Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2025 Volume 32 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 32 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats

  • Authors:
    • Hong Wei
    • Tian-Hua Liu
    • Li-Juan Zhang
    • Wei Yan
    • Can Ma
    • Shi-Hua Lv
    • Xian-Zhang Zeng
    • Wen-Zhi Li
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesiology, Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China, Department of Anesthesiology, Taizhou Hospital of Zhe Jiang Province, Taizhou, Zhejiang 317000, P.R. China
    Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 287
    |
    Published online on: August 13, 2025
       https://doi.org/10.3892/mmr.2025.13652
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetes mellitus (DM) exacerbates lung ischemia‑reperfusion (IR) injury and leads to poor survival in lung transplantation recipients. Metformin protects a number of tissues from IR injury. The present study aimed to investigate the effect of metformin on diabetic lung IR injury and the potential mechanisms. Rats with type 2 DM were exposed to metformin with or without administration of EX527, an inhibitor of the silent information regulator 1 (SIRT1) pathway, following lung transplantation. Lung function, alveolar‑capillary permeability, inflammatory response, oxidative stress, cell apoptosis, mitochondrial function, mitochondrial biogenesis key proteins and the SIRT1 signaling pathway were assessed. The effect of metformin on diabetic lung IR injury was evaluated by ELISA, oxidative stress assays, immunofluorescence, flow cytometry, TUNEL assay and western blotting. The results demonstrated that DM was associated with a significant increase in the IR‑induced alveolar‑capillary permeability, inflammatory response, oxidative stress and cell apoptosis. Furthermore, DM was associated with a significant decrease in mitochondrial function and biogenesis, SIRT1 expression and lung function. Metformin treatment markedly attenuated diabetic lung IR injury by alleviating the inflammatory response, oxidative stress and cell apoptosis, preserving mitochondrial function, and promoting mitochondrial biogenesis. However, EX527 inhibited the protective effect of metformin. In conclusion, metformin alleviated the inflammatory response, oxidative stress and cell apoptosis, preserved mitochondrial function, and promoted mitochondrial biogenesis via the activation of the SIRT1 pathway in diabetic lung IR injury.
View Figures

Figure 1

Metformin alleviates diabetic lung IR
injury via the SIRT1 pathway. (A) PaO2/FiO2
ratio (n=8). (B) Lung injury score (n=6). (C) Representative
hematoxylin and eosin staining images (magnification, ×200; scale
bar, 100 µm). (D) Representative western blot image of SIRT1. (E)
SIRT1 expression (n=3). *P<0.05 vs. Con + Sham group;
#P<0.05 vs. Con + IR group; &P<0.05
vs. DM + Sham group; vP<0.05 vs. DM + IR group;
^P<0.05 vs. DM + IR + M group. IR,
ischemia-reperfusion; SIRT1, silent information regulator 1;
PaO2/FiO2, ratio of the partial pressure of
O2 to the fraction of inspired O2; Con,
control; DM, diabetes mellitus; M, metformin; E, EX527.

Figure 2

Metformin improves diabetic lung
IR-induced alveolar-capillary permeability via the silent
information regulator 1 pathway. (A) Wet/dry ratio (n=8). (B) Total
protein concentration in BALF (n=5). (C) Representative
immunofluorescence staining images of VE-cadherin (magnification,
×400; scale bar, 100 µm). (D) VE-cadherin mean fluorescence
intensity (n=4). (E) Representative western blotting image of
VE-cadherin. (F) VE-cadherin expression (n=3). *P<0.05 vs. Con +
Sham group; #P<0.05 vs. Con + IR group;
&P<0.05 vs. DM + Sham group;
vP<0.05 vs. DM + IR group; ^P<0.05 vs.
DM + IR + M group. IR, ischemia-reperfusion; BALF, bronchoalveolar
lavage fluid; VE-cadherin, vascular endothelial cadherin; Con,
control; DM, diabetes mellitus; M, metformin; E, EX527; A.U.,
arbitrary units.

Figure 3

Metformin ameliorates diabetic lung
IR-induced inflammatory responses and oxidative stress via the
silent information regulator 1 pathway. (A) IL-1β concentration in
the serum (n=8). (B) IL-6 concentration in the serum (n=8). (C)
TNF-α concentration in the serum (n=8). (D) MPO activity (n=8). (E)
MDA level (n=8). (F) GSH activity (n=8). (G) GSH-px activity (n=8).
*P<0.05 vs. Con + Sham group; #P<0.05 vs. Con + IR
group; &P<0.05 vs. DM + Sham group;
vP<0.05 vs. DM + IR group; ^P<0.05 vs.
DM + IR + M group. IR, ischemia-reperfusion; MPO, myeloperoxidase;
MDA, malondialdehyde; GSH, glutathione; GSH-px, glutathione
peroxidase; Con, control; DM, diabetes mellitus; M, metformin; E,
EX527.

Figure 4

Metformin decreases diabetic lung
IR-induced cell apoptosis via the silent information regulator 1
pathway. (A) Representative cell apoptosis images (magnification,
×400; scale bar, 100 µm). (B) Apoptosis index (n=4). (C)
Representative western blotting image of cleaved caspase-3 and
caspase-3. (D) Cleaved caspase-3/caspase-3 (n=3). (E)
Representative western blotting image of Bax. (F) Bax expression
(n=3). (G) Representative western blotting image of Bcl-2. (H)
Bcl-2 expression (n=3). *P<0.05 vs. Con + Sham group;
#P<0.05 vs. Con + IR group; &P<0.05
vs. DM + Sham group; vP<0.05 vs. DM + IR group;
^P<0.05 vs. DM + IR + M group. IR,
ischemia-reperfusion; Con, control; DM, diabetes mellitus; M,
metformin; E, EX527.

Figure 5

Metformin reduces diabetic lung
IR-induced mitochondrial dysfunction via the silent information
regulator 1 pathway. (A) ATP level (n=8). (B) Mitochondrial
membrane potential (n=3). (C) Representative flow cytometry plots.
(D) Mitochondrial ultrastructure representative images of alveolar
type II epithelial cells (magnification, ×20,000; scale bar, 1 µm).
*P<0.05 vs. Con + Sham group; #P<0.05 vs. Con + IR
group; &P<0.05 vs. DM + Sham group;
vP<0.05 vs. DM + IR group; ^P<0.05 vs.
DM + IR + M group. IR, ischemia-reperfusion; Con, control; DM,
diabetes mellitus; M, metformin; E, EX527.

Figure 6

Metformin promotes mitochondrial
biogenesis via the silent information regulator 1 pathway in the
diabetic rat lung subjected to IR injury. (A) Representative
western blotting image of PGC-1α. (B) PGC-1α expression (n=3). (C)
Representative western blotting image of NRF-1. (D) NRF-1
expression (n=4). (E) Representative western blotting image of
TFAM. (F) TFAM expression (n=4). *P<0.05 vs. Con + Sham group;
#P<0.05 vs. Con + IR group; &P<0.05
vs. DM + Sham group; vP<0.05 vs. DM + IR group;
^P<0.05 vs. DM + IR + M group. IR,
ischemia-reperfusion; PGC-1α, peroxisome-proliferator-activated
receptor γ coactivator-1α; NRF-1, nuclear respiratory factor 1;
TFAM, mitochondrial transcription factor A; Con, control; DM,
diabetes mellitus; M, metformin; E, EX527.

Figure 7

Schematic illustration showing the
effect of metformin on IR injury of transplanted lungs in type 2
diabetic recipient rats. Metformin alleviated inflammatory
responses, oxidative stress, apoptosis and mitochondrial
dysfunction, while enhancing mitochondrial biogenesis, maintaining
alveolar-capillary barrier integrity and improving lung function in
diabetic lung transplantation recipient rats. IR,
ischemia-reperfusion.
View References

1 

Almeida FM, Battochio AS, Napoli JP, Alves KA, Balbin GS, Oliveira-Junior M, Moriya HT, Pego-Fernandes PM, Vieira RP and Pazetti R: Creatine supply attenuates ischemia-reperfusion injury in lung transplantation in rats. Nutrients. 12:27652020. View Article : Google Scholar : PubMed/NCBI

2 

Hackman KL, Snell GI and Bach LA: An unexpectedly high prevalence of undiagnosed diabetes in patients awaiting lung transplantation. J Heart Lung Transplant. 32:86–91. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Christie JD, Edwards LB, Kucheryavaya AY, Aurora P, Dobbels F, Kirk R, Rahmel AO, Stehlik J and Hertz MI: The registry of the international society for heart and lung transplantation: Twenty-seventh official adult lung and heart-lung transplant report-2010. J Heart Lung Transplant. 29:1104–1118. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Cloer CM, Givens CS, Buie LK, Rochelle LK, Lin YT, Popa S, Shelton RVM, Zhan J, Zimmerman TR, Jones BG, et al: Mitochondrial transplant after ischemia reperfusion promotes cellular salvage and improves lung function during ex-vivo lung perfusion. J Heart Lung Transplant. 42:575–584. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ and Kao YH: The complex interplay between imbalanced mitochondrial dynamics and metabolic disorders in type 2 diabetes. Cells. 12:12232023. View Article : Google Scholar : PubMed/NCBI

6 

Jiang T, Liu Y, Meng Q, Lv X, Yue Z, Ding W, Liu T and Cui X: Hydrogen sulfide attenuates lung ischemia-reperfusion injury through SIRT3-dependent regulation of mitochondrial function in type 2 diabetic rats. Surgery. 165:1014–1026. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Liu L, Li Y, Chen G and Chen Q: Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci. 30:862023. View Article : Google Scholar : PubMed/NCBI

8 

Jiang T, Liu T, Deng X, Ding W, Yue Z, Yang W, Lv X and Li W: Adiponectin ameliorates lung ischemia-reperfusion injury through SIRT1-PINK1 signaling-mediated mitophagy in type 2 diabetic rats. Respir Res. 22:2582021. View Article : Google Scholar : PubMed/NCBI

9 

Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, et al: Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: Role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep. 7:413372017. View Article : Google Scholar : PubMed/NCBI

10 

Jia Y, Cui R, Wang C, Feng Y, Li Z, Tong Y, Qu K, Liu C and Zhang J: Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol. 32:1015342020. View Article : Google Scholar : PubMed/NCBI

11 

Demir M, Yilmaz B, Kalyoncu S, Tuncer M, Bozdag Z, Ince O, Bozdayi MA, Ulusal H and Taysi S: Metformin reduces ovarian ischemia reperfusion injury in rats by improving oxidative/nitrosative stress. Taiwan J Obstet Gynecol. 60:45–50. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Tian J, Zheng Y, Mou T, Yun M, Tian Y, Lu Y, Bai Y, Zhou Y, Hacker M, Zhang X and Li X: Metformin confers longitudinal cardiac protection by preserving mitochondrial homeostasis following myocardial ischemia/reperfusion injury. Eur J Nucl Med Mol Imaging. 50:825–838. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Zhang K, Wang T, Sun GF, Xiao JX, Jiang LP, Tou FF, Qu XH and Han XJ: Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radic Biol Med. 205:47–61. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Guo Y, Jiang H, Wang M, Ma Y, Zhang J and Jing L: Metformin alleviates cerebral ischemia/reperfusion injury aggravated by hyperglycemia via regulating AMPK/ULK1/PINK1/Parkin pathway-mediated mitophagy and apoptosis. Chem Biol Interact. 384:1107232023. View Article : Google Scholar : PubMed/NCBI

15 

Liu XD, Li YG, Wang GY, Bi YG, Zhao Y, Yan ML, Liu X, Wei M, Wan LL and Zhang QY: Metformin protects high glucose-cultured cardiomyocytes from oxidative stress by promoting NDUFA13 expression and mitochondrial biogenesis via the AMPK signaling pathway. Mol Med Rep. 22:5262–5270. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Docrat TF, Nagiah S, Naicker N, Baijnath S, Singh S and Chuturgoon AA: The protective effect of metformin on mitochondrial dysfunction and endoplasmic reticulum stress in diabetic mice brain. Eur J Pharmacol. 875:1730592020. View Article : Google Scholar : PubMed/NCBI

17 

de Marañón AM, Diaz-Pozo P, Canet F, Díaz-Morales N, Abad-Jiménez Z, López-Domènech S, Vezza T, Apostolova N, Morillas C, Rocha M and Víctor VM: Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox Biol. 53:1023422022. View Article : Google Scholar : PubMed/NCBI

18 

Jiang S, Teague AM, Tryggestad JB, Jensen ME and Chernausek SD: Role of metformin in epigenetic regulation of placental mitochondrial biogenesis in maternal diabetes. Sci Rep. 10:83142020. View Article : Google Scholar : PubMed/NCBI

19 

Jiang T, Yang W, Zhang H, Song Z, Liu T and Lv X: Hydrogen sulfide ameliorates lung ischemia-reperfusion injury through SIRT1 signaling pathway in type 2 diabetic rats. Front Physiol. 11:5962020. View Article : Google Scholar : PubMed/NCBI

20 

Liu T, Wei H, Zhang L, Ma C, Wei Y, Jiang T and Li W: Metformin attenuates lung ischemia-reperfusion injury and necroptosis through AMPK pathway in type 2 diabetic recipient rats. BMC Pulm Med. 24:2372024. View Article : Google Scholar : PubMed/NCBI

21 

Li D, Song LL, Wang J, Meng C and Cui XG: Adiponectin protects against lung ischemia-reperfusion injury in rats with type 2 diabetes mellitus. Mol Med Rep. 17:7191–7201. 2018.PubMed/NCBI

22 

Reichard A and Asosingh K: Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry A. 95:219–226. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Hackman KL, Bailey MJ, Snell GI and Bach LA: Diabetes is a major risk factor for mortality after lung transplantation. Am J Transplant. 14:438–445. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Stehlik J, Edwards LB, Kucheryavaya AY, Aurora P, Christie JD, Kirk R, Dobbels F, Rahmel AO and Hertz MI: The registry of the international society for heart and lung transplantation: Twenty-seventh official adult heart transplant report-2010. J Heart Lung Transplant. 29:1089–1103. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Bradbury RA, Shirkhedkar D, Glanville AR and Campbell LV: Prior diabetes mellitus is associated with increased morbidity in cystic fibrosis patients undergoing bilateral lung transplantation: An ‘orphan’ area? A retrospective case-control study. Intern Med J. 39:384–388. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 11:637–645. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Donath MY and Shoelson SE: Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 11:98–107. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Wang X, Zhang B, Li G, Zhao H, Tian X, Yu J, Yin Y and Meng C: Dexmedetomidine alleviates lung oxidative stress injury induced by ischemia-reperfusion in diabetic rats via the Nrf2-Sulfiredoxin1 pathway. Biomed Res Int. 2022:55847332022. View Article : Google Scholar : PubMed/NCBI

29 

Hansen LW, Khader A, Yang WL, Prince JM, Nicastro JM, Coppa GF and Wang P: Sirtuin 1 activator Srt1720 protects against organ injury induced by intestinal ischemia-reperfusion. Shock. 45:359–366. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, Wang N, Deng C, Zhang S, Li Y, et al: SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 65:667–679. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G, et al: Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res. 58:61–70. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Yang K, Velagapudi S, Akhmedov A, Kraler S, Lapikova-Bryhinska T, Schmiady MO, Wu X, Geng L, Camici GG, Xu A and Lüscher TF: Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress. Cardiovasc Res. 119:2190–2201. 2023. View Article : Google Scholar : PubMed/NCBI

33 

Tao A, Xu X, Kvietys P, Kao R, Martin C and Rui T: Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction. Int J Biochem Cell Biol. 105:94–103. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Ma S, Feng J, Zhang R, Chen J, Han D, Li X, Yang B, Li X, Fan M, Li C, et al: SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev. 2017:46027152017. View Article : Google Scholar : PubMed/NCBI

35 

Rutledge CA, Kaufman BA, Dezfulian C and Elmer J: Metformin protects against cardiac and renal damage in diabetic cardiac arrest patients. Resuscitation. 174:42–46. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Wang X, Yang L, Kang L, Li J, Yang L, Zhang J, Liu J, Zhu M, Zhang Q, Shen Y and Qi Z: Metformin attenuates myocardial ischemia-reperfusion injury via up-regulation of antioxidant enzymes. PLoS One. 12:e01827772017. View Article : Google Scholar : PubMed/NCBI

37 

Wu Z, Bai Y, Qi Y, Chang C, Jiao Y, Bai Y and Guo Z: Metformin ameliorates ferroptosis in cardiac ischemia and reperfusion by reducing NOX4 expression via promoting AMPKα. Pharm Biol. 61:886–896. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Cuyàs E, Verdura S, Llorach-Parés L, Fernández-Arroyo S, Joven J, Martin-Castillo B, Bosch-Barrera J, Brunet J, Nonell-Canals A, Sanchez-Martinez M and Menendez JA: Metformin is a direct SIRT1-activating compound: Computational modeling and experimental validation. Front Endocrinol (Lausanne). 9:6572018. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Y, Zhang H, Li S, Huang K, Jiang L and Wang Y: Metformin alleviates LPS-induced acute lung injury by regulating the SIRT1/NF-κB/NLRP3 pathway and inhibiting endothelial cell pyroptosis. Front Pharmacol. 13:8013372022. View Article : Google Scholar : PubMed/NCBI

40 

Ren H, Shao Y, Wu C, Ma X, Lv C and Wang Q: Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol. 500:1106282020. View Article : Google Scholar : PubMed/NCBI

41 

Li W, Jin S, Hao J, Shi Y, Li W and Jiang L: Metformin attenuates ischemia/reperfusion-induced apoptosis of cardiac cells by downregulation of p53/microRNA-34a via activation of SIRT1. Can J Physiol Pharmacol. 99:875–884. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Qi X and Wang J: Melatonin improves mitochondrial biogenesis through the AMPK/PGC1α pathway to attenuate ischemia/reperfusion-induced myocardial damage. Aging (Albany NY). 12:7299–7312. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Jornayvaz FR and Shulman GI: Regulation of mitochondrial biogenesis. Essays Biochem. 47:69–84. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Shi X, Li Y, Wang Y, Ding T, Zhang X and Wu N: Pharmacological postconditioning with sappanone A ameliorates myocardial ischemia reperfusion injury and mitochondrial dysfunction via AMPK-mediated mitochondrial quality control. Toxicol Appl Pharmacol. 427:1156682021. View Article : Google Scholar : PubMed/NCBI

45 

Huang Q, Su H, Qi B, Wang Y, Yan K, Wang X, Li X and Zhao D: A SIRT1 activator, ginsenoside Rc, promotes energy metabolism in cardiomyocytes and neurons. J Am Chem Soc. 143:1416–1427. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Valerio A, Bertolotti P, Delbarba A, Perego C, Dossena M, Ragni M, Spano P, Carruba MO, De Simoni MG and Nisoli E: Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem. 116:1148–1159. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Yuan Y, Tian Y, Jiang H, Cai LY, Song J, Peng R and Zhang XM: Mechanism of PGC-1α-mediated mitochondrial biogenesis in cerebral ischemia-reperfusion injury. Front Mol Neurosci. 16:12249642023. View Article : Google Scholar : PubMed/NCBI

48 

Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, et al: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 127:1109–1122. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Khader A, Yang WL, Kuncewitch M, Jacob A, Prince JM, Asirvatham JR, Nicastro J, Coppa GF and Wang P: Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation. 98:148–156. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Cantó C and Auwerx J: PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 20:98–105. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Li HR, Liu Q, Zhu CL, Sun XY, Sun CY, Yu CM, Li P, Deng XM and Wang JF: β-Nicotinamide mononucleotide activates NAD+/SIRT1 pathway and attenuates inflammatory and oxidative responses in the hippocampus regions of septic mice. Redox Biol. 63:1027452023. View Article : Google Scholar : PubMed/NCBI

52 

Ou Z, Zhao M, Xu Y, Wu Y, Qin L, Fang L, Xu H and Chen J: Huangqi Guizhi Wuwu decoction promotes M2 microglia polarization and synaptic plasticity via Sirt1/NF-κB/NLRP3 pathway in MCAO rats. Aging (Albany NY). 15:10031–10056. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wei H, Liu T, Zhang L, Yan W, Ma C, Lv S, Zeng X and Li W: Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats. Mol Med Rep 32: 287, 2025.
APA
Wei, H., Liu, T., Zhang, L., Yan, W., Ma, C., Lv, S. ... Li, W. (2025). Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats. Molecular Medicine Reports, 32, 287. https://doi.org/10.3892/mmr.2025.13652
MLA
Wei, H., Liu, T., Zhang, L., Yan, W., Ma, C., Lv, S., Zeng, X., Li, W."Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats". Molecular Medicine Reports 32.5 (2025): 287.
Chicago
Wei, H., Liu, T., Zhang, L., Yan, W., Ma, C., Lv, S., Zeng, X., Li, W."Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats". Molecular Medicine Reports 32, no. 5 (2025): 287. https://doi.org/10.3892/mmr.2025.13652
Copy and paste a formatted citation
x
Spandidos Publications style
Wei H, Liu T, Zhang L, Yan W, Ma C, Lv S, Zeng X and Li W: Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats. Mol Med Rep 32: 287, 2025.
APA
Wei, H., Liu, T., Zhang, L., Yan, W., Ma, C., Lv, S. ... Li, W. (2025). Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats. Molecular Medicine Reports, 32, 287. https://doi.org/10.3892/mmr.2025.13652
MLA
Wei, H., Liu, T., Zhang, L., Yan, W., Ma, C., Lv, S., Zeng, X., Li, W."Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats". Molecular Medicine Reports 32.5 (2025): 287.
Chicago
Wei, H., Liu, T., Zhang, L., Yan, W., Ma, C., Lv, S., Zeng, X., Li, W."Metformin alleviates lung ischemia‑reperfusion injury via the SIRT1 pathway following lung transplantation in diabetic rats". Molecular Medicine Reports 32, no. 5 (2025): 287. https://doi.org/10.3892/mmr.2025.13652
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team