You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Zhang C, Stampfl-Mattersberger M, Ruckser R and Sebesta C: Colorectal cancer. Wien Med Wochenschr. 173:216–220. 2023.(In German). View Article : Google Scholar : PubMed/NCBI | |
|
Yu CY, Han JX, Zhang J, Jiang P, Shen C, Guo F, Tang J, Yan T, Tian X, Zhu X, et al: A 16q22.1 variant confers susceptibility to colorectal cancer as a distal regulator of ZFP90. Oncogene. 39:1347–1360. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chaplin A, Rodriguez RM, Segura-Sampedro JJ, Ochogavía-Seguí A, Romaguera D and Barceló-Coblijn G: Insights behind the relationship between colorectal cancer and obesity: Is visceral adipose tissue the missing link. Int J Mol Sci. 23:131282022. View Article : Google Scholar : PubMed/NCBI | |
|
Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T and Przybyłowicz KE: A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers (Basel). 13:20252021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Sun N, Zeng H, Gao Y, Zhang N and Zhang W: Selenium deficiency leads to inflammation, autophagy, endoplasmic reticulum stress, apoptosis and contraction abnormalities via affecting intestinal flora in intestinal smooth muscle of mice. Front Immunol. 13:9476552022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Y, Zhang X, Wang Y, Guo Y, Zhu P, Li G, Zhang J, Ma Q and Zhao L: Dietary ellagic acid ameliorated Clostridium perfringens-induced subclinical necrotic enteritis in broilers via regulating inflammation and cecal microbiota. J Anim Sci Biotechnol. 13:472022. View Article : Google Scholar : PubMed/NCBI | |
|
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N and Maleki-Kakelar H: The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci. 344:1225292024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Luo X, Yang D, Li Y, Gong T, Li B, Cheng J, Chen R, Guo X and Yuan W: Effects of probiotic supplementation on related side effects after chemoradiotherapy in cancer patients. Front Oncol. 12:10321452022. View Article : Google Scholar : PubMed/NCBI | |
|
Lehouritis P, Stanton M, McCarthy FO, Jeavons M and Tangney M: Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J Control Release. 222:9–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong H, Wang J, Chang Z, Hu H, Yuan Z, Zhu Y, Hu Z, Wang C, Liu Y, Wang Y, et al: Gut microbiota display alternative profiles in patients with early-onset colorectal cancer. Front Cell Infect Microbiol. 12:10369462022. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Alcoholado L, Laborda-Illanes A, Otero A, Ordóñez R, González-González A, Plaza-Andrades I, Ramos-Molina B, Gómez-Millán J and Queipo-Ortuño MI: Relationships of gut microbiota composition, short-chain fatty acids and polyamines with the pathological response to neoadjuvant radiochemotherapy in colorectal cancer patients. Int J Mol Sci. 22:95492021. View Article : Google Scholar : PubMed/NCBI | |
|
Bi D, Zhu Y, Gao Y, Li H, Zhu X, Wei R, Xie R, Cai C, Wei Q and Qin H: Profiling fusobacterium infection at high taxonomic resolution reveals lineage-specific correlations in colorectal cancer. Nat Commun. 13:33362022. View Article : Google Scholar : PubMed/NCBI | |
|
Castro-Mejía JL, O'Ferrall S, Krych Ł, O'Mahony E, Namusoke H, Lanyero B, Kot W, Nabukeera-Barungi N, Michaelsen KF, Mølgaard C, et al: Restitution of gut microbiota in Ugandan children administered with probiotics (Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12) during treatment for severe acute malnutrition. Gut Microbes. 11:855–867. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Park YE and Kim JH: Revolutionizing gut health: exploring the role of gut microbiota and the potential of microbiome-based therapies in lower gastrointestinal diseases. Kosin Med J. 38:98–106. 2023. View Article : Google Scholar | |
|
Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J and Furet JP: Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 6:e163932011. View Article : Google Scholar : PubMed/NCBI | |
|
Fong W, Li Q and Yu J: Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene. 39:4925–4943. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Ling Z and Li L: The intestinal microbiota and colorectal cancer. Front Immunol. 11:6150562020. View Article : Google Scholar : PubMed/NCBI | |
|
Grigoryan H, Schiffman C, Gunter MJ, Naccarati A, Polidoro S, Dagnino S, Dudoit S, Vineis P and Rappaport SM: Cys34 adductomics links colorectal cancer with the gut microbiota and redox biology. Cancer Res. 79:6024–6031. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ying HQ, Chen W, Xiong CF, Wang Y, Li XJ and Cheng XX: Quantification of fibrinogen-to-pre-albumin ratio provides an integrating parameter for differential diagnosis and risk stratification of early-stage colorectal cancer. Cancer Cell Int. 22:1372022. View Article : Google Scholar : PubMed/NCBI | |
|
Song C, Duan F, Ju T, Qin Y, Zeng D, Shan S, Shi Y, Zhang Y and Lu W: Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota. Commun Biol. 5:6802022. View Article : Google Scholar : PubMed/NCBI | |
|
Li R, Huang X, Yang L, Liang X, Huang W, Lai KP and Zhou L: Integrated analysis reveals the targets and mechanisms in immunosuppressive effect of mesalazine on ulcerative colitis. Front Nutr. 9:8676922022. View Article : Google Scholar : PubMed/NCBI | |
|
Fan H, Hao X, Gao Y, Yang J, Liu A, Su Y and Xia Y: Nodosin exerts an anti-colorectal cancer effect by inhibiting proliferation and triggering complex cell death in vitro and in vivo. Front Pharmacol. 13:9432722022. View Article : Google Scholar : PubMed/NCBI | |
|
Wan F, Zhong R, Wang M, Zhou Y, Chen Y, Yi B, Hou F, Liu L, Zhao Y, Chen L and Zhang H: Caffeic acid supplement alleviates colonic inflammation and oxidative stress potentially through improved gut microbiota community in mice. Front Microbiol. 12:7842112021. View Article : Google Scholar : PubMed/NCBI | |
|
Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD and Guglietta S: Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer. 10:e0047172022. View Article : Google Scholar : PubMed/NCBI | |
|
Leonard WJ and Spolski R: Interleukin-21: A modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol. 5:688–698. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi J, Yamamoto M, Yasukawa H, Nohara S, Nagata T, Shimozono K, Yanai T, Sasaki T, Okabe K, Shibata T, et al: Interleukin-22 directly activates myocardial STAT3 (Signal Transducer and Activator of Transcription-3) signaling pathway and prevents myocardial ischemia reperfusion injury. J Am Heart Assoc. 9:e0148142020. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Z, Liu L, Pei X, Sun W, Jin Y, Yang ST and Wang M: A potential probiotic for diarrhea: Clostridium tyrobutyricum protects against LPS-induced epithelial dysfunction via IL-22 Produced By Th17 cells in the ileum. Front Immunol. 12:7582272021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Cheng X, Guo J, Bi Y, Kuang L, Ren J, Zhong J, Pan L, Zhang X, Guo Y, et al: MLKL inhibits intestinal tumorigenesis by suppressing STAT3 signaling pathway. Int J Biol Sci. 17:869–881. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xiaoyu P, Chao G, Lihua D and Pengyu C: Gut bacteria affect the tumoral immune milieu: Distorting the efficacy of immunotherapy or not? Gut Microbes. 11:691–705. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Karstens KF, Kempski J, Giannou AD, Pelczar P, Steglich B, Steurer S, Freiwald E, Woestemeier A, Konczalla L, Tachezy M, et al: Anti-inflammatory microenvironment of esophageal adenocarcinomas negatively impacts survival. Cancer Immunol Immunother. 6:1043–1056. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liou CJ, Chen YL, Yu MC, Yeh KW, Shen SC and Huang WC: Sesamol alleviates airway hyperresponsiveness and oxidative stress in asthmatic mice. Antioxidants (Basel). 9:2952020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Huang J, Ding Y, Zhou J, Gao G, Han H, Zhou J, Ke L, Rao P, Chen T and Zhang L: Nanoparticles isolated from porcine bone soup ameliorated dextran sulfate sodium-induced colitis and regulated gut microbiota in mice. Front Nutr. 9:8214042022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Guo J, Chang X and Gui S: Painong-san extract alleviates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota, restoring intestinal barrier function and attenuating TLR4/NF-κB signaling cascades. J Pharm Biomed Anal. 209:1145292022. View Article : Google Scholar : PubMed/NCBI | |
|
Bai J, Zhao J, Al-Ansi W, Wang J, Xue L, Liu J, Wang Y, Fan M, Qian H, Li Y and Wang L: Oat β-glucan alleviates DSS-induced colitis via regulating gut microbiota metabolism in mice. Food Funct. 12:8976–8993. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al: A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 15:1016–1022. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tian L, Long F, Hao Y, Li B, Li Y, Tang Y, Li J, Zhao Q, Chen J and Liu M: A cancer associated fibroblasts-related six-gene panel for anti-PD-1 therapy in melanoma driven by weighted correlation network analysis and supervised machine learning. Front Med (Lausanne). 9:8803262022. View Article : Google Scholar : PubMed/NCBI | |
|
Nyiramana MM, Cho SB, Kim EJ, Kim MJ, Ryu JH, Nam HJ, Kim NG, Park SH, Choi YJ, Kang SS, et al: Sea hare hydrolysate-induced reduction of human non-small cell lung cancer cell growth through regulation of macrophage polarization and non-apoptotic regulated cell death pathways. Cancers (Basel). 12:7262020. View Article : Google Scholar : PubMed/NCBI | |
|
Dmitrieva-Posocco O, Dzutsev A, Posocco DF, Hou V, Yuan W, Thovarai V, Mufazalov IA, Gunzer M, Shilovskiy IP, Khaitov MR, et al: Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity. 50:166–180.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hahn YI, Saeidi S, Kim SJ, Park SY, Song NY, Zheng J, Kim DH, Lee HB, Han W, Noh DY, et al: STAT3 stabilizes IKKα protein through direct interaction in transformed and cancerous human breast epithelial cells. Cancers (Basel). 13:822020. View Article : Google Scholar : PubMed/NCBI | |
|
Franz A, Coscia F, Shen C, Charaoui L, Mann M and Sander C: Molecular response to PARP1 inhibition in ovarian cancer cells as determined by mass spectrometry based proteomics. J Ovarian Res. 14:1402021. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Z, He Y, Zhu W, Xu T, Hu X and Huang P: A dynamic transcription factor signature along the colorectal adenoma-carcinoma sequence in patients with co-occurrent adenoma and carcinoma. Front Oncol. 11:5974472021. View Article : Google Scholar : PubMed/NCBI | |
|
Icard P, Fournel L, Wu Z, Alifano M and Lincet H: Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 44:490–501. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tian X, Wei W, Cao Y, Ao T, Huang F, Javed R, Wang X, Fan J, Zhang Y, Liu Y, et al: Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis. J Cell Mol Med. 26:693–708. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim BR, Ha J, Kang E and Cho S: Regulation of signal transducer and activator of transcription 3 activation by dual-specificity phosphatase3. BMB Rep. 53:335–340. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Dai Z, Zhao X, Wang G and Lai R: Anticarin β inhibits human glioma progression by suppressing cancer stemness via STAT3. Front Oncol. 11:7156732021. View Article : Google Scholar : PubMed/NCBI | |
|
Shen J, Zhang M, Zhang K, Qin Y, Liu M, Liang S, Chen D and and Peng M: Effect of Angelica polysaccharide on mouse myeloid-derived suppressor cells. Front Immunol. 13:9892302022. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, Alshubramy MA, Abdel-Motaal M, Majrashi TA, Asem M, Nabil A, Eldehna WM and Sharaky M: Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors. J Enzyme Inhib Med Chem. 38:176–191. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu J, Li S, Guo J, Xu Z, Zheng J and Sun X: Farnesoid X receptor antagonizes Wnt/β-catenin signaling in colorectal tumorigenesis. Cell Death Dis. 11:6402020. View Article : Google Scholar : PubMed/NCBI | |
|
McPherson J, Hu C, Begum K, Wang W, Lancaster C, Gonzales-Luna AJ, Loveall C, Silverman MH, Alam MJ and Garey KW: Functional and metagenomic evaluation of ibezapolstat for early evaluation of anti-recurrence effects in clostridioides difficile infection. Antimicrob Agents Chemother. 66:e02244212022. View Article : Google Scholar : PubMed/NCBI | |
|
Bernstein H, Bernstein C, Payne CM and Dvorak K: Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 15:3329–3340. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Ye P, Fang L, Ge S, Huang F, Polverini PJ, Heng W, Zheng L, Hu Q, Yan F and Wang W: Active smoking induces aberrations in digestive tract microbiota of rats. Front Cell Infect Microbiol. 11:7372042021. View Article : Google Scholar : PubMed/NCBI | |
|
Maarsingh JD, Łaniewski P and Herbst-Kralovetz MM: Immunometabolic and potential tumor-promoting changes in 3D cervical cell models infected with bacterial vaginosis-associated bacteria. Commun Biol. 5:7252022. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Quintero MJ, Rodríguez-Díaz C, Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E and López-Gómez C: Role of mitochondria in inflammatory bowel diseases: A systematic review. Int J Mol Sci. 24:171242023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang D, Jing G and Zhu S: Regulation of mitochondrial respiration by hydrogen sulfide. Antioxidants (Basel). 12:16442023. View Article : Google Scholar : PubMed/NCBI | |
|
Blachier F, Andriamihaja M, Larraufie P, Ahn E, Lan A and Kim E: Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am J Physiol Gastrointest Liver Physiol. 320:G125–G135. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Roudsari LC and West JL: Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev. 97:250–259. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Lan R, Xu Y, Zuo J, Han X, Phouthapane V, Luo Z and Miao J: Taurine alleviates streptococcus uberis-induced inflammation by activating autophagy in mammary epithelial cells. Front Immunol. 12:6311132021. View Article : Google Scholar : PubMed/NCBI | |
|
Karpiński TM, Ożarowski M and Stasiewicz M: Carcinogenic microbiota and its role in colorectal cancer development. Semin Cancer Biol. 86:420–430. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Bian H, Li X, Wu H, Bi Q, Yan Y and Wang Y: Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis. Oncol Rep. 35:2825–2832. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly D, Yang L and Pei Z: Gut microbiota, fusobacteria, and colorectal cancer. Diseases. 6:1092018. View Article : Google Scholar : PubMed/NCBI | |
|
Kiziltan T, Baran A, Kankaynar M, Şenol O, Sulukan E, Yildirim S and Ceyhun SB: Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Arch Toxicol. 96:1089–1099. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bulanda S and Janoszka B: Consumption of thermally processed meat containing carcinogenic compounds (Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines) versus a risk of some cancers in humans and the possibility of reducing their formation by natural food additives-a literature review. Int J Environ Res Public Health. 19:47812022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Lin X, Li Z, Li Q and Bi K: Quantitative metabolomics for investigating the value of polyamines in the early diagnosis and therapy of colorectal cancer. Oncotarget. 9:4583–4592. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Meng X, Peng J, Xie X, Yu F, Wang W, Pan Q, Jin H, Huang X, Yu H, Li S, et al: Roles of lncRNA LVBU in regulating urea cycle/polyamine synthesis axis to promote colorectal carcinoma progression. Oncogene. 41:4231–4243. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Auvray F, Perrat A, Arimizu Y, Chagneau CV, Bossuet-Greif N, Massip C, Brugère H, Nougayrède JP, Hayashi T, Branchu P, et al: Insights into the acquisition of the pks island and production of colibactin in the Escherichia coli population. Microb Genom. 7:0005792021.PubMed/NCBI | |
|
Chagneau CV, Payros D, Tang-Fichaux M, Auvray F, Nougayrède JP and Oswald E: The pks island: A bacterial swiss army knife? Colibactin: Beyond DNA damage and cancer. Trends Microbiol. 30:1146–1159. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wami H, Wallenstein A, Sauer D, Stoll M, von Bünau R, Oswald E, Müller R and Dobrindt U: Insights into evolution and coexistence of the colibactin-and yersiniabactin secondary metabolite determinants in enterobacterial populations. Microb Genom. 7:0005772021.PubMed/NCBI | |
|
Lopès A, Billard E, Casse AH, Villéger R, Veziant J, Roche G, Carrier G, Sauvanet P, Briat A, Pagès F, et al: Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int J Cancer. 146:3147–3159. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Salesse L, Lucas C, Hoang MHT, Sauvanet P, Rezard A, Rosenstiel P, Damon-Soubeyrand C, Barnich N, Godfraind C, Dalmasso G and Nguyen HTT: Colibactin-producing escherichia coli induce the formation of invasive carcinomas in a chronic inflammation-associated mouse model. Cancers (Basel). 13:20602021. View Article : Google Scholar : PubMed/NCBI | |
|
Dahmus JD, Kotler DL, Kastenberg DM and Kistler CA: The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J Gastrointest Oncol. 9:769–777. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Oh H, Kim J, Park J, Choi Z, Hong J, Jeon BY, Ka H and Hong M: Structure-based molecular characterization of a putative aspartic proteinase from Bacteroides fragilis. Biochem Biophys Res Commun. 738:1505472024. View Article : Google Scholar : PubMed/NCBI | |
|
Lee CG, Hwang S, Gwon SY, Park C, Jo M, Hong JE and Rhee KJ: Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the E-Cadherin/β-Catenin/NF-κB dependent pathway. Biomedicines. 10:8272022. View Article : Google Scholar : PubMed/NCBI | |
|
Valguarnera E and Wardenburg JB: Good gone bad: One toxin away from disease for bacteroides fragilis. J Mol Biol. 432:765–785. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ko SH, Jeon JI, Woo HA and Kim JM: Bacteroides fragilis enterotoxin upregulates heme oxygenase-1 in dendritic cells via reactive oxygen species-, mitogen-activated protein kinase-, and Nrf2-dependent pathway. World J Gastroenterol. 26:291–306. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bao Y, Tang J, Qian Y, Sun T, Chen H, Chen Z, Sun D, Zhong M, Chen H, Hong J, et al: Long noncoding RNA BFAL1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal cancer via the RHEB/mTOR pathway. Cell Death Dis. 10:6752019. View Article : Google Scholar : PubMed/NCBI | |
|
Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL and Casero RA Jr: Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 108:15354–15359. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, Chung L, Finard BB, Wu X, Fathi P, et al: The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10:421–433. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Knippel RJ, Drewes JL and Sears CL: The cancer microbiome: recent highlights and knowledge gaps. Cancer Discov. 11:2378–2395. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 491:254–258. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Wu S, Wang Q, Yuan Q, Li Y, Reboredo-Rodríguez P, Varela-López A, He Z, Wu F, Hu H and Liu X: Oxidative stress amelioration of novel peptides extracted from enzymatic hydrolysates of Chinese pecan cake. Int J Mol Sci. 23:120862022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Yang L, Luo Y, Dong L and Chen F: Acrylamide-induced hepatotoxicity through oxidative stress: mechanisms and interventions. Antioxid Redox Signal. 38:1122–1137. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kong Y, Li M, Liang G, Linhai Y, Li S, Zhuang Y, Ruomin L, Xiumei C and Guiqin W: Effects of dietary curcumin inhibit deltamethrin-induced oxidative stress, inflammation and cell apoptosis in Channa argus via Nrf2 and NF-κB signaling pathways. Aquaculture. 540:7367442021. View Article : Google Scholar | |
|
Luan C, Lu Z, Chen J, Chen M, Zhao R and Li X: Thalidomide alleviates apoptosis, oxidative damage and inflammation induced by pemphigus vulgaris IgG in HaCat cells and neonatal mice through MyD88. Drug Des Devel Ther. 17:2821–2839. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Li Q and Fu X: Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl Oncol. 12:846–851. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dariya B, Aliya S, Merchant N, Alam A and Nagaraju GP: Colorectal cancer biology, diagnosis, and therapeutic approaches. Crit Rev Oncog. 25:71–94. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Su M, Chen Y, Huang X, Ruan L, Lv Q and Li L: Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne). 14:12342802023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Z, Chen Y and Zhang Y: Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci. 45:842020. View Article : Google Scholar : PubMed/NCBI | |
|
Lad SB, Upadhyay M, Thorat P, Nair D, Moseley GW, Srivastava S, Pradeepkumar PI and Kondabagil K: Biochemical reconstitution of the mimiviral base excision repair pathway. J Mol Biol. 435:1681882023. View Article : Google Scholar : PubMed/NCBI | |
|
Triner D, Devenport SN, Ramakrishnan SK, Ma X, Frieler RA, Greenson JK, Inohara N, Nunez G, Colacino JA, Mortensen RM and Shah YM: Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice. Gastroenterology. 156:1467–1482. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang JR, Wang ST, Wei MN, Liu K, Fu JW, Xing ZH and Shi Z: Piperlongumine alleviates mouse colitis and colitis-associated colorectal cancer. Front Pharmacol. 11:5868852020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang CZ, Zhang CF, Luo Y, Yao H, Yu C, Chen L, Yuan J, Huang WH, Wan JY, Zeng J, et al: Baicalein, an enteric microbial metabolite, suppresses gut inflammation and cancer progression in ApcMin/+ mice. Clin Transl Oncol. 22:1013–1022. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ahlawat S, Kumar P, Mohan H, Goyal S and Sharma KK: Inflammatory bowel disease: Tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol. 47:254–273. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Brasiel PGA, Dutra Luquetti SCP, Peluzio MDCG, Novaes RD and Gonçalves RV: Preclinical evidence of probiotics in colorectal carcinogenesis: A systematic review. Dig Dis Sci. 65:3197–3210. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hor YY, Lew LC, Jaafar MH, Lau AS, Ong JS, Kato T, Nakanishi Y, Azzam G, Azlan A, Ohno H and Liong MT: Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacol Res. 146:1043122019. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Zhu J, Zhang M, Ge S and Zhao L: Probiotic Lactobacillus salivarius Ren prevent dimethylhydrazine-induced colorectal cancer through protein kinase B inhibition. Appl Microbiol Biotechnol. 104:7377–7389. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Reis SK, Socca EAR, de Souza BR, Genaro SC, Durán N and Fávaro WJ: Effects of probiotic supplementation on chronic inflammatory process modulation in colorectal carcinogenesis. Tissue Cell. 87:1022932024. View Article : Google Scholar : PubMed/NCBI | |
|
Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML and Santerre A: immunomodulatory effect of lactobacillus casei in a murine model of colon carcinogenesis. Probiotics Antimicrob Proteins. 12:1012–1024. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Agah S, Alizadeh AM, Mosav M, Ranji P, Khavari-Daneshvar H, Ghasemian F, Bahmani S and Tavassoli A: More protection of lactobacillus acidophilus than bifidobacterium bifidum probiotics on azoxymethane-induced mouse colon cancer. Probiotics Antimicrob Proteins. 11:857–864. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Samanta S: Potential impacts of prebiotics and probiotics on cancer prevention. Anticancer Agents Med Chem. 22:605–628. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Abu-Ghazaleh N, Chua WJ and Gopalan V: Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol. 36:75–88. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Śliżewska K, Markowiak-Kopeć P and Śliżewska W: The role of probiotics in cancer prevention. Cancers (Basel). 13:202020. View Article : Google Scholar : PubMed/NCBI | |
|
Yixia Y, Sripetchwandee J, Chattipakorn N and Chattipakorn SC: The alterations of microbiota and pathological conditions in the gut of patients with colorectal cancer undergoing chemotherapy. Anaerobe. 68:1023612021. View Article : Google Scholar : PubMed/NCBI | |
|
Freedman JC, Li J, Mi E and McClane BA: Identification of an important orphan histidine kinase for the initiation of sporulation and enterotoxin production by clostridium perfringens type F strain SM101. mBio. 10:e02674–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z and Fu W: Progress in the study of colorectal cancer caused by altered gut microbiota after cholecystectomy. Front Endocrinol (Lausanne). 13:8159992022. View Article : Google Scholar : PubMed/NCBI | |
|
Nowak A, Śliżewska K, Błasiak J and Libudzisz Z: The influence of Lactobacillus casei DN 114 001 on the activity of faecal enzymes and genotoxicity of faecal water in the presence of heterocyclic aromatic amines. Anaerobe. 30:129–136. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Verma A and Shukla G: Probiotics lactobacillus rhamnosus GG, lactobacillus acidophilus suppresses DMH-induced procarcinogenic fecal enzymes and preneoplastic aberrant crypt foci in early colon carcinogenesis in sprague dawley rats. Nutr Cancer. 65:84–91. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Zhu C, Ge S, Zhang M, Jiang L, Cui J and Ren F: L actobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1, 2-dimethylhydrazine-induced rat model. J Appl Microbiol. 117:208–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mohania D, Kansal VK, Sagwal R, Batish VK, Grover S and Shah D: Anticarcinogenic effect of probiotic dahi and piroxicam on DMH-induced colorectal carcinogenesis in wistar rats. American J Cancer Ther Pharm. 1:8–24. 2013. | |
|
Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, Hoops SL, Soraisham A, Vayalumkal J, Dersch-Mills D, et al: Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 30:696–711.e5. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Drago L: Probiotics and colon cancer. Microorganisms. 7:662019. View Article : Google Scholar : PubMed/NCBI | |
|
Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V and Namdar A: Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 234:17127–17143. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Derebasi BN, Davran Bulut S, Aksoy Erden B, Sadeghian N, Taslimi P and Celebioglu HU: Effects of p-coumaric acid on probiotic properties of Lactobacillus acidophilus LA-5 and lacticaseibacillus rhamnosus GG. Arch Microbiol. 206:2232024. View Article : Google Scholar : PubMed/NCBI | |
|
Dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL and Peluzio MD: Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res. 37:1–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ho Do M, Seo YS and Park HY: Polysaccharides: Bowel health and gut microbiota. Crit Rev Food Sci Nutr. 61:1212–1224. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Roberfroid M: Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Crit Rev Food Sci Nutr. 33:103–148. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Yeung CY, Chiang Chiau JS, Cheng ML, Chan WT, Chang SW, Chang YH, Jiang CB and Lee HC: Modulations of probiotics on gut microbiota in a 5-fluorouracil-induced mouse model of mucositis. J Gastroenterol Hepatol. 35:806–814. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B and Bromberg JS: Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes. 15:22911642023. View Article : Google Scholar : PubMed/NCBI | |
|
Gyles CL: Shiga toxin-producing Escherichia coli: An overview. J Anim Sci. 85:E45–E62. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Pearce SC, Weber GJ, van Sambeek DM, Soares JW, Racicot K and Breault DT: Intestinal enteroids recapitulate the effects of short-chain fatty acids on the intestinal epithelium. PLoS One. 15:e02302312020. View Article : Google Scholar : PubMed/NCBI | |
|
Ji J and Yang H: Using probiotics as supplementation for Helicobacter pylori antibiotic therapy. Int J Mol Sci. 21:11362020. View Article : Google Scholar : PubMed/NCBI | |
|
Fayol-Messaoudi D, Berger CN, Coconnier-Polter MH, Liévin-Le Moal V and Servin AL: pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against salmonella enterica serovar typhimurium. Appl Environ Microbiol. 71:6008–6013. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Yang S, Lun J, Gao J, Gao X, Gong Z, Wan Y, He X and Cao H: Inhibitory effects of the lactobacillus rhamnosus GG effector Protein HM0539 on inflammatory response through the TLR4/MyD88/NF-ĸB axis. Front Immunol. 11:5514492020. View Article : Google Scholar : PubMed/NCBI | |
|
Paone P and Cani PD: Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut. 69:2232–2243. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Olli KE, Rapp C, O'Connell L, Collins CB, McNamee EN, Jensen O, Jedlicka P, Allison KC, Goldberg MS, Gerich ME, et al: Muc5ac expression protects the colonic barrier in experimental colitis. Inflamm Bowel Dis. 26:1353–1367. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kufe DW: MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis. 41:1173–1183. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Martens EC, Neumann M and Desai MS: Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 16:457–470. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N and Blanquet-Diot S: Experimental models to study intestinal microbes-mucus interactions in health and disease. FEMS Microbiol Rev. 43:457–489. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang J, Wang H, Zhou Y, Zhang H, Zhou H and Zhang X: Slimy partners: The mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med. 53:772–787. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ohland CL and MacNaughton WK: Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 298:G807–G819. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ren C, Zhang Q, de Haan BJ, Faas MM, Zhang H and de Vos P: Protective effects of lactic acid bacteria on gut epithelial barrier dysfunction are toll like receptor 2 and protein kinase C dependent. Food Funct. 11:1230–1234. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wan Z, Wang L, Chen Z, Ma X, Yang X, Zhang J and Jiang Z: In vitro evaluation of swine-derived Lactobacillus reuteri: Probiotic properties and effects on intestinal porcine epithelial cells challenged with enterotoxigenic Escherichia coli K88. J Microbiol Biotechnol. 26:1018–1025. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gu MJ, Song SK, Lee IK, Ko S, Han SE, Bae S, Ji SY, Park BC, Song KD, Lee HK, et al: Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. Vet Res. 47:252016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Wang A, Zeng X, Hou C, Liu H and Qiao S: Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol. 15:322015. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SH, Jeung W, Choi ID, Jeong JW, Lee DE, Huh CS, Kim GB, Hong SS, Shim JJ, Lee JL, et al: Lactic acid bacteria improves Peyer's patch cell-mediated immunoglobulin A and tight-junction expression in a destructed gut microbial environment. J Microbiol Biotechnol. 26:1035–1045. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q and Elson CO: Adaptive immune education by gut microbiota antigens. Immunology. 154:28–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Koboziev I, Webb CR, Furr KL and Grisham MB: Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med. 68:122–133. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E and Perdigón G: Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab. 74:115–124. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Foo NP, Ou Yang H, Chiu HH, Chan HY, Liao CC, Yu CK and Wang YJ: Probiotics prevent the development of 1, 2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. J Agric Food Chem. 59:13337–13345. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Foey A, Habil N, Strachan A and Beal J: Lacticaseibacillus casei strain shirota modulates macrophage-intestinal epithelial cell co-culture barrier integrity, bacterial sensing and inflammatory cytokines. Microorganisms. 10:20872022. View Article : Google Scholar : PubMed/NCBI | |
|
Wong WY, Chan BD, Sham TT, Lee MM, Chan CO, Chau CT, Mok DK, Kwan YW and Tai WC: Lactobacillus casei strain shirota ameliorates dextran sulfate sodium-induced colitis in mice by increasing taurine-conjugated bile acids and inhibiting NF-κB signaling via stabilization of IκBα. Front Nutr. 9:8168362022. View Article : Google Scholar : PubMed/NCBI | |
|
Santiago-López L, Hernández-Mendoza A, Vallejo-Cordoba B, Mata-Haro V, Wall-Medrano A and González-Córdova AF: Milk fermented with lactobacillus fermentum ameliorates indomethacin-induced intestinal inflammation: An exploratory study. Nutrients. 11:16102019. View Article : Google Scholar : PubMed/NCBI | |
|
Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E and Delfino DV: Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol. 198:1149302022. View Article : Google Scholar : PubMed/NCBI | |
|
Fotiadis CI, Stoidis CN, Spyropoulos BG and Zografos ED: Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer. World J Gastroenterol. 14:6453–6457. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rossi M, Keshavarzian A and Bishehsari F: Nutraceuticals in colorectal cancer: A mechanistic approach. Eur J Pharmacol. 833:396–402. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
El-Deeb NM, Yassin AM, Al-Madboly LA and El-Hawiet A: A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb Cell Fact. 17:292018. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Meng L, Zhang C, Zhang F and Fang Y: Extracellular vesicles of Lacticaseibacillus paracasei PC-H1 induce colorectal cancer cells apoptosis via PDK1/AKT/Bcl-2 signaling pathway. Microbiol Res. 255:1269212021. View Article : Google Scholar : PubMed/NCBI | |
|
Jin K, Qian C, Lin J and Liu B: Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front Oncol. 13:10998112023. View Article : Google Scholar : PubMed/NCBI | |
|
Kang YJ, Jang JY, Kwon YH, Lee JH, Lee S, Park Y, Jung YS, Im E, Moon HR, Chung HY and Kim ND: MHY2245, a sirtuin inhibitor, induces cell cycle arrest and apoptosis in HCT116 human colorectal cancer cells. Int J Mol Sci. 23:15902022. View Article : Google Scholar : PubMed/NCBI | |
|
Artale S, Grillo N, Lepori S, Butti C, Bovio A, Barzaghi S, Colombo A, Castiglioni E, Barbarini L, Zanlorenzi L, et al: A nutritional approach for the management of chemotherapy-induced diarrhea in patients with colorectal cancer. Nutrients. 14:18012022. View Article : Google Scholar : PubMed/NCBI | |
|
Burns AJ and Rowland IR: Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat Res. 551:233–243. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Pop OL, Suharoschi R and Gabbianelli R: Biodetoxification and protective properties of probiotics. Microorganisms. 10:12782022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XB and Ohta Y: Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J Dairy Sci. 74:1477–1481. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Shao X, Xu B, Chen C, Li P and Luo H: The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food: A review. Crit Rev Food Sci Nutr. 62:5950–5963. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nowak A and Libudzisz Z: Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur J Nutr. 48:419–427. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Terahara M, Meguro S and Kaneko T: Effects of lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Biosci Biotechnol Biochem. 62:197–200. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Orrhage K, Sillerström E, Gustafsson JA, Nord CE and Rafter J: Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res. 311:239–248. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Lázaro Á, Vila-Donat P and Manyes L: Emerging mycotoxins and preventive strategies related to gut microbiota changes: Probiotics, prebiotics, and postbiotics-a systematic review. Food Funct. 15:8998–9023. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Xie M and Wei D: Biological detoxification of mycotoxins: Current status and future advances. Int J Mol Sci. 23:10642022. View Article : Google Scholar : PubMed/NCBI | |
|
Cuevas-González PF, González-Córdova AF, Vallejo-Cordoba B, Aguilar-Toalá JE, Hall FG, Urbizo-Reyes UC, Liceaga AM, Hernandez-Mendoza A and García HS: Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents-a review. Crit Rev Food Sci Nutr. 62:160–180. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
El-Nezami HS, Chrevatidis A, Auriola S, Salminen S and Mykkänen H: Removal of common fusarium toxins in vitro by strains of lactobacillus and propionibacterium. Food Addit Contam. 19:680–686. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zoghi A, Khosravi-Darani K and Sohrabvandi S: Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chem. 14:84–98. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Massoud R and Zoghi A: Potential probiotic strains with heavy metals and mycotoxins bioremoval capacity for application in foodstuffs. J Appl Microbiol. 133:1288–1307. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez J and Tait SW: Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer. 112:957–962. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Su S, Chhabra G, Singh CK, Ndiaye MA and Ahmad N: PLK1 inhibition-based combination therapies for cancer management. Transl Oncol. 16:1013322022. View Article : Google Scholar : PubMed/NCBI | |
|
Sankarapandian V, Venmathi Maran BA, Rajendran RL, Jogalekar MP, Gurunagarajan S, Krishnamoorthy R, Gangadaran P and Ahn BC: An update on the effectiveness of probiotics in the prevention and treatment of cancer. Life (Basel). 12:592022.PubMed/NCBI | |
|
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kiraz Y, Adan A, Kartal Yandim M and Baran Y: Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 37:8471–8486. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HH, Luo CW, Chen YL, Chiang JY, Huang CR, Wang YT, Chen CH, Guo J and Yip HK: Probiotic-facilitated cytokine-induced killer cells suppress peritoneal carcinomatosis and liver metastasis in colorectal cancer cells. Int J Biol Sci. 20:6162–6180. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Karimi Ardestani S, Tafvizi F and Tajabadi Ebrahimi M: Heat-killed probiotic bacteria induce apoptosis of HT-29 human colon adenocarcinoma cell line via the regulation of Bax/Bcl2 and caspases pathway. Hum Exp Toxicol. 38:1069–1081. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Baghbani-Arani F, Asgary V and Hashemi A: Cell-free extracts of Lactobacillus acidophilus and Lactobacillus delbrueckii display antiproliferative and antioxidant activities against HT-29 cell line. Nutr Cancer. 72:1390–1399. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cotter PD, Ross RP and Hill C: Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol. 11:95–105. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, Akutsu H, Tanabe H and Kohgo Y: Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 7:123652016. View Article : Google Scholar : PubMed/NCBI | |
|
Thirabunyanon M, Boonprasom P and Niamsup P: Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett. 31:571–576. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Khosrovan Z, Haghighat S and Mahdavi M: The probiotic bacteria induce apoptosis in breast and colon cancer cells: An immunostimulatory effect. Immunoregulation. 3:37–50. 2020. View Article : Google Scholar | |
|
Alshuail N, Alehaideb Z, Alghamdi S, Suliman R, Al-Eidi H, Ali R, Barhoumi T, Almutairi M, Alwhibi M, Alghanem B, et al: Achillea fragrantissima (Forssk.) Sch.Bip flower dichloromethane extract exerts anti-proliferative and pro-apoptotic properties in human triple-negative breast cancer (MDA-MB-231) cells: In vitro and in silico studies. Pharmaceuticals (Basel). 15:10602022. View Article : Google Scholar : PubMed/NCBI | |
|
Asoudeh-Fard A, Barzegari A, Dehnad A, Bastani S, Golchin A and Omidi Y: Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. Bioimpacts. 7:193–198. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Isazadeh A, Hajazimian S, Shadman B, Safaei S, Bedoustani AB, Chavoshi R, Shanehbandi D, Mashayekhi M, Nahaei M and Baradaran B: Anti-cancer effects of probiotic lactobacillus acidophilus for colorectal cancer cell line caco-2 through apoptosis induction. Pharm Sci. 27:262–267. 2021. View Article : Google Scholar | |
|
Yavari M and Ahmadizadeh C: Effect of the cellular extract of co-cultured lactobacillus casei on BAX and Human β-Defensin 2 genes expression in HT29 cells. Intern Med Today. 26:364–381. 2020. | |
|
Małaczewska J and Kaczorek-Łukowska E: Nisin-A lantibiotic with immunomodulatory properties: A review. Peptides. 137:1704792021. View Article : Google Scholar : PubMed/NCBI | |
|
Singh A, Alexander SG and Martin S: Gut microbiome homeostasis and the future of probiotics in cancer immunotherapy. Front Immunol. 14:11144992023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu YC, Wu CR and Huang TW: Preventive effect of probiotics on oral mucositis induced by cancer treatment: A systematic review and meta-analysis. Int J Mol Sci. 23:132682022. View Article : Google Scholar : PubMed/NCBI | |
|
Nazir Y, Hussain SA, Abdul Hamid A and Song Y: Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. Biomed Res Int. 2018:34284372018. View Article : Google Scholar : PubMed/NCBI | |
|
Arora M, Baldi A, Kapila N, Bhandari S and Jeet K: Impact of probiotics and prebiotics on colon cancer: Mechanistic insights and future approaches. Curr Cancer Ther Rev. 15:27–36. 2019. View Article : Google Scholar | |
|
Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W and Cao H: Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Lett. 526:225–235. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Wang H and Zhu MJ: A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 196:249–254. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wong JM, De Souza R, Kendall CW, Emam A and Jenkins DJ: Colonic health: Fermentation and short chain fatty acids. J Clin Gastroenterol. 40:235–243. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bhogoju S and Nahashon S: Recent advances in probiotic application in animal health and nutrition: A review. Agriculture. 12:3042022. View Article : Google Scholar | |
|
Encarnação JC, Abrantes AM, Pires AS and Botelho MF: Revisit dietary fiber on colorectal cancer: Butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 34:465–478. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q and Chen W: Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact. 19:232020. View Article : Google Scholar : PubMed/NCBI | |
|
Lu SY, Liu Y, Tang S, Zhang W, Yu Q, Shi C and Cheong KL: Gracilaria lemaneiformis polysaccharides alleviate colitis by modulating the gut microbiota and intestinal barrier in mice. Food Chem X. 13:1001972022. View Article : Google Scholar : PubMed/NCBI | |
|
Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O and Laszczyńska M: Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 66:1–12. 2019.PubMed/NCBI | |
|
Yoo JY, Groer M, Dutra SVO, Sarkar A and McSkimming DI: Gut microbiota and immune system interactions. Microorganisms. 8:15872020. View Article : Google Scholar : PubMed/NCBI | |
|
Woo V and Alenghat T: Epigenetic regulation by gut microbiota. Gut Microbes. 14:20224072022. View Article : Google Scholar : PubMed/NCBI | |
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K and Santibanez JF: Targeting histone deacetylases: Opportunities for cancer treatment and chemoprevention. Pharmaceutics. 14:2092022. View Article : Google Scholar : PubMed/NCBI | |
|
Faghfoori Z, Gargari BP, Gharamaleki AS, Bagherpour H and Khosroushahi AY: Cellular and molecular mechanisms of probiotics effects on colorectal cancer. J Funct Foods. 18:463–472. 2015. View Article : Google Scholar | |
|
Sanaei M and Kavoosi F: Effect of sodium butyrate on p16INK4a, p14ARF, p15INK4b, Class I HDACs (HDACs 1, 2, 3) Class II HDACs (HDACs 4, 5, 6), Cell growth inhibition and apoptosis induction in pancreatic cancer AsPC-1 and colon cancer HCT-116 cell lines. Asian Pac J Cancer Prev. 23:795–802. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chai L, Luo Q, Cai K, Wang K and Xu B: Reduced fecal short-chain fatty acids levels and the relationship with gut microbiota in IgA nephropathy. BMC Nephrol. 22:2092021. View Article : Google Scholar : PubMed/NCBI | |
|
Piotrowska M, Binienda A and Fichna J: The role of fatty acids in Crohn's disease pathophysiology-An overview. Mol Cell Endocrinol. 538:1114482021. View Article : Google Scholar : PubMed/NCBI | |
|
Haase S, Haghikia A, Wilck N, Müller DN and Linker RA: Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 154:230–238. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ni D, Tan J, Niewold P, Spiteri AG, Pinget GV, Stanley D, King NJC and Macia L: Impact of dietary fiber on west nile virus infection. Front Immunol. 13:7844862022. View Article : Google Scholar : PubMed/NCBI | |
|
Shanmugam G, Rakshit S and Sarkar K: HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol. 16:1013122022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SY, Kang JH, Kim JH, Jeong JW, Kim HW, Oh DH, Yoon SH and Hur SJ: Relationship between gut microbiota and colorectal cancer: Probiotics as a potential strategy for prevention. Food Res Int. 156:1113272022. View Article : Google Scholar : PubMed/NCBI | |
|
Althagafi HA: The potential anticancer potency of kolaviron on colorectal adenocarcinoma (Caco-2) cells. Anticancer Agents Med Chem. 24:1097–1108. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Li S, Qiu X, Cong J, Zhou J and Miu W: Curcumin inhibits cell viability and increases apoptosis of SW620 human colon adenocarcinoma cells via the caudal type homeobox-2 (CDX2)/Wnt/β-catenin pathway. Med Sci Monit. 25:7451–7458. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Deng W, Xu HZ, Zhou C, Zhang F, Chen J, Bao Q, Zhou X, Liu M, Li J and Liu C: Short-chain fatty acids reprogram metabolic profiles with the induction of reactive oxygen species production in human colorectal adenocarcinoma cells. Comput Struct Biotechnol J. 21:1606–1620. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng H, Hamlin SK, Safratowich BD, Cheng WH and Johnson LK: Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: Linking dietary fiber to cancer prevention. Nutr Res. 83:63–72. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Aziz T, Sarwar A, Daudzai Z, Naseeb J, Din JU, Aftab U, Saidal A, Ghani M, Khan AA, Naz S, et al: Conjugated fatty acids (CFAS) production via various bacterial strains and their applications. A review. J Chil Chem Soc. 67:5445–5452. 2022. View Article : Google Scholar | |
|
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C and Chen W: Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res. 93:1012572024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu XX, Zhang HY, Song X, Yang Y, Xiong ZQ, Xia YJ and Ai LZ: Reasons for the differences in biotransformation of conjugated linoleic acid by Lactobacillus plantarum. J Dairy Sci. 104:11466–11473. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Qian Y, Chun ZJ, Liu ZY and Xu L: Probiotics in gastrointestinal cancer: Antitumoral effects and molecular mechanisms of action. Zhonghua Nei Ke Za Zhi. 61:1167–1171. 2022.(In Chinese). PubMed/NCBI | |
|
Cho HJ, Kim WK, Kim EJ, Jung KC, Park S, Lee HS, Tyner AL and Park JH: Conjugated linoleic acid inhibits cell proliferation and ErbB3 signaling in HT-29 human colon cell line. Am J Physiol Gastrointest Liver Physiol. 284:G996–G1005. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Ma W, Zhao J, Stanton C, Ross RP, Zhang H, Chen W and Yang B: Lactobacillus plantarum ameliorates colorectal cancer by ameliorating the intestinal barrier through the CLA-PPAR-γ axis. J Agric Food Chem. 72:19766–19785. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dachev M, Bryndová J, Jakubek M, Moučka Z and Urban M: The effects of conjugated linoleic acids on cancer. Processes. 9:4542021. View Article : Google Scholar | |
|
Shahzad MMK, Felder M, Ludwig K, Van Galder HR, Anderson ML, Kim J, Cook ME, Kapur AK and Patankar MS: Trans10, cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src. PLoS One. 13:e01895242018. View Article : Google Scholar : PubMed/NCBI | |
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, et al: Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int. 172:1131582023. View Article : Google Scholar : PubMed/NCBI | |
|
Saber A, Alipour B, Faghfoori Z and Yari Khosroushahi A: Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol. 43:96–115. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Basak S and Duttaroy AK: Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients. 12:19132020. View Article : Google Scholar : PubMed/NCBI | |
|
Mei Y, Chen H, Yang B, Zhao J, Zhang H and Chen W: Research progress on conjugated linoleic acid bio-conversion in Bifidobacterium. Int J Food Microbiol. 369:1095932022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Yang B, Ross RP, Jin Y, Stanton C, Zhao J, Zhang H and Chen W: Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation. J Agric Food Chem. 67:13282–13298. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cruz BCS, Sarandy MM, Messias AC, Gonçalves RV, Ferreira CLLF and Peluzio MCG: Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: A systematic review. Nutr Rev. 78:667–687. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Żółkiewicz J, Marzec A, Ruszczyński M and Feleszko W: Postbiotics-A step beyond pre- and probiotics. Nutrients. 12:21892020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen P, Yang C, Ren K, Xu M, Pan C, Ye X and Li L: Modulation of gut microbiota by probiotics to improve the efficacy of immunotherapy in hepatocellular carcinoma. Front Immunol. 15:15049482024. View Article : Google Scholar : PubMed/NCBI | |
|
De Souza JB, Brelaz-de-Castro MCA and Cavalcanti IMF: Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sci. 290:1202022022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Jia Y, Wu R, Chen Z and Yan R: Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem Pharmacol. 190:1145662021. View Article : Google Scholar : PubMed/NCBI | |
|
Josephy PD and Allen-Vercoe E: Reductive metabolism of azo dyes and drugs: Toxicological implications. Food Chem Toxicol. 178:1139322023. View Article : Google Scholar : PubMed/NCBI | |
|
Molska M and Reguła J: Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients. 11:24532019. View Article : Google Scholar : PubMed/NCBI | |
|
Nowak A, Paliwoda A and Błasiak J: Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr. 59:3456–3467. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
De Roos NM and Katan MB: Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am J Clin Nutr. 71:405–411. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Jacquier EF, van de Wouw M, Nekrasov E, Contractor N, Kassis A and Marcu D: Local and systemic effects of bioactive food ingredients: Is there a role for functional foods to prime the gut for resilience? Foods. 13:7392024. View Article : Google Scholar : PubMed/NCBI | |
|
Phannasorn W, Pharapirom A, Thiennimitr P, Guo H, Ketnawa S and Wongpoomchai R: Enriched riceberry bran oil exerts chemopreventive properties through anti-inflammation and alteration of gut microbiota in carcinogen-induced liver and colon carcinogenesis in rats. Cancers (Basel). 14:43582022. View Article : Google Scholar : PubMed/NCBI | |
|
Walia S, Kamal R, Kanwar SS and Dhawan DK: Hepato-protective role of chemo-preventive probiotics during DMH-induced CRC in rats. J Biochem Mol Toxicol. 35:e227882021. View Article : Google Scholar : PubMed/NCBI | |
|
Vougiouklaki D, Tsironi T, Tsantes AG, Tsakali E, Van Impe JFM and Houhoula D: Probiotic properties and antioxidant activity in vitro of lactic acid bacteria. Microorganisms. 11:12642023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Huang R, Niu Y, Zhang P, Li Y and Zhang W: Chemical characteristics, antioxidant capacity, bacterial community, and metabolite composition of mulberry silage ensiling with lactic acid bacteria. Front Microbiol. 15:13632562024. View Article : Google Scholar : PubMed/NCBI | |
|
Mobasherpour P, Yavarmanesh M and Edalatian Dovom MR: Antitumor properties of traditional lactic acid bacteria: Short-chain fatty acid production and interleukin 12 induction. Heliyon. 10:e361832024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang C and Lu Z: Health promoting activities of probiotics. J Food Biochem. 43:e129442019. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez FG, Cuencas Barrientos ME, Mozzi F and Pescuma M: Survival of selenium-enriched lactic acid bacteria in a fermented drink under storage and simulated gastro-intestinal digestion. Food Res Int. 123:115–124. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tsivileva O, Shaternikov A and Evseeva N: Basidiomycetes polysaccharides regulate growth and antioxidant defense system in wheat. Int J Mol Sci. 25:68772024. View Article : Google Scholar : PubMed/NCBI | |
|
Salimi F and Farrokh P: Recent advances in the biological activities of microbial exopolysaccharides. World J Microbiol Biotechnol. 39:2132023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Xiao Y, Wang H, Zhang H, Chen W and Lu W: Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol Res. 274:1274322023. View Article : Google Scholar : PubMed/NCBI | |
|
Adesulu-Dahunsi AT, Sanni AI and Jeyaram K: Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT. 87:432–442. 2018. View Article : Google Scholar | |
|
Dougherty MW and Jobin C: Intestinal bacteria and colorectal cancer: Etiology and treatment. Gut Microbes. 15:21850282023. View Article : Google Scholar : PubMed/NCBI | |
|
Kang X, Liu C, Ding Y, Ni Y, Ji F, Lau HCH, Jiang L, Sung JJ, Wong SH and Yu J: Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells. Gut. 72:2112–2122. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Liao Y, Wei C, Ma Y, Wang F, Chen Y, Zhao B, Ji H, Wang D and Tang D: Potential ability of probiotics in the prevention and treatment of colorectal cancer. Clin Med Insights Oncol. 17:117955492311882252023. View Article : Google Scholar : PubMed/NCBI | |
|
Jain S, Purohit A, Nema P, Vishwakarma H, Qureshi A and kumar JP: Pathways of targeted therapy for colorectal cancer. J Drug Delivery Ther. 12:217–221. 2022. View Article : Google Scholar | |
|
Chrysostomou D, Roberts LA, Marchesi JR and Kinross JM: Gut Microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology. 164:198–213. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lu L, Dong J, Liu Y, Qian Y, Zhang G, Zhou W, Zhao A, Ji G and Xu H: New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Front Pharmacol. 13:9647932022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S and Li J: Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology. 20:3712022. View Article : Google Scholar : PubMed/NCBI | |
|
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A and El Gaaied ABA: Gut microbiota, an emergent target to shape the efficiency of cancer therapy. Explor Target Antitumor Ther. 4:240–265. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mahdy MS, Azmy AF, Dishisha T, Mohamed WR, Ahmed KA, Hassan A, Aidy SE and El-Gendy AO: Irinotecan-gut microbiota interactions and the capability of probiotics to mitigate Irinotecan-associated toxicity. BMC Microbiol. 23:532023. View Article : Google Scholar : PubMed/NCBI | |
|
Ren Z, Chen S, Lv H, Peng L, Yang W, Chen J, Wu Z and Wan C: Effect of Bifidobacterium animalis subsp. lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol Res. 184:1064062022. View Article : Google Scholar : PubMed/NCBI | |
|
Cai B, Pan J, Chen H, Chen X, Ye Z, Yuan H, Sun H and Wan P: Oyster polysaccharides ameliorate intestinal mucositis and improve metabolism in 5-fluorouracil-treated S180 tumour-bearing mice. Carbohydr Polym. 256:1175452021. View Article : Google Scholar : PubMed/NCBI | |
|
Capurso L: Thirty years of Lactobacillus rhamnosus GG: A review. J Clin Gastroenterol. 53:S1–S41. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Fu L, Li Y, Wang W, Gong M, Zhang J, Dong X, Huang J, Wang Q, Mackay CR, et al: Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33:988–1000. e72021. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Ling Y, Zhang Z, Mertens RT, Cao Q, Xu X, Guo K, Shi Q, Zhang X, Huo L, et al: Butyrate reverses ferroptosis resistance in colorectal cancer by inducing c-Fos-dependent xCT suppression. Redox Biol. 65:1028222023. View Article : Google Scholar : PubMed/NCBI | |
|
Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F and Moodi Ghalibaf A: The role of microbiome and probiotics in chemo-radiotherapy-induced diarrhea: A narrative review of the current evidence. Cancer Rep (Hoboken). 7:e700292024. View Article : Google Scholar : PubMed/NCBI | |
|
Moraitis I, Guiu J and Rubert J: Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab. 34:489–501. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Long L, Zhang Y, Zang J, Liu P, Liu W, Sun C, Tian D, Li P, Tian J and Xiao J: Investigating the relationship between postoperative radiotherapy and intestinal flora in rectal cancer patients: A study on efficacy and radiation enteritis. Front Oncol. 14:14084362024. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez-Mercado VJ, Henderson WA, Sarkar A, Lim J, Saligan LN, Berk L, Dishaw L, McMillan S, Groer M, Sepehri F and Melkus GD: Changes in gut microbiome associated with co-occurring symptoms development during chemo-radiation for rectal cancer: A proof of concept study. Biol Res Nurs. 23:31–41. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Qadami G, Van Sebille Y, Le H and Bowen J: Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Rev Gastroenterol Hepatol. 13:485–496. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, Li WB, Tang D, Qiu MJ, Wang XC, et al: The role of Fusobacterium nucleatum in colorectal cancer: From carcinogenesis to clinical management. Chronic Dis Transl Med. 5:178–187. 2019.PubMed/NCBI | |
|
Jin Y, Wang J and Wang Y: Unraveling the complexity of radiotherapy- and chemotherapy-induced oral mucositis: Insights into pathogenesis and intervention strategies. Support Care Cancer. 33:1952025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Zhang J, Zhang Y, Xue J, Wang H, Tan X, Jiao X and Jiang H: The recovery of intestinal barrier function and changes in oral microbiota after radiation therapy injury. Front Cell Infect Microbiol. 13:12886662024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen QY, Tian HL, Yang B, Lin ZL, Zhao D, Ye C, Zhang XY, Qin HL and Li N: Effect of intestinal preparation on the efficacy and safety of fecal microbiota transplantation treatment. Zhonghua Wei Chang Wai Ke Za Zhi. 23:48–55. 2020.(In Chinese). PubMed/NCBI | |
|
Al Zein M, Boukhdoud M, Shammaa H, Mouslem H, El Ayoubi LM, Iratni R, Issa K, Khachab M, Assi HI, Sahebkar A and Eid AH: Immunotherapy and immunoevasion of colorectal cancer. Drug Discov Today. 28:1036692023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun BL: Current microsatellite instability testing in management of colorectal cancer. Clin Colorectal Cancer. 20:e12–e20. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X and Jiao F: Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol. 120:1104172023. View Article : Google Scholar : PubMed/NCBI | |
|
Salek Farrokhi A, Darabi N, Yousefi B, Askandar RH, Shariati M and Eslami M: Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol. 234:14941–14950. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Wang S, Zheng B, Qiu X, Wang H and Chen L: Modulation of gut microbiota to enhance effect of checkpoint inhibitor immunotherapy. Front Immunol. 12:6691502021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Wang D, Zhang Z, Xian J and Bai X: Effect of gut microbiota-derived metabolites on immune checkpoint inhibitor therapy: Enemy or friend? Molecules. 27:47992022. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y and Liu F: The role of the gut microbiota in tumor, immunity, and immunotherapy. Front Immunol. 15:14109282024. View Article : Google Scholar : PubMed/NCBI | |
|
Aghamajidi A and Maleki Vareki S: The effect of the gut microbiota on systemic and anti-tumor immunity and response to systemic therapy against cancer. Cancers (Basel). 14:35632022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Yang H and Li Y: The triple interactions between gut microbiota, mycobiota and host immunity. Crit Rev Food Sci Nutr. 63:11604–11624. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Noguera-Fernández N, Candela-González J and Orenes-Piñero E: Probiotics, prebiotics, fecal microbiota transplantation, and dietary patterns in inflammatory bowel disease. Mol Nutr Food Res. 68:e24004292024. View Article : Google Scholar : PubMed/NCBI | |
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, et al: Fecal microbiota transplantation: Current challenges and future landscapes. Clin Microbiol Rev. 37:e00060222024. View Article : Google Scholar : PubMed/NCBI | |
|
Selvamani S, Mehta V, Ali El Enshasy H, Thevarajoo S, El Adawi H, Zeini I, Pham K, Varzakas T and Abomoelak B: Efficacy of probiotics-based interventions as therapy for inflammatory bowel disease: A recent update. Saudi J Biol Sci. 29:3546–3567. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH, Yu FJ, Hu HM, Hsu PI, Wang JY and Wu DC: Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 118 (Suppl 1):S23–S31. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu H, Li XX, Han X, Chen BX, Zhang XH, Gao S, Xu DQ, Wang Y, Gao ZK, Yu L, et al: Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses. Front Microbiol. 14:11268082023. View Article : Google Scholar : PubMed/NCBI | |
|
Chang CW, Lee HC, Li LH, Chiang Chiau JS, Wang TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, et al: Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int J Mol Sci. 21:3862020. View Article : Google Scholar : PubMed/NCBI | |
|
Pi Y, Wu Y, Zhang X, Lu D, Han D, Zhao J, Zheng X, Zhang S, Ye H, Lian S, et al: Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization. Microbiome. 11:192023. View Article : Google Scholar : PubMed/NCBI | |
|
Song Q, Gao Y, Liu K, Tang Y, Man Y and Wu H: Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice. J Transl Med. 22:10282024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu R, Xiong R, Li Y, Chen J and Yan R: Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun. 141:1030622023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Cao C, Ren Y, Weng S, Liu L, Guo C, Wang L, Han X, Ren J and Liu Z: Antitumor effects of fecal microbiota transplantation: Implications for microbiome modulation in cancer treatment. Front Immunol. 13:9494902022. View Article : Google Scholar : PubMed/NCBI | |
|
Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G and Facciotti F: Gut microbiota manipulation as a tool for colorectal cancer management: Recent advances in its use for therapeutic purposes. Int J Mol Sci. 21:53892020. View Article : Google Scholar : PubMed/NCBI |