao J, Zhang H and Chen W: Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation. J Agric Food Chem. 67:13282–13298. 2019. View Article : Google Scholar : PubMed/NCBI

220 

Cruz BCS, Sarandy MM, Messias AC, Gonçalves RV, Ferreira CLLF and Peluzio MCG: Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: A systematic review. Nutr Rev. 78:667–687. 2020. View Article : Google Scholar : PubMed/NCBI

221 

Żółkiewicz J, Marzec A, Ruszczyński M and Feleszko W: Postbiotics-A step beyond pre- and probiotics. Nutrients. 12:21892020. View Article : Google Scholar : PubMed/NCBI

222 

Chen P, Yang C, Ren K, Xu M, Pan C, Ye X and Li L: Modulation of gut microbiota by probiotics to improve the efficacy of immunotherapy in hepatocellular carcinoma. Front Immunol. 15:15049482024. View Article : Google Scholar : PubMed/NCBI

223 

De Souza JB, Brelaz-de-Castro MCA and Cavalcanti IMF: Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sci. 290:1202022022. View Article : Google Scholar : PubMed/NCBI

224 

Wang P, Jia Y, Wu R, Chen Z and Yan R: Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem Pharmacol. 190:1145662021. View Article : Google Scholar : PubMed/NCBI

225 

Josephy PD and Allen-Vercoe E: Reductive metabolism of azo dyes and drugs: Toxicological implications. Food Chem Toxicol. 178:1139322023. View Article : Google Scholar : PubMed/NCBI

226 

Molska M and Reguła J: Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients. 11:24532019. View Article : Google Scholar : PubMed/NCBI

227 

Nowak A, Paliwoda A and Błasiak J: Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr. 59:3456–3467. 2019. View Article : Google Scholar : PubMed/NCBI

228 

De Roos NM and Katan MB: Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am J Clin Nutr. 71:405–411. 2000. View Article : Google Scholar : PubMed/NCBI

229 

Jacquier EF, van de Wouw M, Nekrasov E, Contractor N, Kassis A and Marcu D: Local and systemic effects of bioactive food ingredients: Is there a role for functional foods to prime the gut for resilience? Foods. 13:7392024. View Article : Google Scholar : PubMed/NCBI

230 

Phannasorn W, Pharapirom A, Thiennimitr P, Guo H, Ketnawa S and Wongpoomchai R: Enriched riceberry bran oil exerts chemopreventive properties through anti-inflammation and alteration of gut microbiota in carcinogen-induced liver and colon carcinogenesis in rats. Cancers (Basel). 14:43582022. View Article : Google Scholar : PubMed/NCBI

231 

Walia S, Kamal R, Kanwar SS and Dhawan DK: Hepato-protective role of chemo-preventive probiotics during DMH-induced CRC in rats. J Biochem Mol Toxicol. 35:e227882021. View Article : Google Scholar : PubMed/NCBI

232 

Vougiouklaki D, Tsironi T, Tsantes AG, Tsakali E, Van Impe JFM and Houhoula D: Probiotic properties and antioxidant activity in vitro of lactic acid bacteria. Microorganisms. 11:12642023. View Article : Google Scholar : PubMed/NCBI

233 

Guo Y, Huang R, Niu Y, Zhang P, Li Y and Zhang W: Chemical characteristics, antioxidant capacity, bacterial community, and metabolite composition of mulberry silage ensiling with lactic acid bacteria. Front Microbiol. 15:13632562024. View Article : Google Scholar : PubMed/NCBI

234 

Mobasherpour P, Yavarmanesh M and Edalatian Dovom MR: Antitumor properties of traditional lactic acid bacteria: Short-chain fatty acid production and interleukin 12 induction. Heliyon. 10:e361832024. View Article : Google Scholar : PubMed/NCBI

235 

Tang C and Lu Z: Health promoting activities of probiotics. J Food Biochem. 43:e129442019. View Article : Google Scholar : PubMed/NCBI

236 

Martínez FG, Cuencas Barrientos ME, Mozzi F and Pescuma M: Survival of selenium-enriched lactic acid bacteria in a fermented drink under storage and simulated gastro-intestinal digestion. Food Res Int. 123:115–124. 2019. View Article : Google Scholar : PubMed/NCBI

237 

Tsivileva O, Shaternikov A and Evseeva N: Basidiomycetes polysaccharides regulate growth and antioxidant defense system in wheat. Int J Mol Sci. 25:68772024. View Article : Google Scholar : PubMed/NCBI

238 

Salimi F and Farrokh P: Recent advances in the biological activities of microbial exopolysaccharides. World J Microbiol Biotechnol. 39:2132023. View Article : Google Scholar : PubMed/NCBI

239 

Zhang J, Xiao Y, Wang H, Zhang H, Chen W and Lu W: Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol Res. 274:1274322023. View Article : Google Scholar : PubMed/NCBI

240 

Adesulu-Dahunsi AT, Sanni AI and Jeyaram K: Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT. 87:432–442. 2018. View Article : Google Scholar

241 

Dougherty MW and Jobin C: Intestinal bacteria and colorectal cancer: Etiology and treatment. Gut Microbes. 15:21850282023. View Article : Google Scholar : PubMed/NCBI

242 

Kang X, Liu C, Ding Y, Ni Y, Ji F, Lau HCH, Jiang L, Sung JJ, Wong SH and Yu J: Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells. Gut. 72:2112–2122. 2023. View Article : Google Scholar : PubMed/NCBI

243 

Zhao J, Liao Y, Wei C, Ma Y, Wang F, Chen Y, Zhao B, Ji H, Wang D and Tang D: Potential ability of probiotics in the prevention and treatment of colorectal cancer. Clin Med Insights Oncol. 17:117955492311882252023. View Article : Google Scholar : PubMed/NCBI

244 

Jain S, Purohit A, Nema P, Vishwakarma H, Qureshi A and kumar JP: Pathways of targeted therapy for colorectal cancer. J Drug Delivery Ther. 12:217–221. 2022. View Article : Google Scholar

245 

Chrysostomou D, Roberts LA, Marchesi JR and Kinross JM: Gut Microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology. 164:198–213. 2023. View Article : Google Scholar : PubMed/NCBI

246 

Lu L, Dong J, Liu Y, Qian Y, Zhang G, Zhou W, Zhao A, Ji G and Xu H: New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Front Pharmacol. 13:9647932022. View Article : Google Scholar : PubMed/NCBI

247 

Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S and Li J: Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology. 20:3712022. View Article : Google Scholar : PubMed/NCBI

248 

Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A and El Gaaied ABA: Gut microbiota, an emergent target to shape the efficiency of cancer therapy. Explor Target Antitumor Ther. 4:240–265. 2023. View Article : Google Scholar : PubMed/NCBI

249 

Mahdy MS, Azmy AF, Dishisha T, Mohamed WR, Ahmed KA, Hassan A, Aidy SE and El-Gendy AO: Irinotecan-gut microbiota interactions and the capability of probiotics to mitigate Irinotecan-associated toxicity. BMC Microbiol. 23:532023. View Article : Google Scholar : PubMed/NCBI

250 

Ren Z, Chen S, Lv H, Peng L, Yang W, Chen J, Wu Z and Wan C: Effect of Bifidobacterium animalis subsp. lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol Res. 184:1064062022. View Article : Google Scholar : PubMed/NCBI

251 

Cai B, Pan J, Chen H, Chen X, Ye Z, Yuan H, Sun H and Wan P: Oyster polysaccharides ameliorate intestinal mucositis and improve metabolism in 5-fluorouracil-treated S180 tumour-bearing mice. Carbohydr Polym. 256:1175452021. View Article : Google Scholar : PubMed/NCBI

252 

Capurso L: Thirty years of Lactobacillus rhamnosus GG: A review. J Clin Gastroenterol. 53:S1–S41. 2019. View Article : Google Scholar : PubMed/NCBI

253 

He Y, Fu L, Li Y, Wang W, Gong M, Zhang J, Dong X, Huang J, Wang Q, Mackay CR, et al: Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33:988–1000. e72021. View Article : Google Scholar : PubMed/NCBI

254 

He Y, Ling Y, Zhang Z, Mertens RT, Cao Q, Xu X, Guo K, Shi Q, Zhang X, Huo L, et al: Butyrate reverses ferroptosis resistance in colorectal cancer by inducing c-Fos-dependent xCT suppression. Redox Biol. 65:1028222023. View Article : Google Scholar : PubMed/NCBI

255 

Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F and Moodi Ghalibaf A: The role of microbiome and probiotics in chemo-radiotherapy-induced diarrhea: A narrative review of the current evidence. Cancer Rep (Hoboken). 7:e700292024. View Article : Google Scholar : PubMed/NCBI

256 

Moraitis I, Guiu J and Rubert J: Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab. 34:489–501. 2023. View Article : Google Scholar : PubMed/NCBI

257 

Long L, Zhang Y, Zang J, Liu P, Liu W, Sun C, Tian D, Li P, Tian J and Xiao J: Investigating the relationship between postoperative radiotherapy and intestinal flora in rectal cancer patients: A study on efficacy and radiation enteritis. Front Oncol. 14:14084362024. View Article : Google Scholar : PubMed/NCBI

258 

Gonzalez-Mercado VJ, Henderson WA, Sarkar A, Lim J, Saligan LN, Berk L, Dishaw L, McMillan S, Groer M, Sepehri F and Melkus GD: Changes in gut microbiome associated with co-occurring symptoms development during chemo-radiation for rectal cancer: A proof of concept study. Biol Res Nurs. 23:31–41. 2021. View Article : Google Scholar : PubMed/NCBI

259 

Al-Qadami G, Van Sebille Y, Le H and Bowen J: Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Rev Gastroenterol Hepatol. 13:485–496. 2019. View Article : Google Scholar : PubMed/NCBI

260 

Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, Li WB, Tang D, Qiu MJ, Wang XC, et al: The role of Fusobacterium nucleatum in colorectal cancer: From carcinogenesis to clinical management. Chronic Dis Transl Med. 5:178–187. 2019.PubMed/NCBI

261 

Jin Y, Wang J and Wang Y: Unraveling the complexity of radiotherapy- and chemotherapy-induced oral mucositis: Insights into pathogenesis and intervention strategies. Support Care Cancer. 33:1952025. View Article : Google Scholar : PubMed/NCBI

262 

Wang K, Zhang J, Zhang Y, Xue J, Wang H, Tan X, Jiao X and Jiang H: The recovery of intestinal barrier function and changes in oral microbiota after radiation therapy injury. Front Cell Infect Microbiol. 13:12886662024. View Article : Google Scholar : PubMed/NCBI

263 

Chen QY, Tian HL, Yang B, Lin ZL, Zhao D, Ye C, Zhang XY, Qin HL and Li N: Effect of intestinal preparation on the efficacy and safety of fecal microbiota transplantation treatment. Zhonghua Wei Chang Wai Ke Za Zhi. 23:48–55. 2020.(In Chinese). PubMed/NCBI

264 

Al Zein M, Boukhdoud M, Shammaa H, Mouslem H, El Ayoubi LM, Iratni R, Issa K, Khachab M, Assi HI, Sahebkar A and Eid AH: Immunotherapy and immunoevasion of colorectal cancer. Drug Discov Today. 28:1036692023. View Article : Google Scholar : PubMed/NCBI

265 

Sun BL: Current microsatellite instability testing in management of colorectal cancer. Clin Colorectal Cancer. 20:e12–e20. 2021. View Article : Google Scholar : PubMed/NCBI

266 

Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X and Jiao F: Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol. 120:1104172023. View Article : Google Scholar : PubMed/NCBI

267 

Salek Farrokhi A, Darabi N, Yousefi B, Askandar RH, Shariati M and Eslami M: Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol. 234:14941–14950. 2019. View Article : Google Scholar : PubMed/NCBI

268 

Wu J, Wang S, Zheng B, Qiu X, Wang H and Chen L: Modulation of gut microbiota to enhance effect of checkpoint inhibitor immunotherapy. Front Immunol. 12:6691502021. View Article : Google Scholar : PubMed/NCBI

269 

Zhao H, Wang D, Zhang Z, Xian J and Bai X: Effect of gut microbiota-derived metabolites on immune checkpoint inhibitor therapy: Enemy or friend? Molecules. 27:47992022. View Article : Google Scholar : PubMed/NCBI

270 

Xie Y and Liu F: The role of the gut microbiota in tumor, immunity, and immunotherapy. Front Immunol. 15:14109282024. View Article : Google Scholar : PubMed/NCBI

271 

Aghamajidi A and Maleki Vareki S: The effect of the gut microbiota on systemic and anti-tumor immunity and response to systemic therapy against cancer. Cancers (Basel). 14:35632022. View Article : Google Scholar : PubMed/NCBI

272 

Yang J, Yang H and Li Y: The triple interactions between gut microbiota, mycobiota and host immunity. Crit Rev Food Sci Nutr. 63:11604–11624. 2023. View Article : Google Scholar : PubMed/NCBI

273 

Noguera-Fernández N, Candela-González J and Orenes-Piñero E: Probiotics, prebiotics, fecal microbiota transplantation, and dietary patterns in inflammatory bowel disease. Mol Nutr Food Res. 68:e24004292024. View Article : Google Scholar : PubMed/NCBI

274 

Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, et al: Fecal microbiota transplantation: Current challenges and future landscapes. Clin Microbiol Rev. 37:e00060222024. View Article : Google Scholar : PubMed/NCBI

275 

Selvamani S, Mehta V, Ali El Enshasy H, Thevarajoo S, El Adawi H, Zeini I, Pham K, Varzakas T and Abomoelak B: Efficacy of probiotics-based interventions as therapy for inflammatory bowel disease: A recent update. Saudi J Biol Sci. 29:3546–3567. 2022. View Article : Google Scholar : PubMed/NCBI

276 

Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH, Yu FJ, Hu HM, Hsu PI, Wang JY and Wu DC: Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 118 (Suppl 1):S23–S31. 2019. View Article : Google Scholar : PubMed/NCBI

277 

Yu H, Li XX, Han X, Chen BX, Zhang XH, Gao S, Xu DQ, Wang Y, Gao ZK, Yu L, et al: Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses. Front Microbiol. 14:11268082023. View Article : Google Scholar : PubMed/NCBI

278 

Chang CW, Lee HC, Li LH, Chiang Chiau JS, Wang TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, et al: Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int J Mol Sci. 21:3862020. View Article : Google Scholar : PubMed/NCBI

279 

Pi Y, Wu Y, Zhang X, Lu D, Han D, Zhao J, Zheng X, Zhang S, Ye H, Lian S, et al: Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization. Microbiome. 11:192023. View Article : Google Scholar : PubMed/NCBI

280 

Song Q, Gao Y, Liu K, Tang Y, Man Y and Wu H: Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice. J Transl Med. 22:10282024. View Article : Google Scholar : PubMed/NCBI

281 

Wu R, Xiong R, Li Y, Chen J and Yan R: Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun. 141:1030622023. View Article : Google Scholar : PubMed/NCBI

282 

Xu H, Cao C, Ren Y, Weng S, Liu L, Guo C, Wang L, Han X, Ren J and Liu Z: Antitumor effects of fecal microbiota transplantation: Implications for microbiome modulation in cancer treatment. Front Immunol. 13:9494902022. View Article : Google Scholar : PubMed/NCBI

283 

Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G and Facciotti F: Gut microbiota manipulation as a tool for colorectal cancer management: Recent advances in its use for therapeutic purposes. Int J Mol Sci. 21:53892020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sun W, Ma S, Meng D, Wang C and Zhang J: Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 31: 133, 2025.
APA
Sun, W., Ma, S., Meng, D., Wang, C., & Zhang, J. (2025). Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Molecular Medicine Reports, 31, 133. https://doi.org/10.3892/mmr.2025.13498
MLA
Sun, W., Ma, S., Meng, D., Wang, C., Zhang, J."Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review)". Molecular Medicine Reports 31.5 (2025): 133.
Chicago
Sun, W., Ma, S., Meng, D., Wang, C., Zhang, J."Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review)". Molecular Medicine Reports 31, no. 5 (2025): 133. https://doi.org/10.3892/mmr.2025.13498
Copy and paste a formatted citation
x
Spandidos Publications style
Sun W, Ma S, Meng D, Wang C and Zhang J: Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 31: 133, 2025.
APA
Sun, W., Ma, S., Meng, D., Wang, C., & Zhang, J. (2025). Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Molecular Medicine Reports, 31, 133. https://doi.org/10.3892/mmr.2025.13498
MLA
Sun, W., Ma, S., Meng, D., Wang, C., Zhang, J."Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review)". Molecular Medicine Reports 31.5 (2025): 133.
Chicago
Sun, W., Ma, S., Meng, D., Wang, C., Zhang, J."Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review)". Molecular Medicine Reports 31, no. 5 (2025): 133. https://doi.org/10.3892/mmr.2025.13498
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team