|
1
|
Bach K and Simman R: The multispecialty
toxin: A literature review of botulinum toxin. Plast Reconstr Surg
Glob Open. 10:e42282022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel
J, Pons L, Foster K, Beard M and Bard F: Botulinum toxin
intoxication requires retrograde transport and membrane
translocation at the ER in RenVM neurons. Elife. 12:RP928062024.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Joensuu M, Syed P, Saber SH, Lanoue V,
Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, et al:
Presynaptic targeting of botulinum neurotoxin type A requires a
tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic
vesicle entry. EMBO J. 42:e1120952023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Matak I, Bölcskei K, Bach-Rojecky L and
Helyes Z: Mechanisms of Botulinum toxin type A action on pain.
Toxins (Basel). 11:4592019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Montecucco C, Schiavo G and Rossetto O:
The mechanism of action of tetanus and botulinum neurotoxins. Arch
Toxicol Suppl. 18:342–354. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Eleopra R, Tugnoli V, Quatrale R, Rossetto
O and Montecucco C: Different types of botulinum toxin in humans.
Mov Disord. 19 (Suppl 8):S53–S59. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dressler D and Johnson EA: Botulinum toxin
therapy: Past, present and future developments. J Neural Transm
(Vienna). 129:829–833. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pirazzini M, Rossetto O, Eleopra R and
Montecucco C: Botulinum neurotoxins: Biology, pharmacology, and
toxicology. Pharmacol Rev. 69:200–235. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang J, Meng J, Lawrence GW, Zurawski TH,
Sasse A, Bodeker MO, Gilmore MA, Fernández-Salas E, Francis J,
Steward LE, et al: Novel chimeras of botulinum neurotoxins A and E
unveil contributions from the binding, translocation, and protease
domains to their functional characteristics. J Biol Chem.
283:16993–17002. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jackson JL, Kuriyama A and Hayashino Y:
Botulinum toxin A for prophylactic treatment of migraine and
tension headaches in adults: A meta-analysis. JAMA. 307:1736–1745.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Atraszkiewicz D, Ito R and Bahra A: The
efficacy of botulinum toxin type-A for intractable chronic migraine
patients with no pain-free time. Br J Pain. 16:41–49. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lang H, Peng C, Wu K, Chen X, Jiang X, He
L and Chen N: Efficacy and safety of onabotulinumtoxinA in the
treatment of medication overuse headache: A systematic review.
Front Neurol. 15:14531832024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Morra ME, Elgebaly A, Elmaraezy A, Khalil
AM, Altibi AM, Vu TL, Mostafa MR, Huy NT and Hirayama K:
Therapeutic efficacy and safety of Botulinum toxin A therapy in
trigeminal neuralgia: A systematic review and meta-analysis of
randomized controlled trials. J Headache Pain. 17:632016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Naumann M, Boo LM, Ackerman AH and
Gallagher CJ: Immunogenicity of botulinum toxins. J Neural Transm
(Vienna). 120:275–290. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mejia NI, Vuong KD and Jankovic J:
Long-term botulinum toxin efficacy, safety, and immunogenicity. Mov
Disord. 20:592–597. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yu M, Wu J, Shi J and Farokhzad OC:
Nanotechnology for protein delivery: Overview and perspectives. J
Control Release. 240:24–37. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Strohl WR: Fusion proteins for half-life
extension of biologics as a strategy to make biobetters. BioDrugs.
29:215–239. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kontermann RE: Strategies to extend plasma
half-lives of recombinant antibodies. BioDrugs. 23:93–109. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sokalingam S, Raghunathan G, Soundrarajan
N and Lee SG: A study on the effect of surface lysine to arginine
mutagenesis on protein stability and structure using green
fluorescent protein. PLoS One. 7:e404102012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Austerberry JI, Thistlethwaite A, Fisher
K, Golovanov AP, Pluen A, Esfandiary R, van der Walle CF, Warwicker
J, Derrick JP and Curtis R: Arginine to lysine mutations increase
the aggregation stability of a single-chain variable fragment
through unfolded-state interactions. Biochemistry. 58:3413–3421.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hershko A and Ciechanover A: The ubiquitin
system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Park J, Cho J and Song EJ:
Ubiquitin-proteasome system (UPS) as a target for anticancer
treatment. Arch Pharm Res. 43:1144–1161. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kim Y, Kim EK, Chey Y, Song MJ and Jang
HH: Targeted protein degradation: Principles and applications of
the proteasome. Cells. 12:18462023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sun M and Zhang X: Current methodologies
in protein ubiquitination characterization: From ubiquitinated
protein to ubiquitin chain architecture. Cell Biosci. 12:1262022.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen
Q and Wan Y: The emerging role of deubiquitinating enzymes in
genomic integrity, diseases, and therapeutics. Cell Biosci.
6:622016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang J, Zhou Q, Ding J, Yin T, Ye P and
Zhang Y: The conceivable functions of protein ubiquitination and
deubiquitination in reproduction. Front Physiol. 13:8862612022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cai B and Jiang X: Computational methods
for ubiquitination site prediction using physicochemical properties
of protein sequences. BMC Bioinformatics. BMC Bioinformatics.
17:1162016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jumper J, Evans R, Pritzel A, Green T,
Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A,
Potapenko A, et al: Highly accurate protein structure prediction
with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Serrera-Figallo MA, Ruiz-de-León-Hernández
G, Torres-Lagares D, Castro-Araya A, Torres-Ferrerosa O,
Hernández-Pacheco E and Gutierrez-Perez JL: Use of botulinum toxin
in orofacial clinical practice. Toxins (Basel). 11:1122020.
View Article : Google Scholar
|
|
30
|
Wollmer MA, Magid M, Kruger THC and Finzi
E: Treatment of depression with botulinum toxin. Toxins (Basel).
14:3832022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Park J and Park HJ: Botulinum toxin for
the treatment of neuropathic pain. Toxins (Basel). 9:2602017.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Anandan C and Jankovic J: Botulinum toxin
in movement disorders: An update. Toxins (Basel). 13:422021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cohen JL, Green LJ, Beer KR, Liu Y and
Gallagher CJ: Prior botulinum toxin treatment does not impact
efficacy or safety in clinical trials: Analysis of
daxibotulinumtoxinA for injection in the SAKURA program. Dermatol
Surg. 47:511–515. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ascher B, Rzany B, Kestemont P, Hilton S,
Heckmann M, Bodokh I, Noah EM, Boineau D, Kerscher M, Volteau M, et
al: Liquid formulation of abobotulinumtoxinA: A 6-month, phase 3,
double-blind, randomized, placebo-controlled study of a single
treatment, ready-to-use toxin for moderate-to-severe glabellar
lines. Aesthet Surg J. 40:93–104. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Nestor MS, Arnold D and Fischer DL: The
mechanisms of action and use of botulinum neurotoxin type A in
aesthetics: Key clinical postulates II. J Cosmet Dermatol.
11:2785–2804. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yoelin SG, Dhawan SS, Vitarella D, Ahmad
W, Hasan F and Abushakra S: Safety and efficacy of EB-001, a novel
type E botulinum toxin, in subjects with glabellar frown lines:
Results of a phase 2, randomized, placebo-controlled,
ascending-dose study. Plast Reconstr Surg. 142:847e–855e. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Swaminathan S and Eswaramoorthy S:
Structural analysis of the catalytic and binding sites of
Clostridium botulinum neurotoxin B. Nat Struct Biol.
7:693–699. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tsai YC, Maditz R, Kuo CL, Fishman PS,
Shoemaker CB, Oyler GA and Weissman AM: Targeting botulinum
neurotoxin persistence by the ubiquitin-proteasome system. Proc
Natl Acad Sci USA. 107:16554–16559. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sen E, Kota KP, Panchal RG, Bavari S and
Kiris E: Screening of a focused ubiquitin-proteasome pathway
inhibitor library identifies small molecules as novel modulators of
Botulinum neurotoxin type A toxicity. Front Pharmacol.
12:7639502021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Shoemaker CB and Oyler GA: Persistence of
Botulinum neurotoxin inactivation of nerve function. Curr Top
Microbiol Immunol. 364:179–196. 2013.PubMed/NCBI
|
|
41
|
Kapuria V, Peterson LF, Fang D, Bornmann
WG, Talpaz M and Donato NJ: Deubiquitinase inhibition by
small-molecule WP1130 triggers aggresome formation and tumor cell
apoptosis. Cancer Res. 70:9265–9276. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Larbret F, Biber P, Dubois N, Ivanov S,
Lafanechere L, Tartare-Deckert S and Deckert M: Deubiquitinase
inhibitors impair leukemic cell migration through cofilin oxidation
and alteration of actin reorganization. Front Pharmacol.
12:7782162022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Breidenbach MA and Brunger AT: Substrate
recognition strategy for botulinum neurotoxin serotype A. Nature.
432:925–929. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gardner AP, Barbieri JT and Pellett S: How
Botulinum neurotoxin light chain A1 maintains stable association
with the intracellular neuronal plasma membrane. Toxins (Basel).
14:8142022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lacy DB, Tepp W, Cohen AC, DasGupta BR and
Stevens RC: Crystal structure of botulinum neurotoxin type A and
implications for toxicity. Nat Struct Biol. 5:898–902. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kumaran D, Rawat R, Ahmed SA and
Swaminathan S: Substrate binding mode and its implication on drug
design for botulinum neurotoxin A. PLoS Pathog. 4:e10001652008.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Atassi MZ and Oshima M: Structure,
activity, and immune (T and B cell) recognition of botulinum
neurotoxins. Crit Rev Immunol. 19:219–260. 1999.PubMed/NCBI
|
|
48
|
Cai F, Adrion CB and Keller JE: Comparison
of extracellular and intracellular potency of Botulinum
neurotoxins. Infect Immun. 74:5617–5624. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gao Y, Joshi M, Zhao Z and Mitragotri S:
PEGylated therapeutics in the clinic. Bioeng Transl Med.
9:e106002023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sleep D: Albumin and its application in
drug delivery. Expert Opin Drug Deliv. 12:793–812. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim A, Oh MS, Lee GH, Song S, Byun MS,
Choi D, Yu BY and Lee H: Understanding the pharmacokinetic journey
of Fc-fusion protein, rhIL-7-hyFc using complementary approach of
two analytical methods, accelerator mass spectrometry and ELISA.
Antib Ther. 7:105–113. 2024.PubMed/NCBI
|
|
52
|
Finley D: Recognition and processing of
ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem.
78:477–513. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mizushima N and Levine B: Autophagy in
human diseases. N Engl J Med. 383:1564–1576. 2020. View Article : Google Scholar : PubMed/NCBI
|