|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
2
|
Chang HJ, Pong YH, Chiang CY, Huang PC,
Wang MH, Chan YJ and Lan TY: A matched case-control study in Taiwan
to evaluate potential risk factors for prostate cancer. Sci Rep.
13:43822023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang L, Zhao Y, Liu Y, Akiyama K, Chen C,
Qu C, Jin Y and Shi S: IFN-γ and TNF-α synergistically induce
mesenchymal stem cell impairment and tumorigenesis via NFκB
signaling. Stem Cells. 31:1383–1395. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Senapati D, Sahoo SK, Nayak BS, Senapati
S, Kundu GC and Bhattamisra SK: Targeting and engineering
biomarkers for prostate cancer therapy. Mol Aspects Med.
103:1013592025. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Watson PA, Arora VK and Sawyers CL:
Emerging mechanisms of resistance to androgen receptor inhibitors
in prostate cancer. Nat Rev Cancer. 15:701–711. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu M, Wu L, Montaut S and Yang G:
Hydrogen Sulfide signaling axis as a target for prostate cancer
therapeutics. Prostate Cancer. 2016:81085492016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Giuffrè A, Tomé CS, Fernandes DGF, Zuhra K
and Vicente JB: Hydrogen sulfide metabolism and signaling in the
tumor microenvironment. Adv Exp Med Biol. 1219:335–353. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shackelford RE, Mohammad IZ, Meram AT, Kim
D, Alotaibi F, Patel S, Ghali GE and Kevil CG: Molecular functions
of hydrogen sulfide in cancer. Pathophysiology. 28:437–456. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang YH, Huang JT, Chen WL, Wang RH, Kao
MC, Pan Y, Chan S, Tsai K, Kung H, Lin K and Wang LH: Dysregulation
of cystathionine γ-lyase promotes prostate cancer progression and
metastasis. EMBO Rep. 20:e459862019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Machado-Neto JA, Cerqueira ARA,
Veríssimo-Filho S, Muscará MN, Costa SKP and Lopes LR: Hydrogen
sulfide signaling in the tumor microenvironment: Implications in
cancer progression and therapy. Antioxid Redox Signal. 40:250–271.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Verona F, Di Bella S, Schirano R, Manfredi
C, Angeloro F, Bozzari G, Todaro M, Giannini G, Stassi G and Veschi
V: Cancer stem cells and tumor-associated macrophages as mates in
tumor progression: Mechanisms of crosstalk and advanced
bioinformatic tools to dissect their phenotypes and interaction.
Front Immunol. 16:15298472025. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dawoud A, Youness RA, Elsayed K, Nafae H,
Allam H, Saad HA, Bourquin C, Szabo C, Abdel-Kader R and Gad MZ:
Emerging roles of hydrogen sulfide-metabolizing enzymes in cancer.
Redox Rep. 29:24373382024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sun M, Wang T, Zhu Y, Ling F, Bai J and
Tang C: Gas immnuo-nanomedicines fight cancers. Biomed
Pharmacother. 180:1175952024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sun X, Mao C, Xie Y, Zhong Q, Zhang R,
Jiang D and Song Y: Therapeutic potential of hydrogen sulfide in
reproductive system disorders. Biomolecules. 14:5402024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li M, Liu Y, Deng Y, Pan L, Fu H, Han X,
Li Y, Shi H and Wang T: Therapeutic potential of endogenous
hydrogen sulfide inhibition in breast cancer (review). Oncol Rep.
45:682021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jiang H: Prostate cancer bone metastasis:
Molecular mechanisms of tumor and bone microenvironment. Cancer
Manag Res. 17:219–237. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Szabo C and Papapetropoulos A:
International union of basic and clinical pharmacology. CII:
Pharmacological modulation of H2S levels: H2S
donors and H2S biosynthesis inhibitors. Pharmacol Rev.
69:497–564. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang M and Chu W: Dencichine attenuates
the virulence of Fusobacterium nucleatum by targeting hydrogen
sulfide-producing enzyme. Int Microbiol. 28:257–264. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gu ZK, Sun YF, Wu FZ and Wu XM: Mechanism
of growth regulation of yeast involving hydrogen sulfide from
S-propargyl-cysteine catalyzed by cystathionine-γ-lyase. Front
Microbiol. 12:6795632021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Andrés CMC, Pérez de la Lastra JM, Andrés
Juan C, Plou FJ and Pérez-Lebeña E: Chemistry of hydrogen
sulfide-pathological and physiological functions in mammalian
cells. Cells. 12:26842023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Conter C, Fruncillo S, Fernández-Rodríguez
C, Martínez-Cruz LA, Dominici P and Astegno A: Cystathionine
β-synthase is involved in cysteine biosynthesis and H2S
generation in Toxoplasma gondii. Sci Rep. 10:146572020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang YX, Jing MR, Cai CB, Zhu SG, Zhang
CJ, Wang QM, Zhai YK, Ji XY and Wu DD: Role of hydrogen sulphide in
physiological and pathological angiogenesis. Cell Prolif.
56:e133742023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Alsaeedi A, Welham S, Rose P and Zhu YZ:
The impact of drugs on hydrogen sulfide homeostasis in mammals.
Antioxidants (Basel). 12:9082023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kieft K, Breister AM, Huss P, Linz AM,
Zanetakos E, Zhou ZC, Rahlff J, Esser SP, Probst AJ, Raman S, et
al: Virus-associated organosulfur metabolism in human and
environmental systems. Cell Rep. 36:1094712021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yurinskaya MM, Garbuz DG, Evgen'ev MB and
Vinokurov MG: The protective action of Hsp70 and hydrogen sulfide
donors in THP-1 macrophages in the lipopolysaccharide-induced
inflammatory response by modulating endocytosis. Mol Biol (Mosk).
57:1017–1027. 2023.(In Russian). View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Özatik FY, Özatik O, Tekşen Y, Koçak H,
Arı NS and Çengelli Ünel Ç: Dose-dependent effect of hydrogen
sulfide in cyclophosphamide-induced hepatotoxicity in rats. Turk J
Gastroenterol. 34:626–634. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Faris P, Negri S, Faris D, Scolari F,
Montagna D and Moccia F: Hydrogen sulfide (H2S): As a potent
modulator and therapeutic prodrug in cancer. Curr Med Chem.
30:4506–4532. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hu Q and Lukesh JC III: H2S
donors with cytoprotective effects in models of MI/R injury and
chemotherapy-induced cardiotoxicity. Antioxidants (Basel).
12:6502023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li X, Jiang K, Ruan Y, Zhao S, Zhao Y, He
Y, Wang Z, Wei J, Li Q, Yang C, et al: Hydrogen sulfide and its
donors: Keys to unlock the chains of nonalcoholic fatty liver
disease. Int J Mol Sci. 23:122022022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang Z, Wang X, Feng J and Zhu S:
Biological functions of hydrogen sulfide in plants. Int J Mol Sci.
23:151072022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Munteanu C, Popescu C,
Vlădulescu-Trandafir A and Onose G: Signaling paradigms of
H2S-induced vasodilation: A comprehensive review.
Antioxidants (Basel). 13:11582024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chen J, Ding X, Chen W, Chen S, Guan Q,
Wen J and Chen Z: VEGFR2 in vascular smooth muscle cells
mediates H2S-induced dilation of the rat cerebral
basilar artery. Microvasc Res. 141:1043092022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang X and Bian JS: Hydrogen sulfide: A
neuromodulator and neuroprotectant in the central nervous system.
ACS Chem Neurosci. 5:876–883. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
El-Bassossy HM, Mahmoud MF and Eid BG: The
vasodilatory effect of allopurinol mediates its antihypertensive
effect: Effects on calcium movement and cardiac hemodynamics.
Biomed Pharmacother. 100:381–387. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Quist AJL and Johnston JE: Respiratory and
nervous system effects of a hydrogen sulfide crisis in Carson,
California. Sci Total Environ. 906:1674802024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xu Z, Zhu Y, Xie M, Liu K, Cai L, Wang H,
Li D, Chen H and Gao L: Mackinawite nanozymes as reactive oxygen
species scavengers for acute kidney injury alleviation. J
Nanobiotechnology. 21:2812023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cirino G, Szabo C and Papapetropoulo A:
Physiological roles of hydrogen sulfide in mammalian cells,
tissues, and organs. Physiol Rev. 103:31–276. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cornwell A and Badiei A: From
gasotransmitter to immunomodulator: The emerging role of hydrogen
sulfide in macrophage biology. Antioxidants (Basel). 12:9352023.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jin YQ, Yuan H, Liu YF, Zhu YW, Wang Y,
Liang XY, Gao W, Ren ZG, Ji XY and Wu DD: Role of hydrogen sulfide
in health and disease. MedComm (2020). 5:e6612024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sánchez-Quintero MJ, Rodríguez-Díaz C,
Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E and
López-Gómez C: Role of mitochondria in inflammatory bowel diseases:
A systematic review. Int J Mol Sci. 24:171242023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hancock JT: Harnessing evolutionary toxins
for signaling: Reactive oxygen species, nitric oxide and hydrogen
sulfide in plant cell regulation. Front Plant Sci. 8:1892017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fan Y, Tan X, Zhao H, Tu X, Liu X and Wang
Y: Cysteine metabolism in tumor redox homeostasis. Curr Med Chem.
30:1813–1823. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yurinskaya MM, Krasnov GS, Kulikova DA,
Zatsepina OG, Vinokurov MG, Chuvakova LN, Rezvykh AP, Funikov SY,
Morozov AV and Evgen'evet MB: H2S counteracts
proinflammatory effects of LPS through modulation of multiple
pathways in human cells. Inflamm Res. 69:481–495. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wu D, Zhong P, Wang Y, Zhang Q, Li J, Liu
Z, Ji A and Li Y: Hydrogen sulfide attenuates high-fat diet-induced
non-alcoholic fatty liver disease by inhibiting apoptosis and
promoting autophagy via reactive oxygen
species/phosphatidylinositol 3-kinase/AKT/mammalian target of
rapamycin signaling pathway. Front Pharmacol. 11:5858602020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu Z, Rouhier N and Couturier J: Dual
roles of reducing systems in protein persulfidation and
depersulfidation. Antioxidants (Basel). 14:1012025. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Salti T, Braunstein I, Haimovich Y, Ziv T
and Benhar M: Widespread S-persulfidation in activated macrophages
as a protective mechanism against oxidative-inflammatory stress.
Redox Biol. 72:1031252024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ,
Yuan H, Liang XY, Ji XY, Jiang QY and Wu DD: The potential role of
hydrogen sulfide in cancer cell apoptosis. Cell Death Discov.
10:1142024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Luo Y, Melhem S, Feelisch M, Chatre L,
Morton NM, Dolga AM and van Goor H: Thiosulphate sulfurtransferase:
Biological roles and therapeutic potential. Redox Biol.
82:1035952025. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Khodade VS, Liu Q, Zhang C, Keceli G,
Paolocci N and Toscano JP: Arylsulfonothioates: Thiol-activated
donors of hydropersulfides which are excreted to maintain cellular
redox homeostasis or retained to counter oxidative stress. J Am
Chem Soc. 147:7765–7776. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang Y, Dillon KM, Li Z, Winckler EW and
Matson JB: Alleviating cellular oxidative stress through treatment
with superoxide-triggered persulfide prodrugs. Angew Chem Int Ed
Engl. 59:16698–16704. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kumar R, Vitvitsky V, Sethaudom A, Singhal
R, Solanki S, Alibeckoff S, Hiraki HL, Bell HN, Andren A, Baker BM,
et al: Sulfide oxidation promotes hypoxic angiogenesis and
neovascularization. Nat Chem Biol. 20:1294–1304. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li YL, Chandra TP, Song X, Nie LG, Liu MJ,
Yi JL, Zheng X, Chu C and Yang J: H2S improves doxorubicin-induced
myocardial fibrosis by inhibiting oxidative stress and apoptosis
via Keap1-Nrf2. Technol Health Care 29 (S1). S195–S209. 2021.
View Article : Google Scholar
|
|
54
|
Chen HJ, Li K, Qin YZ, Zhou JJ, Li T, Qian
L, Yang CY, Ji XY and Wu DD: Recent advances in the role of
endogenous hydrogen sulphide in cancer cells. Cell Prolif.
56:e134492023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Powell CR, Dillon KM and Matson John B: A
review of hydrogen sulfide (H2S) donors: Chemistry and
potential therapeutic applications. Biochem Pharmacol. 149:110–123.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Khattak S, Rauf MA, Khan NH, Zhang QQ,
Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY,
et al: Hydrogen sulfide biology and its role in cancer. Molecules.
27:33892022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang HG, Wang D, Sarfraz M, Afzal A, Jing
MR, Zhang YX, Cai CB, Qi HW, Chen HJ, Li T, et al: Endogenous
hydrogen sulfide inhibition suppresses tumor growth by promoting
apoptosis and pyroptosis in esophageal cancer cells. Transl Oncol.
38:1017702023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Akbari M, Sogutdelen E, Juriasingani S and
Sener A: Hydrogen sulfide: Emerging role in bladder, kidney, and
prostate malignancies. Oxid Med Cell Longev. 2019:23609452019.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Song Y, Mao C, Zhong Q, Zhang R, Jiang D
and Sun X: Role of hydrogen sulfide in the male reproductive
system. Front Endocrinol (Lausanne). 15:13770902024. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Qiao L, Xuan W, Ou Y, Li L, Wu S, Guo Y,
Liu M, Yu D, Chen Q, Yuan J, et al: Tumor microenvironment
activation amplify oxidative stress promoting tumor energy
remodeling for mild photothermal therapy and cuproptosis. Redox
Biol. 75:1032602024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Du W, Xia X, Hu F and Yu J: Extracellular
matrix remodeling in the tumor immunity. Front Immunol.
14:13406342024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO,
Housein Z, Hama HA, Abdullah RM, Hussen BM and Alkasalias T:
Gasotransmitters in the tumor microenvironment: Impacts on cancer
chemotherapy (review). Mol Med Rep. 26:2332022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang K, Li Y, Wang X, Zhang Z, Cao LP, Fan
X, Wan B, Liu F, Zhang X, He Z, et al: Gas therapy potentiates
aggregation-induced emission luminogen-based photoimmunotherapy of
poorly immunogenic tumors through cGAS-STING pathway activation.
Nat Commun. 14:29502023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sun F, Luo JH, Yue TT, Wang FX, Yang CL,
Zhang S, Wang XQ and Wang CY: The role of hydrogen sulphide
signalling in macrophage activation. Immunology. 162:3–10. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nicholson B and Theodorescu D:
Angiogenesis and prostate cancer tumor growth. J Cell Biochem.
91:125–150. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen Y, Cao HQ, Jiang CQ and Li YB:
Tumor-microenvironment-mediated second near-infrared light
activation multifunctional cascade nanoenzyme for self-replenishing
O2/H2O2 multimodal tumor therapy.
J Colloid Interface Sci. 683:930–943. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Pan L, Qin M, Liu X and Zhu Y: The role of
hydrogen sulfide on cardiovascular homeostasis: An overview with
update on immunomodulation. Front Pharmacol. 8:6862017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kashfi K: The role of hydrogen sulfide in
health and disease. Biochem Pharmacol. 149:1–4. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Oberholtzer N, Chakraborty P, Kassir MF,
Dressman J, Das S, Mills S, Comte-Walters S, Gooz M, Choi S, Parikh
RY, et al: H2S-Prdx4 axis mitigates Golgi stress to
bolster tumor-reactive T cell immunotherapeutic response. Sci Adv.
10:eadp11522024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yang R, Qu C, Zhou Y, Konkel J, Shi SH,
Liu Y, Chen C, Liu S, Liu D, Chen Y, et al: Hydrogen sulfide
promotes Tet1- and Tet2-mediated foxp3 demethylation to drive
regulatory T cell differentiation and maintain immune homeostasis.
Immunity. 43:251–263. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dawoud A, Youness RA, Nafea H, Manie T,
Bourquin C, Szabo C, Abdel-Kader RM and Gad MZ: Pan-inhibition of
the three H2S synthesizing enzymes restrains tumor
progression and immunosuppression in breast cancer. Cancer Cell
Int. 24:1362024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pozzi G, Gobbi G, Masselli E, Carubbi C,
Presta V, Ambrosini L, Vitale M and Mirandola P: Buffering adaptive
immunity by hydrogen sulfide. Cells. 11:3252022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yue T, Li J, Zhu J, Zuo S, Wang X, Liu Y,
Liu J, Liu X, Wang P and Chen S: Hydrogen sulfide creates a
favorable immune microenvironment for colon cancer. Cancer Res.
83:595–612. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pei Z, Lei H, Wu J, Tang W, Wei K, Wang L,
Gong F, Yang N, Liu L, Yang Y and Cheng L: Bioactive vanadium
disulfide nanostructure with ‘dual’ antitumor effects of vanadate
and gas for immune-checkpoint blockade-enhanced cancer
immunotherapy. ACS Nano. 17:17105–17121. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ngowi EE, Afzal A, Sarfraz M, Khattak S,
Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, et al: Role of
hydrogen sulfide donors in cancer development and progression. Int
J Biol Sci. 17:73–88. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Aslam R, Jilani G, Alam T, -Haq ZU, Bhatti
A, Ullah R, Naz I, Ikram M, Fatima N, Ali EA, et al: Redox cycling
of sulfur via microbes in soil boosts the bioavailability of
nutrients to Brassica napus. PLoS One. 20:e03189362025. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lin YC, Zeng WT and Lee DY:
H2S- and redox-state-mediated PTP1B S-sulfhydration in
insulin signaling. Int J Mol Sci. 24:28982023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zheng XB, Wang C, Zhang M, Yao BQ, Wu HY
and Hou SX: Exogenous H2S targeting PI3K/AKT/mTOR
pathway alleviates chronic intermittent hypoxia-induced myocardial
damage through inhibiting oxidative stress and enhancing autophagy.
Sleep Breath. 29:432024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tao BB, Zhu Q and Zhu YC: Mechanisms
underlying the hydrogen sulfide actions: Target molecules and
downstream signaling pathways. Antioxid Redox Signal. 40:86–109.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang Y, Chen S, Zhu J, Guo S, Yue T, Xu
H, Hu J, Huang Z, Chen Z, Wang P and Liu Y: Overexpression of
CBS/H2S inhibits proliferation and metastasis of colon
cancer cells through downregulation of CD44. Cancer Cell Int.
22:852022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lin J, Li X, Lin Y, Huang Z and Wu W:
Exogenous sodium hydrosulfide protects against high glucose-induced
injury and inflammation in human umbilical vein endothelial cells
by inhibiting necroptosis via the p38 MAPK signaling pathway. Mol
Med Rep. 23:672021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ascenção K, Dilek N, Zuhra K, Módis K,
Sato T and Szabo C: Sequential Accumulation of ‘driver’ pathway
mutations induces the upregulation of hydrogen-sulfide-producing
enzymes in human colonic epithelial cell organoids. Antioxidants
(Basel). 11:18232022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gupta K, Mathew AB, Chakrapani H and Saini
DK: H2S contributed from CSE during cellular senescence
suppresses inflammation and nitrosative stress. Biochim Biophys
Acta Mol Cell Res. 1870:1193882023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ascenção K and Szabo C: Emerging roles of
cystathionine β-synthase in various forms of cancer. Redox Biol.
53:1023312022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cao X, Wu Z, Xiong S, Cao L, Sethi G and
Bian JS: The role of hydrogen sulfide in cyclic nucleotide
signaling. Biochem Pharmacol. 149:20–28. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gong L, Chang L, Chen S, Wei X, Du H,
Cheng J, Chen X, Yuan Z, Zhao P, Geng M, et al: Multifunctional
injectable hydrogel with self-supplied H2S release and
bacterial inhibition for the wound healing with enhanced
macrophages polarization via interfering with PI3K/Akt pathway.
Biomaterials. 318:1231442025. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Oza PP and Kashfi K: The triple crown: NO,
CO, and H2S in cancer cell biology. Pharmacol Ther.
249:1085022023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhao H, Zhao L, Wu L, Hu S, Huang Y and
Zhao W: Hydrogen sulfide suppresses
H2O2-induced proliferation and migration of
HepG2 cells through Wnt/β-catenin signaling pathway. Med Oncol.
40:2142023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang D, Li S, Chen Y, Luo J, Li L, Wang B,
Xu Y and Liang Y: Sodium thiosulfate inhibits
epithelial-mesenchymal transition in melanoma via regulating the
Wnt/β-catenin signaling pathway. J Dermatol Sci. 109:89–98. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hu J, Xu Z, Liao D, Jiang Y, Pu H, Wu Z,
Xu X, Zhao Z, Liu J, Lu X, et al: An H2 S-BMP6
dual-loading system with regulating Yap/Taz and Jun pathway for
synergistic critical limb ischemia salvaging therapy. Adv Healthc
Mater. 12:e23013162023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Bonardi A, Nocentini A, de Luca V, Capasso
C, Elkaeed EB, Eldehna WM and Supuran CT: Hydrogen
sulfide-releasing carbonic anhydrase inhibitors effectively
suppress cancer cell growth. Int J Mol Sci. 25:100062024.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhao H, Zhang Y, Fu X, Chen C, Khattak S
and Wang H: The double-edged sword role of hydrogen sulfide in
hepatocellular carcinoma. Front Pharmacol. 14:12803082023.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mateus I and Prip-Buus C: Hydrogen
sulphide in liver glucose/lipid metabolism and non-alcoholic fatty
liver disease. Eur J Clin Invest. 52:e136802022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chen HY, Xu HB, Lv J, Chang S, Wu MS, Chen
ZC, Zhu SC, He Y, Qian RC and Li DW: Smart nanoplatform for
visualizing hydrogen sulfide and amplifying oxidative stress to
tumor apoptosis. ACS Sens. 8:3555–3562. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ma Y, Yan Z, Deng X, Guo J, Hu J, Yu Y and
Jiao F: Anticancer effect of exogenous hydrogen sulfide in
cisplatin-resistant A549/DDP cells. Oncol Rep. 39:2969–2977.
2018.PubMed/NCBI
|
|
96
|
Predmore BL, Lefer DJ and Gojon G:
Hydrogen sulfide in biochemistry and medicine. Antioxid Redox
Signal. 17:119–140. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhang J, Jing Q, Yuan L, Zhou X, Di D, Li
J, Pei D, Fan Z and Hai J: NIR-triggered programmable nanomotor
with H2S and NO generation for cascading oncotherapy by
three-pronged reinforcing ICD. Mater Today Bio. 31:1015402025.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chen M, Xu T, Song L, Sun T, Xu Z, Zhao Y,
Du P, Xiong L, Yang Z, Jing J and Shi H: Nanotechnology based gas
delivery system: A ‘green’ strategy for cancer diagnosis and
treatment. Theranostics. 14:5461–5491. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Vasan K, Werner M and Chandel NS:
Mitochondrial metabolism as a target for cancer therapy. Cell
Metab. 32:341–352. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ye X, Li Y, Lv B, Qiu B, Zhang S, Peng H,
Kong W, Tang C, Huang Y, Du J and Jin H: Endogenous hydrogen
sulfide persulfidates caspase-3 at cysteine 163 to inhibit
doxorubicin-induced cardiomyocyte apoptosis. Oxid Med Cell Longev.
2022:61537722022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang B, Li Y, Liu N and Liu B: AP39, a
novel mitochondria-targeted hydrogen sulfide donor ameliorates
doxorubicin-induced cardiotoxicity by regulating the AMPK/UCP2
pathway. PLoS One. 19:e03002612024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Song Y, Xu Z, Zhong Q, Zhang R, Sun X and
Chen G: Sulfur signaling pathway in cardiovascular disease. Front
Pharmacol. 14:13034652023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Minaei A, Sarookhani MR, Haghdoost-Yazdi H
and Rajaei F: Hydrogen sulfide attenuates induction and prevents
progress of the 6-hydroxydopamine-induced Parkinsonism in rat
through activation of ATP-sensitive potassium channels and
suppression of ER stress. Toxicol Appl Pharmacol. 423:1155582021.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lou S, Jiang ZL, Zhu YW, Zhang RY, Wang Y,
Chu T, Liu YF, Zhang YX, Zhang CH, Su YK, et al: Exploring the
impact of hydrogen sulfide on hematologic malignancies: A review.
Cell Signal. 120:1112362024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Huang L, Zhu J, Wu G, Xiong W, Feng J, Yan
C, Yang J, Li Z, Fan Q, Ren B, et al: A strategy of ‘adding fuel to
the flames’ enables a self-accelerating cycle of
ferroptosis-cuproptosis for potent antitumor therapy. Biomaterials.
311:1227012024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cornwell A and Badiei A: The role of
hydrogen sulfide in the retina. Exp Eye Res. 234:1095682023.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li H, Wu R, Xi Y, Li H, Chang G, Sun F,
Wei C, Jiao L, Wen X, Zhang G, et al: Dopamine 1 receptors inhibit
apoptosis via activating CSE/H2 S pathway in high glucose-induced
vascular endothelial cells. Cell Biol Int. 46:1098–1108. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Liu Y, Chen Q, Li Y, Bi L, Lin S, Hao J,
Sun D, Jin L and Peng R: Hydrogen sulfide-induced oxidative stress
mediated apoptosis via mitochondria pathway in embryo-larval stages
of zebrafish. Ecotoxicol Environ Saf. 239:1136662022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu R, Peng Y, Lu L, Peng S, Chen T and
Zhan M: Near-infrared light-triggered nano-prodrug for cancer gas
therapy. J Nanobiotechnology. 19:4432021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang H, Pan J, Huang S, Chen X, Chang
ACY, Wang C, Zhang J and Zhang H: Hydrogen sulfide protects
cardiomyocytes from doxorubicin-induced ferroptosis through the
SLC7A11/GSH/GPx4 pathway by Keap1 S-sulfhydration and Nrf2
activation. Redox Biol. 70:1030662024. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kumar R, Vitvitsky V, Seth P, Hiraki HL,
Bell H, Andren A, Singhal R, Baker BM, Lyssiotis CA, Shah YM and
Banerjee R: Sulfide oxidation promotes hypoxic angiogenesis and
neovascularization. bioRxiv [Preprint]. 2023.03.14.532677.
2023.
|
|
112
|
Fu H, Han X, Guo W, Zhao X, Yu C, Zhao W,
Feng S, Wang J, Zhang Z, Lei K, et al: Cystathionine-γ-lyase
contributes to tamoxifen resistance, and the compound I194496
alleviates this effect by inhibiting the PPARγ/ACSL1/STAT3
signalling pathway in oestrogen receptor-positive breast cancer.
Sci Rep. 14:229882024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Peng W, Zhang ML, Zhang J and Chen G:
Potential role of hydrogen sulfide in central nervous system
tumors: a narrative review. Med Gas Res. 12:6–9. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ji Z, Moore J, Devarie-Baez NO, Lewis J,
Wu H, Shukla K, Lopez EIS, Vitvitsky V, Key CCC, Porosnicu M, et
al: Redox integration of signaling and metabolism in a head and
neck cancer model of radiation resistance using COSMRO.
Front Oncol. 12:9463202023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhu A, Shao S, Hu J, Tu W, Song Z, Liu Y,
Liu J, Zhang Q and Li J: Hydrogen sulfide-generating semiconducting
polymer nanoparticles for amplified radiodynamic-ferroptosis
therapy of orthotopic glioblastoma. Mater Horiz. 12:973–986. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lei H, Hou G, Liu L, Pei Z, Chen Y, Lu Y,
Yang N, Sun S and Cheng L: A two-pronged nanostrategy of iron
metabolism disruption to synergize tumor therapy by triggering the
paraptosis-apoptosis hybrid pathway. ACS Nano. 18:22257–22274.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Li L, Whiteman M, Guan YY, Neo KL, Cheng
Y, Lee SW, Zhao Y, Baskar R, Tan CH and Moore PK: Characterization
of a novel, water-soluble hydrogen sulfide-releasing molecule
(GYY4137): New insights into the biology of hydrogen sulfide.
Circulation. 117:2351–2360. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hellmich MR, Coletta C, Chao C and Szabo
C: The therapeutic potential of cystathionine β-synthetase/hydrogen
sulfide inhibition in cancer. Antioxid Redox Signal. 22:424–448.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wallace JL, Vaughan D, Dicay M,
MacNaughton WK and de Nucci G: Hydrogen sulfide-releasing
therapeutics: Translation to the clinic. Antioxid Redox Signal.
28:1533–1540. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Liu YF, Zhang YX, Zhu YW, Tang AQ, Liang
HB, Yang YL, Zhai YK, Ji XY and Wu DD: Hydrogen sulfide in
musculoskeletal diseases: Molecular mechanisms and therapeutic
opportunities. Antioxid Redox Signal. 42:321–340. 2025.PubMed/NCBI
|
|
121
|
Wallace JL, Nagy P, Feener TD, Allain T,
Ditrói T, Vaughan DJ, Muscara MN, de Nucci G and Buret AG: A
proof-of-concept, phase 2 clinical trial of the gastrointestinal
safety of a hydrogen sulfide-releasing anti-inflammatory drug. Br J
Pharmacol. 177:769–777. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Fukami K, Sekiguchi F, Yasukawa M, Asano
E, Kasamatsu R, Ueda M, Yoshida S and Kawabataet A: Functional
upregulation of the H2S/Cav3.2 channel pathway accelerates
secretory function in neuroendocrine-differentiated human prostate
cancer cells. Biochem Pharmacol. 97:300–309. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ge Y, Rong F, Li W and Wang Y: On-demand
therapeutic delivery of hydrogen sulfide aided by biomolecules. J
Control Release. 352:586–599. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Liskova V, Chovancova B, Galvankova K,
Klena L, Matyasova K, Babula P, Grman M, Rezuchova I, Bartosova M
and Krizanova O: Slow sulfide donor GYY4137 increased the
sensitivity of two breast cancer cell lines to paclitaxel by
different mechanisms. Biomolecules. 14:6512024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ma W, Zhang X and Zhuang L: Exogenous
hydrogen sulfide induces A375 melanoma cell apoptosis through
overactivation of the unfolded protein response. Clin Cosmet
Investig Dermatol. 16:1641–1651. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Yilmaz-Oral D, Kaya-Sezginer E, Oztekin
CV, Bayatli N, Lokman U and Gur S: Evaluation of combined
therapeutic effects of hydrogen sulfide donor sodium hydrogen
sulfide and phosphodiesterase type-5 inhibitor tadalafil on
erectile dysfunction in a partially bladder outlet obstructed rat
model. Neurourol Urodyn. 39:1087–1097. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Li L, Xie Y, Wang J, Sun Q, Gao M and Li
C: Biofilm microenvironment-activated multimodal therapy
nanoplatform for effective anti-bacterial treatment and wound
healing. Acta Biomater. 183:221–234. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Dos Reis RA, Sarkar I, Rodrigues MG,
Matson JB, Seabra AB and Kashfi K: NO- and H2S-releasing
nanomaterials: A crosstalk signaling pathway in cancer. Nitric
Oxide. 151:17–30. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Jing YZ, Li SJ and Sun ZJ: Gas and
gas-generating nanoplatforms in cancer therapy. J Mater Chem B.
9:8541–8557. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Cui Q, Yang Y, Ji N, Wang JQ, Ren L, Yang
DH and Chen ZS: Gaseous signaling molecules and their application
in resistant cancer treatment: From invisible to visible. Future
Med Chem. 11:323–336. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Qiao L, Ou Y, Li L, Wu S, Guo Y, Liu M, Yu
D, Chen Q, Yuan J, Wei C, et al: H2S-driven chemotherapy
and mild photothermal therapy induced mitochondrial reprogramming
to promote cuproptosis. J Nanobiotechnology. 22:2052024. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Jia T, Zhang Y, Hou J, Niu H and Wang S:
H2S-based fluorescent imaging for pathophysiological
processes. Front Chem. 11:11263092023. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Zhou B, Jia BX, Zhang MJ, Tan YJ, Liang
WY, Gan X, Li HT, Yang X and Shen XC: Zn2+-interference
and H2S-mediated gas therapy based on ZnS-tannic acid
nanoparticles synergistic enhancement of cell apoptosis for
specific treatment of prostate cancer. Colloids Surf B
Biointerfaces. 226:1133132023. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Choi Y, Kim J, Rhee Y, Park JH, Nam W and
Park W: The assessment of halitosis with a new screening tool in
medication-related osteonecrosis of the jaw. Clin Oral Investig.
28:1022024. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Smith HM and Pluth MD: Advances and
opportunities in H2S measurement in chemical biology.
JACS Au. 3:2677–2691. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Jin Y, Liu L, Chen B, Bai Y, Zhang F, Li
Q, Lv C, Sun H, Li J, Rubby S, et al: Involvement of the
PI3K/Akt/NF-κB signaling pathway in the attenuation of severe acute
pancreatitis-associated acute lung injury by sedum sarmentosum
bunge extract. Biomed Res Int. 2017:96984102017. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Liu J, Zhao W, Gao ZW, Liu N, Zhang WH and
Ling H: Effects of exogenous hydrogen sulfide on diabetic metabolic
disorders in db/db mice are associated with gut bacterial and
fungal microbiota. Front Cell Infect Microbiol. 12:8013312022.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Munteanu C, Onose G, Poștaru M, Turnea M,
Rotariu M and Galaction AI: Hydrogen sulfide and gut microbiota:
Their synergistic role in modulating sirtuin activity and potential
therapeutic implications for neurodegenerative diseases.
Pharmaceuticals (Basel). 17:14802024. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Salomez-Ihl C, Giai J, Barbado M, Paris A,
Touati S, Alcaraz JP, Tanguy S, Leroy C, Lehmann A, Degano B, et
al: H2 inhalation therapy in patients with moderate
COVID-19 (H2COVID): A prospective ascending-dose phase I
clinical trial. Antimicrob Agents Chemother. 68:e00573242024.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Zou J, Yuan Z, Chen X, Chen Y, Yao M, Chen
Y, Li X, Chen Y, Ding W, Xia C, et al: Hydrogen sulfide responsive
nanoplatforms: Novel gas responsive drug delivery carriers for
biomedical applications. Asian J Pharm Sci.
19:1008582024.PubMed/NCBI
|
|
141
|
Matwewe F, Hyland K and Thomas J: Locally
produced hydrogen sulphide detecting water quality test kits
increase household level monitoring in rural Tanzania. J Water
Health. 16:359–368. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
He T, Qin X, Jiang C, Jiang DW, Lei S, Lin
J, Zhu W, Qu J and Huang P: Tumor pH-responsive metastable-phase
manganese sulfide nanotheranostics for traceable hydrogen sulfide
gas therapy primed chemodynamic therapy. Theranostics.
10:2453–2462. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Qi Q, Zhang H, Jin Z, Wang C, Xia M, Chen
B, Lv B, Peres Diaz L, Li X, Feng R, et al: Hydrogen sulfide
produced by the gut microbiota impairs host metabolism via reducing
GLP-1 levels in male mice. Nat Metab. 6:1601–1615. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Li A, Chu S, Yuan M, Zhang J, Liu H, Zhu
Y, Xu J, Jiang X and Xue W: Near-infrared-II photocharging nanozyme
for enhanced tumor immunotherapy. J Colloid Interface Sci.
676:783–794. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Liang X, Kurboniyon MS, Zou Y, Luo K, Fang
SH, Xia P, Ning S, Zhang L and Wang C:
GSH-triggered/photothermal-enhanced H2S signaling
molecule release for gas therapy. Pharmaceutics. 15:24432023.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Sun X, Wu S, Mao C, Qu Y, Xu Z, Xie Y,
Jiang D and Song Y: Therapeutic potential of hydrogen sulfide in
ischemia and reperfusion injury. Biomolecules. 14:7402024.
View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Islam KN, Nguyen ID, Islam R, Pirzadah H
and Malik H: Roles of hydrogen sulfide (H2S) as a potential
therapeutic agent in cardiovascular diseases: A narrative review.
Cureus. 16:e649132024.PubMed/NCBI
|
|
148
|
Guo X, Liu J, Jiang L, Gong W, Wu H and He
Q: Sulourea-coordinated Pd nanocubes for NIR-responsive
photothermal/H2S therapy of cancer. J Nanobiotechnology.
19:3212021. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Sanokawa-Akakura R, Ostrakhovitch EA,
Akakura S, Goodwin S and Tabibzadeh S: A H2S-Nampt dependent
energetic circuit is critical to survival and cytoprotection from
damage in cancer cells. PLoS One. 9:e1085372014. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Wang Y, Du R, Gao R, Guo C, Qi J, Zhang Y,
Zhu Q, Deng Q, Hu Z, Wang H and Hong B: Disulfiram potentiates
cisplatin-induced apoptosis in small cell lung cancer via the
inhibition of cystathionine β-synthase and H2S. Am J
Cancer Res. 15:1647–1661. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Yu L, Park BM, Ahn YJ, Lee GJ and Kim SH:
Hydrogen sulfide donor, NaHS, stimulates ANP secretion via the
KATP channel and the NOS/sGC pathway in rat atria.
Peptides. 111:89–97. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Tsai CY, Peh MT, Feng W, Dymock BW and
Moore PK: Hydrogen sulfide promotes adipogenesis in 3T3L1 cells.
PLoS One. 10:e01195112015. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Li H, Ma Y, Escaffre O, Ivanciuc T,
Komaravelli N, Kelley JP, Coletta C, Szabo C, Rockx B, Garofalo RP
and Casola A: Role of hydrogen sulfide in paramyxovirus infections.
J Virol. 89:5557–5568. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Liu L, Yao Y, Liu Y, Hong B, Li Z, Chen X,
Zhang Y, Fu H, Yang D and Yang C: Targeted H2S-mediated
gas therapy with pH-sensitive release property for myocardial
ischemia-reperfusion injury by platelet membrane. Biomater Res.
28:00612024. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Wu C, Xiao Y, Wu C, Xie D, Luo M, Yao D,
Chen M and Lu D: Regulation of BCRP expression and sulfasalazine
pharmacokinetics by the nuclear receptor REV-ERBα. Xenobiotica.
53:215–222. 2023. View Article : Google Scholar : PubMed/NCBI
|