|
1
|
Giudice LC: Clinical practice.
Endometriosis. N Engl J Med. 362:2389–2398. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ochoa Bernal MA and Fazleabas AT: The
Known, the unknown and the future of the pathophysiology of
endometriosis. Int J Mol Sci. 25:58152024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chen F, Zhu M and Li W: Advances in
research on malignant transformation of endometriosis-associated
ovarian cancer. Front Oncol. 14:14752312024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wang Y, Nicholes K and Shih IM: The origin
and pathogenesis of endometriosis. Annu Rev Pathol. 15:71–95. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Muraoka A, Suzuki M, Hamaguchi T, Watanabe
S, Iijima K, Murofushi Y, Shinjo K, Osuka S, Hariyama Y, Ito M, et
al: Fusobacterium infection facilitates the development of
endometriosis through the phenotypic transition of endometrial
fibroblasts. Sci Transl Med. 15:eadd153120223 View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang W, Fu F, Li Y, Li S, Yuan M, Wang T,
Ren W, Wei J, Chen D, Wang S, et al: MEIS1-mediated apoptosis via
TNFR1 in endometriosis. Reprod Sci. 32:716–727. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Guo SW, Habiba M and Benagiano G: From
retrograde menstruation to endometrial determinism and a brave new
World of ‘Root Treatment’ of endometriosis: Destiny or a Fanciful
Utopia? Biomolecules. 13:3362023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Harada T, Kaponis A, Iwabe T, Taniguchi F,
Makrydimas G, Sofikitis N, Paschopoulos M, Paraskevaidis E and
Terakawa N: Apoptosis in human endometrium and endometriosis. Hum
Reprod Update. 10:29–38. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Björk E, Israelsson P, Nagaev I, Nagaeva
O, Lundin E, Ottander U and Mincheva-Nilsson L: Endometriotic
Tissue-derived exosomes downregulate NKG2D-mediated cytotoxicity
and promote apoptosis: Mechanisms for survival of ectopic
endometrial tissue in endometriosis. J Immunol. 213:567–576. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Reis FM, Petraglia F and Taylor RN:
Endometriosis: Hormone regulation and clinical consequences of
chemotaxis and apoptosis. Hum Reprod Update. 19:406–418. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Béliard A, Noël A and Foidart JM:
Reduction of apoptosis and proliferation in endometriosis. Fertil
Steril. 82:80–85. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hengartner MO: The biochemistry of
apoptosis. Nature. 407:770–776. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yuan J and Ofengeim D: A guide to cell
death pathways. Nat Rev Mol Cell Biol. 25:379–95. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Glover HL, Schreiner A, Dewson G and Tait
SWG: Mitochondria and cell death. Nat Cell Biol. 26:1434–1436.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Moyer A, Tanaka K and Cheng EH: Apoptosis
in cancer biology and therapy. Annu Rev Pathol. 20:303–328. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang B, Li SJ, Yuan H, Cong SS, Zhao SJ
and Yang XJ: FOXL2 knockdown inhibits the progression of
endometriosis. Am J Reprod Immunol. 93:e700432025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tan A, Prasad R, Lee C and Jho EH: Past,
present, and future perspectives of transcription factor EB (TFEB):
Mechanisms of regulation and association with disease. Cell Death
Differ. 29:1433–1449. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zheng G, Pan Z, Zhan Y, Tang Q, Zheng F,
Zhou Y, Wu Y, Zhou Y, Chen D, Chen J, et al: TFEB protects nucleus
pulposus cells against apoptosis and senescence via restoring
autophagic flux. Osteoarthritis Cartilage. 27:347–357. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen Q, Zhou Y, Yu M, Zhu S, Sun J, Du W,
Chen Z, Tao J, Feng X, Zhang Q and Zhao Y: Transcription factor
EB-mediated autophagy affects cell migration and inhibits apoptosis
to promote endometriosis. Apoptosis. 29:757–767. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bata N and Cosford NDP: Cell survival and
cell death at the intersection of autophagy and apoptosis:
Implications for current and future cancer therapeutics. ACS
Pharmacol Transl Sci. 4:1728–1746. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Maiuri MC, Zalckvar E, Kimchi A and
Kroemer G: Self-eating and self-killing: Crosstalk between
autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mariño G, Niso-Santano M, Baehrecke EH and
Kroemer G: Self-consumption: The interplay of autophagy and
apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
He R, Shi X, Zhou M, Zhao Y, Pan S, Zhao
C, Guo X, Wang M, Li X and Qin R: Alantolactone induces apoptosis
and improves chemosensitivity of pancreatic cancer cells by
impairment of Autophagy-lysosome pathway via targeting TFEB.
Toxicol Appl Pharmacol. 356:159–171. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zheng B, Wang Y, Zhou B, Qian F, Liu D, Ye
D, Zhou X and Fang L: Urolithin A inhibits breast cancer
progression via activating TFEB-mediated mitophagy in tumor
macrophages. J Adv Res. 69:125–138. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lu H, Sun J, Hamblin MH, Chen YE and Fan
Y: Transcription factor EB regulates cardiovascular homeostasis.
EBioMedicine. 63:10320720210 View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lu H, Sun J, Liang W, Chang Z, Rom O, Zhao
Y, Zhao G, Xiong W, Wang H, Zhu T, et al: Cyclodextrin prevents
abdominal aortic aneurysm via activation of vascular smooth muscle
cell transcription Factor EB. Circulation. 142:483–498. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhu L, Yuan Y, Yuan L, Li L, Liu F, Liu J,
Chen Y, Lu Y and Cheng J: Activation of TFEB-mediated autophagy by
trehalose attenuates mitochondrial dysfunction in cisplatin-induced
acute kidney injury. Theranostics. 10:5829–5844. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tan J, Xu T, Gou Y, Wang H, Liang Z, Cao
Y, Wang H, Yu Y, Jiao N and Zhang Z: CCL20/CCR6 axis mediates
macrophages to promote proliferation and migration of ESCs by
blocking autophagic flux in endometriosis. Stem Cell Res Ther.
13:2942022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Choi J, Jo M, Lee E, Lee DY and Choi D:
Dienogest enhances autophagy induction in endometriotic cells by
impairing activation of AKT, ERK1/2, and mTOR. Fertil Steril.
104:655–664.e1. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kobayashi H, Imanaka S, Yoshimoto C,
Matsubara S and Shigetomi H: Molecular mechanism of autophagy and
apoptosis in endometriosis: Current understanding and future
research directions. Reprod Med Biol. 23:e125772024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
D'Amico R, Impellizzeri D, Cordaro M,
Siracusa R, Interdonato L, Marino Y, Crupi R, Gugliandolo E, Macrì
F, Di Paola D, et al: Complex interplay between autophagy and
oxidative stress in the development of endometriosis. Antioxidants
(Basel). 11:24842022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Driva TS, Schatz C, Sobočan M and Haybaeck
J: The role of mTOR and eIF Signaling in benign endometrial
diseases. Int J Mol Sci. 23:34162022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang X, Cheng X, Yu L, Yang J, Calvo R,
Patnaik S, Hu X, Gao Q, Yang M, Lawas M, et al: MCOLN1 is a ROS
sensor in lysosomes that regulates autophagy. Nat Commun.
7:121092016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pan B, Li J, Parajuli N, Tian Z, Wu P,
Lewno MT, Zou J, Wang W, Bedford L, Mayer RJ, et al: The
calcineurin-TFEB-p62 pathway mediates the activation of cardiac
macroautophagy by proteasomal malfunction. Circ Res. 127:502–518.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen C, Zhou Y, Hu C, Wang Y, Yan Z, Li Z
and Wu R: Mitochondria and oxidative stress in ovarian
endometriosis. Free Radic Biol Med. 136:22–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang H, Wang B, Wu M, Lu J and Duan P:
Targeting osteopontin alleviates endometriosis and inflammation by
inhibiting the RhoA/ROS axis and achieves non-invasive in vitro
detection via menstrual blood. Hum Reprod. 39:1057–1071. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bisicchia E, Mastrantonio R, Nobili A,
Palazzo C, La Barbera L, Latini L, Millozzi F, Sasso V, Palacios D,
D'Amelio M and Viscomi MT: Restoration of ER proteostasis
attenuates remote apoptotic cell death after spinal cord injury by
reducing autophagosome overload. Cell Death Dis. 13:3812022.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sun X, Chang R, Tang Y, Luo S, Jiang C,
Jia H, Xu Q, Dong Z, Liang Y, Loor JJ and Xu C: Transcription
factor EB (TFEB)-mediated autophagy protects bovine mammary
epithelial cells against H2O2-induced oxidative damage in vitro. J
Anim Sci Biotechnol. 12:352021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huang J, Chen X and Lv Y: HMGB1 mediated
inflammation and autophagy contribute to endometriosis. Front
Endocrinol (Lausanne). 12:6166962021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Feng R, Liu J, Yang Z, Yao T, Ye P, Li X,
Zhang J and Jiang H: Realgar-induced neurotoxicity: Crosstalk
between the Autophagic Flux and the p62-NRF2 feedback loop mediates
p62 accumulation to promote apoptosis. Mol Neurobiol. 60:6001–6017.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Feng X, Chen L, Guo W, Zhang Y, Lai X,
Shao L and Li Y: Graphene oxide induces p62/SQSTM-dependent
apoptosis through the impairment of autophagic flux and lysosomal
dysfunction in PC12 cells. Acta Biomater. 81:278–292. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu S, Yao S, Yang H, Liu S and Wang Y:
Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kang R, Zeh HJ, Lotze MT and Tang D: The
Beclin 1 network regulates autophagy and apoptosis. Cell Death
Differ. 18:571–580. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mukhopadhyay S, Panda PK, Sinha N, Das DN
and Bhutia SK: Autophagy and apoptosis: Where do they meet?
Apoptosis. 19:555–566. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhan HQ, Qin R, Li YL, Liu MM and Gan L:
TFEB promotes BCL-2 expression by upregulating its promoter
activity in the t(6;11) translocation renal cell carcinomas. Am J
Transl Res. 13:8804–8818. 2021.PubMed/NCBI
|
|
46
|
Alabiad MA, Elhasadi I, Aljafil R, Shalaby
AM, Alshaikh ABA, Edris FE, Heraiz AI, Alorini M, Aboregela AM and
Mohamed AH: A novel triad for the diagnosis of endometriosis, the
short anogenital distance combines with high endometrial BCL2 and
low endometrial FASL. Int J Gynaecol Obstet. 166:297–304. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Florio TJ, Lokareddy RK, Yeggoni DP,
Sankhala RS, Ott CA, Gillilan RE and Cingolani G: Differential
recognition of canonical NF-κB dimers by Importin α3. Nat Commun.
13:12072022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pavitra E, Kancharla J, Gupta VK, Prasad
K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, et al: The role
of NF-κB in breast cancer initiation, growth, metastasis, and
resistance to chemotherapy. Biomed Pharmacother. 163:1148222023.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Minocha T, Das M, Rai V, Verma SS,
Awasthee N, Gupta SC, Haldar C and Yadav SK: Melatonin induces
apoptosis and cell cycle arrest in cervical cancer cells via
inhibition of NF-κB pathway. Inflammopharmacology. 30:1411–1429.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang W, Liu L, Li C, Luo N, Chen R, Li L,
Yu F and Cheng Z: TRIM52 plays an oncogenic role in ovarian cancer
associated with NF-kB pathway. Cell Death Dis. 9:9082018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu Y, Wang J and Zhang X: An update on
the multifaceted role of NF-kappaB in endometriosis. Int J Biol
Sci. 18:4400–4413. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M,
Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy:
New insights and translational implications. Signal Transduct
Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zdrojkowski Ł, Jasiński T, Ferreira-Dias
G, Pawliński B and Domino M: The role of NF-κB in endometrial
diseases in humans and animals: A review. Int J Mol Sci.
24:29012023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B,
Jiang L and Liu K: Research advances in endometriosis-related
signaling pathways: A review. Biomed Pharmacother. 64:1149092023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Karin M and Ben-Neriah Y: Phosphorylation
meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev
Immunol. 18:621–663. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
González-Ramos R, Defrère S and Devoto L:
Nuclear factor-kappaB: A main regulator of inflammation and cell
survival in endometriosis pathophysiology. Fertil Steril.
98:520–528. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Aggarwal BB, Vijayalekshmi RV and Sung B:
Targeting inflammatory pathways for prevention and therapy of
cancer: Short-term friend, long-term foe. Clin Cancer Res.
15:425–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cherry EM, Lee DW, Jung JU and Sitcheran
R: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)
promotes glioma cell invasion through induction of NF-κB-inducing
kinase (NIK) and noncanonical NF-κB signaling. Mol Cancer.
14:92015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
McKinnon BD, Kocbek V, Nirgianakis K,
Bersinger NA and Mueller MD: Kinase signalling pathways in
endometriosis: Potential targets for Non-hormonal therapeutics. Hum
Reprod Update. 22:382–403. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Castro I, Wright JA, Damdinsuren B, Hoek
KL, Carlesso G, Shinners NP, Gerstein RM, Woodland RT, Sen R and
Khan WN: B cell receptor-mediated sustained c-Rel activation
facilitates late transitional B cell survival through control of B
cell activating factor receptor and NF-kappaB2. J Immunol.
182:7729–7737. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Haselager M, Thijssen R, West C, Young L,
Van Kampen R, Willmore E, Mackay S, Kater A and Eldering E:
Regulation of Bcl-XL by non-canonical NF-κB in the context of
CD40-induced drug resistance in CLL. Cell Death Differ.
28:1658–1668. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang D, Zhang Y, Cui L, Yang Q and Wang J:
Elevated latent transforming growth factor beta binding protein 2
in endometriosis promotes endometrial stromal cell invasion and
proliferation via the NF-kB signaling pathway. Mol Cell Endocrinol.
550:1116472022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pang XF, Lin X, Du JJ and Zeng DY: LTBP2
knockdown by siRNA reverses myocardial oxidative stress injury,
fibrosis and remodelling during dilated cardiomyopathy. Acta
Physiol (Oxf). 228:e133772020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cao WG, Morin M, Sengers V, Metz C, Roger
T, Maheux R and Akoum A: Tumour necrosis factor-alpha up-regulates
macrophage migration inhibitory factor expression in endometrial
stromal cells via the nuclear transcription factor NF-kappaB. Hum
Reprod. 21:421–428. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Delaney AA, Khan Z, Zheng Y, Correa LF,
Zanfagnin V, Shenoy CC, Schoolmeester JK, Saadalla AM, El-Nashar S,
Famuyide AO, et al: KLF10 mediated epigenetic dysregulation of
epithelial CD40/CD154 promotes endometriosis. Biol Reprod.
95:622016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang S, Zha X, Ruan S, Yao S and Zhang X:
Kruppel like factor 10 up-regulates PDZ and LIM domain containing
protein 2 via nuclear factor kappa-B pathway to inhibit
proliferation and inflammatory of fibroblastoid synovial cell in
rheumatoid arthritis. Bioengineered. 13:1779–1790. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gasparini C, Celeghini C, Monasta L and
Zauli G: NF-κB pathways in hematological malignancies. Cell Mol
Life Sci. 71:2083–2102. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu F, Wang Z, Wei Y, Liu R, Jiang C, Gong
C, Liu Y and Yan B: The leading role of adsorbed lead in
PM2.5-induced hippocampal neuronal apoptosis and synaptic damage. J
Hazard Mater. 416:1258672021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Takimoto R and El-Deiry WS: Wild-type p53
transactivates the KILLER/DR5 gene through an intronic
sequence-specific DNA-binding site. Oncogene. 19:1735–1743. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xia Z, Li M, Hu M, Lin Y, Atteh LL, Fu W,
Gao L, Bai M, Huang C, Yue P, et al: Phosphoproteomics reveals that
cinobufotalin promotes intrahepatic cholangiocarcinoma cell
apoptosis by activating the ATM/CHK2/p53 signaling pathway. Front
Oncol. 12:9829612022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Adiguzel D and Celik-Ozenci C: FoxO1 is a
cell-specific core transcription factor for endometrial remodeling
and homeostasis during menstrual cycle and early pregnancy. Hum
Reprod Update. 27:570–583. 2021.PubMed/NCBI
|
|
72
|
Xing YQ, Li A, Yang Y, Li XX, Zhang LN and
Guo HC: The regulation of FOXO1 and its role in disease
progression. Life Sci. 193:124–131. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Huang H and Tindall DJ: Dynamic FoxO
transcription factors. J Cell Sci. 120:2479–2487. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Teaney NA and Cyr NE: FoxO1 as a
tissue-specific therapeutic target for type 2 diabetes. Front
Endocrinol (Lausanne). 14:12868382023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hu W, Xie N, Pan M, Zhang Q, Zhang H, Wang
F and Qu F: Chinese herbal medicine alleviates autophagy and
apoptosis in ovarian granulosa cells induced by testosterone
through PI3K/AKT1/FOXO1 pathway. J Ethnopharmacol. 318:1170252024.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sun WL, He LY, Liang L, Liu SY, Luo J, Lv
ML and Cai ZW: Ambra1 regulates apoptosis and chemosensitivity in
breast cancer cells through the Akt-FoxO1-Bim pathway. Apoptosis.
27:329–341. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang M, Sun F, Zhang S, Zhang X, Sun Y, Yu
T, Li Y, Jiang A, Qiao P, Ren C and Yang T: NEK2 promotes the
development of ovarian endometriosis and impairs decidualization by
phosphorylating FOXO1. Cell Mol Life Sci. 81:2372024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nayak R, Chattopadhyay T and Mallick B:
Identification of potential repurposed drugs for treating
endometriosis-associated infertility among women. Chem Biol
Interact. 365:1101102022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li Y, An M, Fu X, Meng X, Ma Y, Liu H, Li
Q, Xu H and Chen J: Bushen Wenyang Huayu Decoction inhibits
autophagy by regulating the SIRT1-FoXO-1 pathway in endometriosis
rats. J Ethnopharmacol. 308:1162772023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang X, Jiang L and Liu H: Forkhead Box
Protein O1: Functional diversity and Post-Translational
modification, a new therapeutic target? Drug Des Devel Ther.
15:1851–1860. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ebrahimnezhad M, Natami M, Bakhtiari GH,
Tabnak P, Ebrahimnezhad N, Yousefi B and Majidinia M: FOXO1, a tiny
protein with intricate interactions: Promising therapeutic
candidate in lung cancer. Biomed Pharmacother. 69:1159002023.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang Y, Zhou Y and Graves DT: FOXO
transcription factors: Their clinical significance and regulation.
Biomed Res Int. 2014:9253502014.PubMed/NCBI
|
|
83
|
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo
P, Hu LS, Anderson MJ, Arden KC, Blenis J and Greenberg ME: Akt
promotes cell survival by phosphorylating and inhibiting a Forkhead
transcription factor. Cell. 96:857–868. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hu Y, Yi L, Yang Y, Wu Z, Kong M, Kang Z
and Yang Z: Acetylation of FOXO1 activates Bim expression involved
in CVB3 induced cardiomyocyte apoptosis. Apoptosis. 29:1271–1287.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Otani T, Matsuda M, Mizokami A, Kitagawa
N, Takeuchi H, Jimi E, Inai T and Hirata M: Osteocalcin triggers
Fas/FasL-mediated necroptosis in adipocytes via activation of p300.
Cell Death Dis. 9:11942018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Su RW, Strug MR, Joshi NR, Jeong JW, Miele
L, Lessey BA, Young SL and Fazleabas AT: Decreased Notch pathway
signaling in the endometrium of women with endometriosis impairs
decidualization. J Clin Endocrinol Metab. 100:E433–E442. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yin X, Pavone ME, Lu Z, Wei J and Kim JJ:
Increased activation of the PI3K/AKT pathway compromises
decidualization of stromal cells from endometriosis. J Clin
Endocrinol Metab. 97:E35–E43. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
An M, Fu X, Meng X, Liu H, Ma Y, Li Y, Li
Q and Chen J: PI3K/AKT signaling pathway associates with pyroptosis
and inflammation in patients with endometriosis. J Reprod Immunol.
162:1042132024. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li MQ, Luo XZ, Meng YH, Mei J, Zhu XY, Jin
LP and Li DJ: CXCL8 enhances proliferation and growth and reduces
apoptosis in endometrial stromal cells in an autocrine manner via a
CXCR1-triggered PTEN/AKT signal pathway. Hum Reprod. 27:2107–2116.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo
P, Hu LS, Anderson MJ, Arden KC, Blenis J and Greenberg ME: Akt
promotes cell survival by phosphorylating and inhibiting a Forkhead
transcription factor. Cell. 96:857–868. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ide H, Mizushima T, Jiang G, Goto T,
Nagata Y, Teramoto Y, Inoue S, Li Y, Kashiwagi E, Baras AS, et al:
FOXO1 as a tumor suppressor inactivated via AR/ERβ signals in
urothelial cells. Endocr Relat Cancer. 27:231–244. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lengyel F, Vértes Z, Kovács KA, Környei
JL, Sümegi B and Vértes M: Effect of estrogen and inhibition of
phosphatidylinositol-3 kinase on Akt and FOXO1 in rat uterus.
Steroids. 72:422–428. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Retis-Resendiz AM, Gómez-Suárez SK,
García-Gómez E and Vázquez-Martínez ER: Molecular basis of impaired
decidualization in the eutopic endometrium of endometriosis
patients. Cells. 14:3262025. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Pramanik KC, Fofaria NM, Gupta P and
Srivastava SK: CBP-mediated FOXO-1 acetylation inhibits pancreatic
tumor growth by targeting SirT. Mol Cancer Ther. 13:687–698. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y,
Zhang C, Ding L, Jiang R, Sun J, Sun H and Yan G: miR-181a
increases FoxO1 acetylation and promotes granulosa cell apoptosis
via SIRT1 downregulation. Cell Death Dis. 8:e30882017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kayal RA, Siqueira M, Alblowi J, McLean J,
Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC and Graves DT:
TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during
fracture healing and stimulates chondrocyte apoptosis through
FOXO1. J Bone Miner Res. 25:1604–1615. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xu JN, Zeng C, Zhou Y, Peng C, Zhou YF and
Xue Q: Metformin inhibits StAR expression in human endometriotic
stromal cells via AMPK-mediated disruption of CREB-CRTC2 complex
formation. J Clin Endocrinol Metab. 99:2795–2803. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Rezk NA, Lashin MB and Sabbah NA: MiRNA
34-a regulate SIRT-1 and Foxo-1 expression in endometriosis.
Noncoding RNA Res. 6:35–41. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kopp JB: Loss of Krüppel-like factor 6
cripples podocyte mitochondrial function. J Clin Invest.
125:968–971. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shi J, Jing W, He Y and Huang Y: Decreased
expression of KLF6 in ectopic endometrial stromal cells contributes
to endometriosis progression by targeting CTNNB1. Cell Signal.
120:1112302024. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tian F, Zhao J, Bu S, Teng H, Yang J,
Zhang X, Li X and Dong L: KLF6 induces apoptosis in human lens
epithelial cells through the ATF4-ATF3-CHOP axis. Drug Des Devel
Ther. 14:1041–1055. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Meng F, Li J, Dong K, Bai R, Liu Q, Lu S,
Liu Y, Wu D, Jiang C and Li W: Juan-tong-yin potentially impacts
endometriosis pathophysiology by enhancing autophagy of endometrial
stromal cells via unfolded protein reaction-triggered endoplasmic
reticulum stress. J Ethnopharmacol. 325:1178592024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Savitsky D, Tamura T, Yanai H and
Taniguchi T: Regulation of immunity and oncogenesis by the IRF
transcription factor family. Cancer Immunol Immunother. 5:489–510.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li J, He Y, Qu Y, Ren C, Wang X, Cheng Y,
Sun L, Zhang X and Zhang G: Promotion of BST2 expression by the
transcription factor IRF6 affects the progression of endometriosis.
Front Immunol. 14:11155042023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ke CY, Mei HH, Wong FH and Lo LJ: IRF6 and
TAK1 coordinately promote the activation of HIPK2 to stimulate
apoptosis during palate fusion. Sci Signal. 12:eaav76662019.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ma X, Wang X, Dong Q, Pang H, Xu J and
Shen J: Inhibition of KIF20A by transcription factor IRF6 affects
the progression of renal clear cell carcinoma. Cancer Cell Int.
21:2462021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
He Y, Li J, Qu Y, Sun L, Zhao X, Wu H and
Zhang G: Identification and Analysis of Potential Immune-Related
Biomarkers in Endometriosis. J Immunol Res. 2023:29755812023.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ma H, Sun X, Wang Y, Tian H, Lao K, Yan J
and Diao X: Integrated analysis identified novel miRNAs and mRNA in
endometriosis. Ginekol Pol. Sep 27–2022.doi: 10.5603/GP.a2022.0078
(Epub ahead of print).
|
|
109
|
Qiu B, Yuan P, Du X, Jin H, Du J and Huang
Y: Hypoxia inducible factor-1α is an important regulator of
macrophage biology. Heliyon. 9:e171672023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang F, Liu XL, Wang W, Dong HL, Xia YF,
Ruan LP and Liu LP: Expression of MMIF, HIF-1α and VEGF in serum
and endometrial tissues of patients with endometriosis. Curr Med
Sci. 38:499–4504. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Shi S, Ou X, Liu C, Wen H and Ke J:
Research progress of HIF-1a on immunotherapy outcomes in immune
vascular microenvironment. Front Immunol. 6:15492762025. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Corrado C and Fontana S: Hypoxia and HIF
Signaling: One axis with divergent effects. Int J Mol Sci.
21:56112020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhan L, Wang W, Zhang Y, Song E, Fan Y and
Wei B: Hypoxia-inducible factor-1alpha: A promising therapeutic
target in endometriosis. Biochimie. 123:130–137. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Liu H, Zhang Z, Xiong W, Zhang L, Xiong Y,
Li N, He H, Du Y and Liu Y: Hypoxia-inducible factor-1α promotes
endometrial stromal cells migration and invasion by upregulating
autophagy in endometriosis. Reproduction. 153:809–820. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Lin H, Wang K, Yang J, Wang A, Deng J and
Lin D: Donepezil promotes skin flap survival through activation of
the HIF-1α/VEGF signalling pathway. Wound Repair Regen. 32:500–510.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hu Y, Dong Z and Liu K: Unraveling the
complexity of STAT3 in cancer: Molecular understanding and drug
discovery. J Exp Clin Cancer Res. 43:232024. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Fathi N, Rashidi G, Khodadadi A, Shahi S
and Sharifi S: STAT3 and apoptosis challenges in cancer. Int J Biol
Macromol. 117:993–1001. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Gharibi T, Babaloo Z, Hosseini A,
Abdollahpour-Alitappeh M, Hashemi V, Marofi F, Nejati K and
Baradaran B: Targeting STAT3 in cancer and autoimmune diseases. Eur
J Pharmacol. 878:1731072020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Matsuzaki S, Pouly JL and Canis M:
Persistent activation of signal transducer and activator of
transcription 3 via Interleukin-6 trans-signaling is involved in
fibrosis of endometriosis. Hum Reprod. 37:1489–1504. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Guo F, He Y, Fan Y, Du Z, Sun H, Feng Z
and Xiong T: G-CSF and IL-6 may be involved in formation of
endometriosis lesions by increasing the expression of angiogenic
factors in neutrophils. Mol Hum Reprod. 27:gaab0642021. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kim BG, Yoo JY, Kim TH, Shin JH,
Langenheim JF, Ferguson SD, Fazleabas AT, Young SL, Lessey BA and
Jeong JW: Aberrant activation of signal transducer and activator of
transcription-3 (STAT3) signaling in endometriosis. Hum Reprod.
30:1069–1078. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Feng Y, Dong H and Zheng L: Ligustrazine
inhibits inflammatory response of human endometrial stromal cells
through the STAT3/IGF2BP1/RELA axis. Pharm Biol. 61:666–673. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
As-Sanie S, Mackenzie SC, Morrison L,
Schrepf A, Zondervan KT, Horne AW and Missmer SA: Endometriosis: A
review. JAMA. 334:64–78. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Garvey M: Endometriosis: Future biological
perspectives for diagnosis and treatment. Int J Mol Sci.
25:122422024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Samimi M, Pourhanifeh MH, Mehdizadehkashi
A, Eftekhar T and Asemi Z: The role of inflammation, oxidative
stress, angiogenesis, and apoptosis in the pathophysiology of
endometriosis: Basic science and new insights based on gene
expression. J Cell Physiol. 234:19384–19392. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Adilbayeva A and Kunz J: Pathogenesis of
endometriosis and endometriosis-associated cancers. Int J Mol Sci.
25:76242024. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Garcia-Velasco JA and Arici A: Apoptosis
and the pathogenesis of endometriosis. Semin Reprod Med.
21:165–172. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Delbandi AA, Mahmoudi M, Shervin A,
Heidari S, Kolahdouz-Mohammadi R and Zarnani AH: Evaluation of
apoptosis and angiogenesis in ectopic and eutopic stromal cells of
patients with endometriosis compared to non-endometriotic controls.
BMC Womens Health. 20:32020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Bo C and Wang Y: Angiogenesis signaling in
endometriosis: Molecules, diagnosis and treatment (Review). Mol Med
Rep. 29:432024. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Vissers G, Giacomozzi M, Verdurmen W, Peek
R and Nap A: The role of fibrosis in endometriosis: A systematic
review. Hum Reprod Update. 30:706–750. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Chang X, Zhang Y, Deng M, Yang R, Zhang J,
Hao M and Miao J: OTUD1 inhibits endometriosis fibrosis by
deubiquitinating MADH7. Mol Hum Reprod. 31:gaaf0142025. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Zhao L, Gu C, Ye M, Zhang Z, Li L, Fan W
and Meng Y: Integration analysis of microRNA and mRNA paired
expression profiling identifies deregulated microRNA-transcription
factor-gene regulatory networks in ovarian endometriosis. Reprod
Biol Endocrinol. 16:42018. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Cong S, Guo Q, Cheng Y, Gao J, Sun L, Wang
J, Wu H, Liang T and Zhang G: Identification and analyzation of
differentially expressed transcription factors in endometriosis.
Front Mol Biosci. 7:6144272020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Geng R, Huang X, Li L and Guo X, Wang Q,
Zheng Y and Guo X: Gene expression analysis in endometriosis:
Immunopathology insights, transcription factors and therapeutic
targets. Front Immunol. 13:10375042022. View Article : Google Scholar : PubMed/NCBI
|