Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2025 Volume 32 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 32 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of the NLRP3 inflammasome in diabetes and its complications (Review)

  • Authors:
    • Xinyi Jiao
    • Guoqing Tian
  • View Affiliations / Copyright

    Affiliations: Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
    Copyright: © Jiao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 292
    |
    Published online on: August 19, 2025
       https://doi.org/10.3892/mmr.2025.13657
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetes and its complications are systemic metabolic disorders triggered by chronic hyperglycemia, with the NOD‑like receptor family pyrin domain‑containing 3 (NLRP3) inflammasome carrying out a central role in disease progression. Activation of the NLRP3 inflammasome is involved not only in the onset of diabetes but also in its complications, including cardiovascular disease, nephropathy and retinopathy. The present review outlines the core mechanisms of the NLRP3 inflammasome and its specific contributions to diabetes and associated conditions. Additionally, emerging therapeutic strategies that target the NLRP3 inflammasome were explored, offering novel insights into the management of diabetes and its associated complications.
View Figures

Figure 1

Schematic of the initiation and
activation steps of the NLRP3 inflammasome. The activation of the
NLRP3 inflammasome is divided into two signals: Initiation and
activation. During the initiation stage, the transcription factor
NF-κB is activated by cytokines or PAMPs and DAMPs, inducing the
upregulation of NLRP3 and pro-IL-1β and pro-IL-18 expressions.
Activation phase is induced by various PAMPs and DAMPs, such as the
outflow of K+ plasma, ATP production, mtROS production,
the release of oxidized mitochondrial DNA, lysosomal damage and
Golgi dissociation. The assembly of the NLRP3 inflammasome triggers
the auto-lysis of caspase-1, further lysing pro-IL-1β and
pro-IL-18. Activated caspase-1 cleaves GSDMD to generate its
N-terminal fragment GSDMD-N, which executes pyroptosis. GSDMD,
Gasdermin D; DAMPs, pathogen-associated molecular patterns;
pro-IL-1β, IL-1β precursor; PAMPs, pathogen-associated molecular
patterns; TNFR, tumor necrosis factor receptor; TLRs, toll-like
receptors; NLRP3, NOD-like receptor family pyrin domain-containing
3; mtDNA, mitochondrial DNA; mtROS, mitochondrial reactive oxygen
species; NEK7, NIMA-related kinase 7; ASC, apoptosis-associated
speck-like protein containing a CARD. Created using
biorender.com.
View References

1 

DiMeglio LA, Evans-Molina C and Oram RA: Type 1 diabetes. Lancet. 391:2449–2462. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al: IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183:1091192022. View Article : Google Scholar : PubMed/NCBI

3 

Li Y and Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L and Liu Y: Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 8:1522023. View Article : Google Scholar : PubMed/NCBI

4 

Green EA, Eynon EE and Flavell RA: Local expression of TNFalpha in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity. 9:733–743. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Navarro JF and Mora-Fernández C: The role of TNF-alpha in diabetic nephropathy: Pathogenic and therapeutic implications. Cytokine Growth Factor Rev. 17:441–450. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Fenercioglu AK, Gonen MS, Uzun H, Sipahioglu NT, Can G, Tas E, Kara Z, Ozkaya HM and Atukeren P: The association between serum 25-hydroxyvitamin D3 levels and pro-inflammatory markers in new-onset type 2 diabetes mellitus and prediabetes. Biomolecules. 13:17782023. View Article : Google Scholar : PubMed/NCBI

7 

Donath MY and Shoelson SE: Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 11:98–107. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, Hersberger M, Eriksson U, Eberli FR, Becher B, et al: Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science. 306:1558–1561. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, Kajimoto Y, Ichijo H, Yamasaki Y and Hori M: Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med. 10:1128–1132. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Martinon F, Burns K and Tschopp J: The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Salman M, Shahzad H, Gangaraju R and Ishrat T: Fasudil mitigates diabetes-associated cognitive decline and enhances neuroprotection by suppressing NLRP3/Caspase-1/GSDMD signaling in a stroke mouse model. Exp Neurol. 389:1152682025. View Article : Google Scholar : PubMed/NCBI

12 

Meier DT, de Paula Souza J and Donath MY: Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia. 68:3–16. 2025. View Article : Google Scholar : PubMed/NCBI

13 

Zhu W, Zhang H, Niu T, Liu K, Fareeduddin Mohammed Farooqui H, Sun R, Chen X, Yuan Y and Wang S: Microglial SCAP deficiency protects against diabetes-associated cognitive impairment through inhibiting NLRP3 inflammasome-mediated neuroinflammation. Brain Behav Immun. 119:154–170. 2024. View Article : Google Scholar : PubMed/NCBI

14 

Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X and Yu L: Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol. 14:10527562023. View Article : Google Scholar : PubMed/NCBI

15 

Wang X, Wang Y, Antony V, Sun H and Liang G: Metabolism-associated molecular patterns (MAMPs). Trends Endocrinol Metab. 31:712–724. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Fang J, Ouyang M, Qu Y, Wang M, Huang X, Lan J, Lai W and Xu Q: Advanced glycation end products promote melanogenesis by activating NLRP3 inflammasome in human dermal fibroblasts. J Invest Dermatol. 142:2591–2602.e8. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Liu Y, Li C, Yin H, Zhang X and Li Y: NLRP3 inflammasome: A potential alternative therapy target for atherosclerosis. Evid Based Complement Alternat Med. 2020:15613422020. View Article : Google Scholar : PubMed/NCBI

18 

Swanson KV, Deng M and Ting JP: The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Fu J and Wu H: Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 41:301–316. 2023. View Article : Google Scholar : PubMed/NCBI

20 

Xiao L, Magupalli VG and Wu H: Cryo-EM structures of the active NLRP3 inflammasome disc. Nature. 613:595–600. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Cai J, Guan H, Jiao X, Yang J, Chen X, Zhang H, Zheng Y, Zhu Y, Liu Q and Zhang Z: NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology. 453:1527202021. View Article : Google Scholar : PubMed/NCBI

22 

Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, et al: Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 183:787–791. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V and Angelin M: Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: Mechanistic insights and therapeutic implications. Inflammopharmacology. 32:2753–2779. 2024. View Article : Google Scholar : PubMed/NCBI

24 

Franchi L, Eigenbrod T, Muñoz-Planillo R, Ozkurede U, Kim YG, Arindam C, Gale M Jr, Silverman RH, Colonna M, Akira S and Núñez G: Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J Immunol. 193:4214–4222. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM and Núñez G: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38:1142–1153. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Subramanian N, Natarajan K, Clatworthy MR, Wang Z and Germain RN: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 153:348–361. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, et al: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 11:897–904. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C, et al: Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 87:74–84. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ and Jo EK: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 62:194–204. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Giardino I, Edelstein D and Brownlee M: Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 94:110–117. 1994. View Article : Google Scholar : PubMed/NCBI

31 

Ahmed N: Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract. 67:3–21. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D and Stern D: Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 269:9889–9897. 1994. View Article : Google Scholar : PubMed/NCBI

33 

Li J and Schmidt AM: Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem. 272:16498–16506. 1997. View Article : Google Scholar : PubMed/NCBI

34 

Wan L, Bai X, Zhou Q, Chen C, Wang H, Liu T, Xue J, Wei C and Xie L: The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci. 18:809–825. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Giugliano D, Ceriello A and Paolisso G: Oxidative stress and diabetic vascular complications. Diabetes Care. 19:257–267. 1996. View Article : Google Scholar : PubMed/NCBI

36 

Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, et al: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 404:787–790. 2000. View Article : Google Scholar : PubMed/NCBI

37 

Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Yosri H, El-Kashef DH, El-Sherbiny M, Said E and Salem HA: Calycosin modulates NLRP3 and TXNIP-mediated pyroptotic signaling and attenuates diabetic nephropathy progression in diabetic rats; An insight. Biomed Pharmacother. 155:1137582022. View Article : Google Scholar : PubMed/NCBI

39 

Horng T: Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol. 35:253–261. 2014. View Article : Google Scholar : PubMed/NCBI

40 

D'Espessailles A, Mora YA, Fuentes C and Cifuentes M: Calcium-sensing receptor activates the NLRP3 inflammasome in LS14 preadipocytes mediated by ERK1/2 signaling. J Cell Physiol. 233:6232–6240. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Biasizzo M and Kopitar-Jerala N: Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 11:5918032020. View Article : Google Scholar : PubMed/NCBI

42 

Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 11:637–645. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Spiller S, Blüher M and Hoffmann R: Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes Obes Metab. 20:2661–2669. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Tall AR and Yvan-Charvet L: Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 15:104–116. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, Shirasuna K, Koyama Y, Sato-Tomita A, Matsuzaka T, et al: Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler Thromb Vasc Biol. 38:744–756. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Gasse P, Riteau N, Charron S, Girre S, Fick L, Pétrilli V, Tschopp J, Lagente V, Quesniaux VF, Ryffel B and Couillin I: Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 179:903–913. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Menu P and Vince JE: The NLRP3 inflammasome in health and disease: The good, the bad and the ugly. Clin Exp Immunol. 166:1–15. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Song N and Li T: Regulation of NLRP3 inflammasome by phosphorylation. Front Immunol. 9:23052018. View Article : Google Scholar : PubMed/NCBI

49 

Yang XD, Li W, Zhang S, Wu D, Jiang X, Tan R, Niu X, Wang Q, Wu X, Liu Z, et al: PLK4 deubiquitination by Spata2-CYLD suppresses NEK7-mediated NLRP3 inflammasome activation at the centrosome. EMBO J. 39:e1022012020. View Article : Google Scholar : PubMed/NCBI

50 

Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Lamkanfi M and Dixit VM: Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 28:137–161. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Wang H, Liu D, Zheng B, Yang Y, Qiao Y, Li S, Pan S, Liu Y, Feng Q and Liu Z: Emerging role of ferroptosis in diabetic kidney disease: Molecular mechanisms and therapeutic opportunities. Int J Biol Sci. 19:2678–2694. 2023. View Article : Google Scholar : PubMed/NCBI

53 

Alicic RZ, Rooney MT and Tuttle KR: Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol. 12:2032–2045. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Chen S, Liu C, He Y, Zhao T, Yu S, Wang Z, He C, Li F, Ma S and Zhang S: Predicting and validating the regulation of podocyte injury and treatment of diabetic kidney disease by Yinhuo Tang. J Vis Exp. 2025.

55 

Li Q, Shang J and Inagi R: Control of mitochondrial quality: A promising target for diabetic kidney disease treatment. Kidney Int Rep. 10:994–1010. 2024. View Article : Google Scholar : PubMed/NCBI

56 

Tung CW, Hsu YC, Shih YH, Chang PJ and Lin CL: Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton). 23 (Suppl 4):S32–S37. 2018. View Article : Google Scholar

57 

Wu M, Han W, Song S, Du Y, Liu C, Chen N, Wu H, Shi Y and Duan H: NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol. 478:115–125. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Hou Y, Wang Q, Han B, Chen Y, Qiao X and Wang L: CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death Dis. 12:5232021. View Article : Google Scholar : PubMed/NCBI

59 

Sun L, Li W, Li W, Xiong L, Li G and Ma R: Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF-κB pathway under high glucose conditions. Int J Mol Med. 34:167–176. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Gao Y, Ma Y, Xie D and Jiang H: ManNAc protects against podocyte pyroptosis via inhibiting mitochondrial damage and ROS/NLRP3 signaling pathway in diabetic kidney injury model. Int Immunopharmacol. 107:1087112022. View Article : Google Scholar : PubMed/NCBI

61 

Liu Y, Li X, Zhao M, Wu Y, Xu Y, Li X, Fu L, Han L, Zhou W, Hu Q, et al: Macrophage-derived exosomes promote activation of NLRP3 inflammasome and autophagy deficiency of mesangial cells in diabetic nephropathy. Life Sci. 330:1219912023. View Article : Google Scholar : PubMed/NCBI

62 

Li Q, Zhang K, Hou L, Liao J, Zhang H, Han Q, Guo J, Li Y, Hu L, Pan J, et al: Endoplasmic reticulum stress contributes to pyroptosis through NF-κB/NLRP3 pathway in diabetic nephropathy. Life Sci. 322:1216562023. View Article : Google Scholar : PubMed/NCBI

63 

Cliff CL, Squires PE and Hills CE: Tonabersat suppresses priming/activation of the NOD-like receptor protein-3 (NLRP3) inflammasome and decreases renal tubular epithelial-to-macrophage crosstalk in a model of diabetic kidney disease. Cell Commun Signal. 22:3512024. View Article : Google Scholar : PubMed/NCBI

64 

Ding Y and Choi ME: Regulation of autophagy by TGF-β: Emerging role in kidney fibrosis. Semin Nephrol. 34:62–71. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Abudoureyimu A, Chen C, Hu Y, Nuermaimaiti D and Liu T: Quercetin alleviates diabetic nephropathy by inhibiting M1 macrophage polarization via targeting NLRC5/NLRP3 pathway. Cell Immunol. 414:1049972025. View Article : Google Scholar : PubMed/NCBI

66 

Li JM, Song ZH, Li Y, Chen HW, Li H, Yuan L, Li J, Lv WY, Liu L and Wang N: NR4A1 silencing alleviates high-glucose-stimulated HK-2 cells pyroptosis and fibrosis via hindering NLRP3 activation and PI3K/AKT pathway. World J Diabetes. 16:975442025. View Article : Google Scholar : PubMed/NCBI

67 

Cao Y, Hu L, Chen R, Chen Y, Liu H and Wei J: Unfolded protein response-activated NLRP3 inflammasome contributes to pyroptotic and apoptotic podocyte injury in diabetic kidney disease via the CHOP-TXNIP axis. Cell Signal. 130:1117022025. View Article : Google Scholar : PubMed/NCBI

68 

Ma ZA, Wang LX, Zhang H, Li HZ, Dong L, Wang QH, Wang YS, Pan BC, Zhang SF, Cui HT and Lv SQ: Jianpi Gushen Huayu decoction ameliorated diabetic nephropathy through modulating metabolites in kidney, and inhibiting TLR4/NF-κB/NLRP3 and JNK/P38 pathways. World J Diabetes. 15:502–518. 2024. View Article : Google Scholar : PubMed/NCBI

69 

Sun L, Ding M, Chen F, Zhu D and Xie X: Breviscapine alleviates podocyte injury by inhibiting NF-κB/NLRP3-mediated pyroptosis in diabetic nephropathy. PeerJ. 11:e148262023. View Article : Google Scholar : PubMed/NCBI

70 

Xu X, Qin Z, Zhang C, Mi X, Zhang C, Zhou F, Wang J, Zhang L and Hua F: TRIM29 promotes podocyte pyroptosis in diabetic nephropathy through the NF-kB/NLRP3 inflammasome pathway. Cell Biol Int. 47:1126–1135. 2023. View Article : Google Scholar : PubMed/NCBI

71 

Wang F, Liu C, Ren L, Li Y, Yang H, Yu Y and Yu W: Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway. Pharm Biol. 61:427–436. 2023. View Article : Google Scholar : PubMed/NCBI

72 

Liu Y, Zhang M, Zhong H, Xie N, Wang Y, Ding S and Su X: LncRNA SNHG16 regulates RAS and NF-κB pathway-mediated NLRP3 inflammasome activation to aggravate diabetes nephropathy through stabilizing TLR4. Acta Diabetol. 60:563–577. 2023. View Article : Google Scholar : PubMed/NCBI

73 

Li Y, Long W, Zhang H, Zhao M, Gao M, Guo W and Yu L: Irbesartan ameliorates diabetic nephropathy by activating the Nrf2/Keap1 pathway and suppressing NLRP3 inflammasomes in vivo and in vitro. Int Immunopharmacol. 131:1118442024. View Article : Google Scholar : PubMed/NCBI

74 

Lv C, Cheng T, Zhang B, Sun K and Lu K: Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail. 45:21651032023. View Article : Google Scholar : PubMed/NCBI

75 

Pedruzzi LM, Stockler-Pinto MB, Leite M Jr and Mafra D: Nrf2-keap1 system versus NF-κB: The good and the evil in chronic kidney disease? Biochimie. 94:2461–2466. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Zhang Y, Wang Y, Yang J and Liu G: Melatonin protects against diabetic kidney disease via the SIRT1/NLRP3 signalling pathway. Nephrology (Carlton). 30:e700732025. View Article : Google Scholar : PubMed/NCBI

77 

Li K, Wang YJ, Wei K, Li WL, Liu YB, Hu JN, Chang WG, Zhang WX, Chen L and Li W: Ginsenoside Rg2 alleviates HFD/STZ-induced diabetic nephropathy by inhibiting pyroptosis via NF-κB/NLRP3 signaling pathways. Am J Chin Med. 53:909–930. 2025. View Article : Google Scholar : PubMed/NCBI

78 

Li S, Wang J, Chen Y, Cheng Y, Wang Y, Xu N, Wang H, Wang L, Chi Y, Ye X, et al: Canagliflozin attenuates podocyte inflammatory injury through suppressing the TXNIP/NLRP3 signaling pathway in diabetic kidney disease Mice. Inflammation. Mar 11–2025.(Epub ahead of print).

79 

An X, Zhang Y, Cao Y, Chen J, Qin H and Yang L: Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients. 12:15162020. View Article : Google Scholar : PubMed/NCBI

80 

Zhu Y, Zhu C, Yang H, Deng J and Fan D: Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res. 155:1047462020. View Article : Google Scholar : PubMed/NCBI

81 

Du L, Wang J, Chen Y, Li X, Wang L, Li Y, Jin X, Gu X, Hao M, Zhu X, et al: Novel biphenyl diester derivative AB-38b inhibits NLRP3 inflammasome through Nrf2 activation in diabetic nephropathy. Cell Biol Toxicol. 36:243–260. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Zhang C, Zhu X, Li L, Ma T, Shi M, Yang Y and Fan Q: A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab Syndr Obes. 12:1297–1309. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Wu M, Yang Z, Zhang C and Shi Y, Han W, Song S, Mu L, Du C and Shi Y: Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism. 118:1547482021. View Article : Google Scholar : PubMed/NCBI

84 

Hou Q, Kan S, Wang Z, Shi J, Zeng C, Yang D, Jiang S and Liu Z: Inhibition of HDAC6 with CAY10603 ameliorates diabetic kidney disease by suppressing NLRP3 inflammasome. Front Pharmacol. 13:9383912022. View Article : Google Scholar : PubMed/NCBI

85 

Irodi A, Zhu Z, Grzybowski A, Wu Y, Cheung CY, Li H, Tan G and Wong TY: The evolution of diabetic retinopathy screening. Eye (Lond). 39:1040–1046. 2025. View Article : Google Scholar : PubMed/NCBI

86 

Homme RP, Singh M, Majumder A, George AK, Nair K, Sandhu HS, Tyagi N, Lominadze D and Tyagi SC: Remodeling of retinal architecture in diabetic retinopathy: Disruption of ocular physiology and visual functions by inflammatory gene products and pyroptosis. Front Physiol. 9:12682018. View Article : Google Scholar : PubMed/NCBI

87 

Chen H, Zhang X, Liao N, Mi L, Peng Y, Liu B, Zhang S and Wen F: Enhanced expression of NLRP3 inflammasome-related inflammation in diabetic retinopathy. Invest Ophthalmol Vis Sci. 59:978–985. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Loukovaara S, Piippo N, Kinnunen K, Hytti M, Kaarniranta K and Kauppinen A: NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy. Acta Ophthalmol. 95:803–808. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Marneros AG: Role of inflammasome activation in neovascular age-related macular degeneration. FEBS J. 290:28–36. 2023. View Article : Google Scholar : PubMed/NCBI

90 

Giuliani AL, Sarti AC, Falzoni S and Di Virgilio F: The P2X7 receptor-interleukin-1 liaison. Front Pharmacol. 8:1232017. View Article : Google Scholar : PubMed/NCBI

91 

Kong H, Zhao H, Chen T, Song Y and Cui Y: Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy. Cell Death Dis. 13:3362022. View Article : Google Scholar : PubMed/NCBI

92 

Chen W, Zhao M, Zhao S, Lu Q, Ni L, Zou C, Lu L, Xu X, Guan H, Zheng Z and Qiu Q: Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: A novel inhibitory effect of minocycline. Inflamm Res. 66:157–166. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Yang L, Yao Y, Zheng W, Zheng X, Xie M and Huang L: Nitric oxide mediates negative feedback on the TXNIP/NLRP3 inflammasome pathway to prevent retinal neurovascular unit dysfunction in early diabetic retinopathy. Free Radic Biol Med. 233:279–291. 2025. View Article : Google Scholar : PubMed/NCBI

94 

Du J, Wang Y, Tu Y, Guo Y, Sun X, Xu X, Liu X, Wang L, Qin X, Zhu M and Song E: A prodrug of epigallocatechin-3-gallate alleviates high glucose-induced pro-angiogenic factor production by inhibiting the ROS/TXNIP/NLRP3 inflammasome axis in retinal Müller cells. Exp Eye Res. 196:1080652020. View Article : Google Scholar : PubMed/NCBI

95 

Liu Y, Zhu M, Dou Y, Xue A, Chen X, Leng K, Dong L and Cao G: Knockdown of KCNQ1OT1 alleviates the activation of NLRP3 inflammasome through miR-17-5p/TXNIP axis in retinal Müller cells. Curr Eye Res. 49:1285–1294. 2024. View Article : Google Scholar : PubMed/NCBI

96 

Chen Y, Yao G, Tong J, Xie H, Zheng X, Zhang H and Xie Z: MSC-derived small extracellular vesicles alleviate diabetic retinopathy by delivering miR-22-3p to inhibit NLRP3 inflammasome activation. Stem Cells. 42:64–75. 2024. View Article : Google Scholar : PubMed/NCBI

97 

Xi X, Wang M, Chen Q, Ma J, Zhang J and Li Y: DNMT1 regulates miR-20a/TXNIP-mediated pyroptosis of retinal pigment epithelial cells through DNA methylation. Mol Cell Endocrinol. 577:1120122023. View Article : Google Scholar : PubMed/NCBI

98 

Park C, Cha HJ, Hwangbo H, Bang E, Hong SH, Song KS, Noh JS, Kim DH, Kim GY and Choi YH: β-asarone alleviates high-glucose-induced oxidative damage via inhibition of ROS generation and inactivation of the NF-κB/NLRP3 inflammasome pathway in human retinal pigment epithelial cells. Antioxidants (Basel). 12:14102023. View Article : Google Scholar : PubMed/NCBI

99 

Zarneshan SN, Fakhri S, Kiani A, Abbaszadeh F, Hosseini SZ, Mohammadi-Noori E and Echeverría J: Polydatin attenuates Alzheimer's disease induced by aluminum chloride in rats: Evidence for its antioxidant and anti-inflammatory effects. Front Pharmacol. 16:15743232025. View Article : Google Scholar : PubMed/NCBI

100 

Dahran N, Alobaidy MA, Owaydhah WH, Soubahi EKA, Eisa AA, Nasreldin N, Gadalla H, Refaat B and El-Boshy ME: Polydatin mitigates lead-induced nephropathy by modulating oxidative stress, inflammation, and the AMPK/AKT/Nrf2 pathway in rats. Biol Trace Elem Res. Mar 12–2025.(Epub ahead of print). View Article : Google Scholar

101 

Wang B, Qu X, Su A and Zhu H: PD protects Müller cells through the SIRT1/NLRP3 inflammasome pathway. Int Ophthalmol. 44:972024. View Article : Google Scholar : PubMed/NCBI

102 

Xiang XH, Wei J, Wang XF, Xu Q, Yu CL, He CL, Long T, Guo MS, Chen X, Zhou XG, et al: Lychee seed polyphenol ameliorates DR via inhibiting inflammasome/apoptosis and angiogenesis in hRECs and db/db mice. Biomed Pharmacother. 167:1154782023. View Article : Google Scholar : PubMed/NCBI

103 

Bang E, Park C, Hwangbo H, Shim JH, Leem SH, Hyun JW, Kim GY and Choi YH: Spermidine attenuates high glucose-induced oxidative damage in retinal pigment epithelial cells by inhibiting production of ROS and NF-κB/NLRP3 inflammasome pathway. Int J Mol Sci. 24:105502023. View Article : Google Scholar : PubMed/NCBI

104 

Choi YH: Reduction of high glucose-induced oxidative injury in human retinal pigment epithelial cells by sarsasapogenin through inhibition of ROS generation and inactivation of NF-κB/NLRP3 inflammasome pathway. Genes Genomics. 45:1153–1163. 2023. View Article : Google Scholar : PubMed/NCBI

105 

ElSayed MH, Elbayoumi KS, Eladl MA, Mohamed AAK, Hegazy A, El-Sherbeeny NA, Attia MA, Hisham FA, Saleh MAK, Elaskary A, et al: Memantine mitigates ROS/TXNIP/NLRP3 signaling and protects against mouse diabetic retinopathy: Histopathologic, ultrastructural and bioinformatic studies. Biomed Pharmacother. 163:1147722023. View Article : Google Scholar : PubMed/NCBI

106 

Yang L, Li Z and Fang J: Scutellarin alleviates diabetic retinopathy via the suppression of nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 inflammasome activation. Curr Eye Res. 49:180–187. 2024. View Article : Google Scholar : PubMed/NCBI

107 

Ge K, Wang Y, Li P, Li M, Zhang W, Dan H, Hu X, Zhou J, Yang Q, Wang J and Song Z: Down-expression of the NLRP3 inflammasome delays the progression of diabetic retinopathy. Microvasc Res. 139:1042652022. View Article : Google Scholar : PubMed/NCBI

108 

Alenezi FO, Nader MA, El-Kashef DH and Abdelmageed ME: Dapansutrile mitigates concanavalin A-induced autoimmune hepatitis: Involvement of NLRP3/IL-1β and JNK/p38 MAPK pathways. Biomed Pharmacother. 186:1180262025. View Article : Google Scholar : PubMed/NCBI

109 

Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, et al: A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 21:248–255. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Bellemare M, Bourcier L, Iglesies-Grau J, Boulet J, O'Meara E and Bouabdallaoui N: Mechanisms of diabetic cardiomyopathy: Focus on inflammation. Diabetes Obes Metab. 27:2326–2338. 2025. View Article : Google Scholar : PubMed/NCBI

111 

Wu Q, Zeng Y, Geng K, Guo M, Teng FY, Yan PJ, Lei Y, Long Y, Jiang ZZ, Law BY and Xu Y: The role of IL-1 family cytokines in diabetic cardiomyopathy. Metabolism. 163:1560832025. View Article : Google Scholar : PubMed/NCBI

112 

Wang G, Ma TY, Huang K, Zhong JH, Lu SJ and Li JJ: Role of pyroptosis in diabetic cardiomyopathy: An updated review. Front Endocrinol (Lausanne). 14:13229072024. View Article : Google Scholar : PubMed/NCBI

113 

Zhou X, Xing S, Zhang L, Lu J, Li D, Wang Y, Ma Y, Chang W and Su M: Amniotic mesenchymal stem cells attenuate diabetic cardiomyopathy by inhibiting pyroptosis via modulation of the TLR4/NF-κb/NLRP3 pathway. Front Cell Dev Biol. 13:16319732025. View Article : Google Scholar : PubMed/NCBI

114 

Zhang L, Ai C, Guo C, Li S, Niu J, Meng X and Zhang Z: UCP2 inhibition exaggerates diabetic cardiomyopathy by facilitating the activation of NLRP3 and pyroptosis. Diabetol Metab Syndr. 17:2672025. View Article : Google Scholar : PubMed/NCBI

115 

Gao G, Fu L, Xu Y, Tao L, Guo T, Fang G, Zhang G, Wang S, Qin T, Luo P and Shen X: Cyclovirobuxine D ameliorates experimental diabetic cardiomyopathy by inhibiting cardiomyocyte pyroptosis via NLRP3 in vivo and in vitro. Front Pharmacol. 13:9065482022. View Article : Google Scholar : PubMed/NCBI

116 

Zhang GL, Liu Y, Liu YF, Huang XT, Tao Y, Chen ZH and Lai HL: Teneligliptin mitigates diabetic cardiomyopathy by inhibiting activation of the NLRP3 inflammasome. World J Diabetes. 15:724–734. 2024. View Article : Google Scholar : PubMed/NCBI

117 

Zhang L, Ai C, Bai M, Niu J and Zhang Z: NLRP3 inflammasome/pyroptosis: A key driving force in diabetic cardiomyopathy. Int J Mol Sci. 23:106322022. View Article : Google Scholar : PubMed/NCBI

118 

Levick SP and Widiapradja A: The diabetic cardiac fibroblast: Mechanisms underlying phenotype and function. Int J Mol Sci. 21:9702020. View Article : Google Scholar : PubMed/NCBI

119 

Zhao J, Randive R and Stewart JA: Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes. 5:860–867. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Wang F, Wang J, Liang X, Wu Z, Xue J, Yin L, Wei L and Zhang X: Ghrelin inhibits myocardial pyroptosis in diabetic cardiomyopathy by regulating ERS and NLRP3 inflammasome crosstalk through the PI3K/AKT pathway. J Drug Target. 32:148–158. 2024. View Article : Google Scholar : PubMed/NCBI

121 

Li X, Ke X, Li Z and Li B: Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem Biophys Res Commun. 514:1–8. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y and An F: NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One. 9:e1047712014. View Article : Google Scholar : PubMed/NCBI

123 

Jiao A, Liu H, Wang H, Yu J, Gong L, Zhang H and Fu L: piR112710 attenuates diabetic cardiomyopathy through inhibiting Txnip/NLRP3-mediated pyroptosis in db/db mice. Cell Signal. 122:1113332024. View Article : Google Scholar : PubMed/NCBI

124 

Yang Q, Chen Q, Li S and Luo J: Mesenchymal stem cells ameliorate inflammation and pyroptosis in diabetic cardiomyopathy via the miRNA-223-3p/NLRP3 pathway. Diabetol Metab Syndr. 16:1462024. View Article : Google Scholar : PubMed/NCBI

125 

Xu D, Zhang X, Chen X, Yang S and Chen H: Inhibition of miR-223 attenuates the NLRP3 inflammasome activation, fibrosis, and apoptosis in diabetic cardiomyopathy. Life Sci. 256:1179802020. View Article : Google Scholar : PubMed/NCBI

126 

Shi P, Zhao XD, Shi KH, Ding XS and Tao H: MiR-21-3p triggers cardiac fibroblasts pyroptosis in diabetic cardiac fibrosis via inhibiting androgen receptor. Exp Cell Res. 399:1124642021. View Article : Google Scholar : PubMed/NCBI

127 

Xu Y, Fang H, Xu Q, Xu C, Yang L and Huang C: LncRNA GAS5 inhibits NLRP3 inflammasome activation-mediated pyroptosis in diabetic cardiomyopathy by targeting miR-34b-3p/AHR. Cell Cycle. 19:3054–3065. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Li S, Liu R, Xue M, Qiao Y, Chen Y, Long G, Tian X, Hu Y, Zhou P, Dong X, et al: Spleen tyrosine kinase-induced JNK-dependent NLRP3 activation is involved in diabetic cardiomyopathy. Int J Mol Med. 43:2481–2490. 2019.PubMed/NCBI

129 

Yamagishi SI, Edelstein D, Du XL and Brownlee M: Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Diabetes. 50:1491–1494. 2001. View Article : Google Scholar : PubMed/NCBI

130 

Hara H, Tsuchiya K, Kawamura I, Fang R, Hernandez-Cuellar E, Shen Y, Mizuguchi J, Schweighoffer E, Tybulewicz V and Mitsuyama M: Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol. 14:1247–1255. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Phungphong S, Suthivanich P, Boonhoh W, Punsawad C, Cheng Z and Bupha-Intr T: Targeting NLRP3 inflammasome attenuates cardiac pyroptosis and fibrosis in estrogen-deficient diabetic rats. Pflugers Arch. 477:935–952. 2025. View Article : Google Scholar : PubMed/NCBI

132 

Cai Z, Sun F, Wang Q, Li S, Wang L, Li H, Su Y, Yang H and Dong B: Icariin alleviates cardiomyocyte pyroptosis through AMPK-NLRP3 pathway to ameliorates diabetic cardiomyopathy. Int Immunopharmacol. 156:1146902025. View Article : Google Scholar : PubMed/NCBI

133 

Wang J, Li Y, Li L, Liang H, Ye H, Kang P, Li Z, Yu Y and Gao Q: Effect of NLRP3 gene knockdown on pyroptosis and ferroptosis in diabetic cardiomyopathy injury. BMC Cardiovasc Disord. 24:3512024. View Article : Google Scholar : PubMed/NCBI

134 

Liu M, Zeng C, Zhang Y, Xin Y, Deng S and Hu X: Protective role of hydrogen sulfide against diabetic cardiomyopathy by inhibiting pyroptosis and myocardial fibrosis. Biomed Pharmacother. 175:1166132024. View Article : Google Scholar : PubMed/NCBI

135 

Zhao H, Liu H, Yang Y and Wang H: The role of H2S Regulating NLRP3 inflammasome in diabetes. Int J Mol Sci. 23:48182022. View Article : Google Scholar : PubMed/NCBI

136 

Zhong C, Xie Y, Wang H, Chen W, Yang Z, Zhang L, Deng Q, Cheng T, Li M, Ju J, et al: Berberine inhibits NLRP3 inflammasome activation by regulating mTOR/mtROS axis to alleviate diabetic cardiomyopathy. Eur J Pharmacol. 964:1762532024. View Article : Google Scholar : PubMed/NCBI

137 

Sun S, Gong D, Liu R, Wang R, Chen D, Yuan T, Wang S, Xing C, Lv Y, Du G and Fang L: Puerarin Inhibits NLRP3-caspase-1-GSDMD-mediated pyroptosis via P2X7 receptor in cardiomyocytes and macrophages. Int J Mol Sci. 24:131692023. View Article : Google Scholar : PubMed/NCBI

138 

Meng S, Yang F, Wang Y, Qin Y, Xian H, Che H and Wang L: Silymarin ameliorates diabetic cardiomyopathy via inhibiting TGF-β1/Smad signaling. Cell Biol Int. 43:65–72. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Hu Y, Zhang S, Lou H, Mikaye MS, Xu R, Meng Z, Du M, Tang P, Chen Z, Chen Y, et al: Aloe-emodin derivative, an anthraquinone compound, attenuates pyroptosis by targeting NLRP3 inflammasome in diabetic cardiomyopathy. Pharmaceuticals (Basel). 16:12752023. View Article : Google Scholar : PubMed/NCBI

140 

Parashar A, Mehta V and Malairaman U: Type 2 diabetes mellitus is associated with social recognition memory deficit and altered dopaminergic neurotransmission in the amygdala. Ann Neurosci. 24:212–220. 2018. View Article : Google Scholar : PubMed/NCBI

141 

Riederer P, Korczyn AD, Ali SS, Bajenaru O, Choi MS, Chopp M, Dermanovic-Dobrota V, Grünblatt E, Jellinger KA, Kamal MA, et al: The diabetic brain and cognition. J Neural Transm (Vienna). 124:1431–1454. 2017. View Article : Google Scholar : PubMed/NCBI

142 

Mooradian AD: Central nervous system complications of diabetes mellitus-a perspective from the blood-brain barrier. Brain Res Brain Res Rev. 23:210–218. 1997. View Article : Google Scholar : PubMed/NCBI

143 

Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE and Biessels GJ: Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 14:329–340. 2015. View Article : Google Scholar : PubMed/NCBI

144 

Chen J, Cui X, Zacharek A, Cui Y, Roberts C and Chopp M: White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke. Stroke. 42:445–452. 2011. View Article : Google Scholar : PubMed/NCBI

145 

Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A and Giugliano D: Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 106:2067–2072. 2002. View Article : Google Scholar : PubMed/NCBI

146 

Mamo JC, Lam V, Brook E, Mooranian A, Al-Salami H, Fimognari N, Nesbit M and Takechi R: Probucol prevents blood-brain barrier dysfunction and cognitive decline in mice maintained on pro-diabetic diet. Diab Vasc Dis Res. 16:87–97. 2019. View Article : Google Scholar : PubMed/NCBI

147 

Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H and Peng S: Progress in the pathogenesis of diabetic encephalopathy: The key role of neuroinflammation. Diabetes Metab Res Rev. 40:e38412024. View Article : Google Scholar : PubMed/NCBI

148 

Ma S, Bi W, Liu X, Li S, Qiu Y, Huang C, Lv R and Yin Q: Single-cell sequencing analysis of the db/db mouse hippocampus reveals cell-type-specific insights into the pathobiology of diabetes-associated cognitive dysfunction. Front Endocrinol (Lausanne). 13:8910392022. View Article : Google Scholar : PubMed/NCBI

149 

Li Y, Zhang H, Liu M, Guo W and Yu L: Microglia NLRP3 inflammasomes activation involving diabetic neuroinflammation in diabetic mice and BV2 cells. Curr Pharm Des. 27:2802–2816. 2021. View Article : Google Scholar : PubMed/NCBI

150 

Yao J, Li Y, Liu X, Liang W, Li Y, Wu L, Wang Z and Song W: FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression. Neural Regen Res. 20:2068–2083. 2025. View Article : Google Scholar : PubMed/NCBI

151 

Sim AY, Kim JY, Lee YH and Lee JE: Neuroprotective roles of SGLT2 and DPP4 inhibitors: Modulating ketone metabolism and suppressing NLRP3 inflammasome in T2D induced Alzheimer's disease. Exp Neurol. 390:1152712025. View Article : Google Scholar : PubMed/NCBI

152 

Hu T, Lu XY, Shi JJ, Liu XQ, Chen QB, Wang Q, Chen YB and Zhang SJ: Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J Cell Mol Med. 24:3449–3459. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Hu T, Wei JW, Zheng JY, Luo QY, Hu XR, Du Q, Cai YF and Zhang SJ: Metformin improves cognitive dysfunction through SIRT1/NLRP3 pathway-mediated neuroinflammation in db/db mice. J Mol Med (Berl). 102:1101–1115. 2024. View Article : Google Scholar : PubMed/NCBI

154 

Lin Y, Cheng L, Chen Y, Li W, Guo Q and Miao Y: TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy. Am J Physiol Cell Physiol. 327:C1481–C1496. 2024. View Article : Google Scholar : PubMed/NCBI

155 

Iwasa M, Kato H, Iwashita K, Yamakage H, Kato S, Saito S, Ihara M, Nishimura H, Kawamoto A, Suganami T, et al: Taxifolin suppresses inflammatory responses of high-glucose-stimulated mouse microglia by attenuating the TXNIP-NLRP3 axis. Nutrients. 15:27382023. View Article : Google Scholar : PubMed/NCBI

156 

Kato H, Iwashita K, Iwasa M, Kato S, Yamakage H, Suganami T, Tanaka M and Satoh-Asahara N: Imeglimin exhibits novel anti-inflammatory effects on high-glucose-stimulated mouse microglia through ULK1-mediated suppression of the TXNIP-NLRP3 axis. Cells. 13:2842024. View Article : Google Scholar : PubMed/NCBI

157 

Zhou C, Li J, Wu X and Liu F: Activation of spleen tyrosine kinase (SYK) contributes to neuronal pyroptosis and cognitive impairment in diabetic mice via the NLRP3/Caspase-1/GSDMD signaling pathway. Exp Gerontol. 198:1126262024. View Article : Google Scholar : PubMed/NCBI

158 

Liu L, Zhou L, Wang L, Mao Z, Zheng P, Zhang F, Zhang H and Liu H: MUC1 attenuates neutrophilic airway inflammation in asthma by reducing NLRP3 inflammasome-mediated pyroptosis through the inhibition of the TLR4/MyD88/NF-κB pathway. Respir Res. 24:2552023. View Article : Google Scholar : PubMed/NCBI

159 

Su WJ, Li JM, Zhang T, Cao ZY, Hu T, Zhong SY, Xu ZY, Gong H and Jiang CL: Microglial NLRP3 inflammasome activation mediates diabetes-induced depression-like behavior via triggering neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry. 126:1107962023. View Article : Google Scholar : PubMed/NCBI

160 

Huang L, Lin T, Shi M and Wu P: Liraglutide ameliorates inflammation and fibrosis by downregulating the TLR4/MyD88/NF-κB pathway in diabetic kidney disease. Am J Physiol Regul Integr Comp Physiol. 327:R410–R422. 2024. View Article : Google Scholar : PubMed/NCBI

161 

An JF, Su H, Zhang CQ, Wang XT, Zhang GQ, Fu LY, Xu YN, Tao L and Shen XC: Metformin activation of sirtuin 3 signaling regulates mitochondrial function improves diabetes-associated cognitive impairment. Diabetes Metab Syndr Obes. 18:2317–2330. 2025. View Article : Google Scholar : PubMed/NCBI

162 

Padhy DS, Aggarwal P, Velayutham R and Banerjee S: Aerobic exercise and metformin attenuate the cognitive impairment in an experimental model of type 2 diabetes mellitus: Focus on neuroinflammation and adult hippocampal neurogenesis. Metab Brain Dis. 40:922025. View Article : Google Scholar : PubMed/NCBI

163 

Zhai Y, Meng X, Ye T, Xie W, Sun G and Sun X: Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules. 23:5222018. View Article : Google Scholar : PubMed/NCBI

164 

Chen H, Sun H, Hua W, Chang H, Chen W and Ma S: Exogenous hydrogen sulfide ameliorates diabetes-associated cognitive dysfunction by regulating the nrf-2/HO-1 axis and the NLRP3 inflammasome pathway in diabetic rats. Eur J Pharmacol. 966:1763442024. View Article : Google Scholar : PubMed/NCBI

165 

Liu P, Li H, Wang Y, Su X, Li Y, Yan M, Ma L and Che H: Harmine ameliorates cognitive impairment by inhibiting NLRP3 inflammasome activation and enhancing the BDNF/TrkB signaling pathway in STZ-induced diabetic rats. Front Pharmacol. 11:5352020. View Article : Google Scholar : PubMed/NCBI

166 

Zhai Y, Meng X, Luo Y, Wu Y, Ye T, Zhou P, Ding S, Wang M, Lu S, Zhu L, et al: Notoginsenoside R1 ameliorates diabetic encephalopathy by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Oncotarget. 9:9344–9363. 2018. View Article : Google Scholar : PubMed/NCBI

167 

Lei Y, Li M, Liu X, Zhang L, Zhang R and Cai F: Nerolidol rescues hippocampal injury of diabetic rats through inhibiting NLRP3 inflammasome and regulation of MAPK/AKT pathway. Biofactors. 50:1076–1100. 2024. View Article : Google Scholar : PubMed/NCBI

168 

Lu Z, Yao Y, Wang J and Peng JY: Dioscin ameliorates diabetes cognitive dysfunction via adjusting P2X7R/NLRP3 signal. Int Immunopharmacol. 101:1083142021. View Article : Google Scholar : PubMed/NCBI

169 

Ye T, Meng X, Wang R, Zhang C, He S, Sun G and Sun X: Gastrodin alleviates cognitive dysfunction and depressive-like behaviors by inhibiting ER stress and NLRP3 inflammasome activation in db/db mice. Int J Mol Sci. 19:39772018. View Article : Google Scholar : PubMed/NCBI

170 

Zhang L, Bai YY, Hong ZS, Xie J and Tian Y: Isolation, identification, activity evaluation, and mechanism of action of neuroprotective peptides from walnuts: A review. Nutrients. 15:40852023. View Article : Google Scholar : PubMed/NCBI

171 

Harandi S, Golchin L, Ansari M, Moradi A, Shabani M and Sheibani V: Antiamnesic effects of walnuts consumption on scopolamine-induced memory impairments in rats. Basic Clin Neurosci. 6:91–99. 2015.PubMed/NCBI

172 

Li Y, Dang Q, Shen Y, Guo L, Liu C, Wu D, Fang L, Leng Y and Min W: Therapeutic effects of a walnut-derived peptide on NLRP3 inflammasome activation, synaptic plasticity, and cognitive dysfunction in T2DM mice. Food Funct. 15:2295–2313. 2024. View Article : Google Scholar : PubMed/NCBI

173 

Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM and Dixit VD: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 17:179–188. 2011. View Article : Google Scholar : PubMed/NCBI

174 

De Nardo D and Latz E: NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 32:373–379. 2011. View Article : Google Scholar : PubMed/NCBI

175 

Wei Y, Tu J, Ji L, Wang R, Zhou R, Lei X, Hu L and Huang H: Icariin inhibition of NLRP3 mediated Leydig cell pyroptosis and insulin resistance ameliorates spermatogenesis disorders in obese mice. Int Immunopharmacol. 151:1142802025. View Article : Google Scholar : PubMed/NCBI

176 

Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ and Ting JP: Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 12:408–415. 2011. View Article : Google Scholar : PubMed/NCBI

177 

Nițulescu IM, Ciulei G, Cozma A, Procopciuc LM and Orășan OH: From innate immunity to metabolic disorder: A review of the NLRP3 inflammasome in diabetes mellitus. J Clin Med. 12:60222023. View Article : Google Scholar : PubMed/NCBI

178 

Lu CP, Huang CY, Wang SH, Chiu CH, Li LH, Hua KF and Wu TH: Improvement of hyperglycemia in a murine model of insulin resistance and high glucose- and inflammasome-mediated IL-1β expressions in macrophages by silymarin. Chem Biol Interact. 290:12–18. 2018. View Article : Google Scholar : PubMed/NCBI

179 

Aye ILMH, Jansson T and Powell TL: Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts. Mol Cell Endocrinol. 381:46–55. 2013. View Article : Google Scholar : PubMed/NCBI

180 

Ibarra Urizar A, Prause M, Wortham M, Sui Y, Thams P, Sander M, Christensen GL and Billestrup N: Beta-cell dysfunction induced by non-cytotoxic concentrations of Interleukin-1β is associated with changes in expression of beta-cell maturity genes and associated histone modifications. Mol Cell Endocrinol. 496:1105242019. View Article : Google Scholar : PubMed/NCBI

181 

Ahmad R, Thomas R, Kochumon S and Sindhu S: Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity. Immun Inflamm Dis. 5:318–335. 2017. View Article : Google Scholar : PubMed/NCBI

182 

Li W, Zeng H, Xu M, Huang C, Tao L, Li J, Zhang T, Chen H, Xia J, Li C and Li X: Oleanolic acid improves obesity-related inflammation and insulin resistance by regulating macrophages activation. Front Pharmacol. 12:6974832021. View Article : Google Scholar : PubMed/NCBI

183 

Liu Y, Sun R, Lin X, Wu L, Chen H, Shen S, Li Y, Wei Y and Deng G: Procyanidins and its metabolites by gut microbiome improves insulin resistance in gestational diabetes mellitus mice model via regulating NF-κB and NLRP3 inflammasome pathway. Biomed Pharmacother. 151:1130782022. View Article : Google Scholar : PubMed/NCBI

184 

Chen J, Ding X, Wu R, Tong B, Zhao L, Lv H, Meng X, Liu Y, Ren B, Li J, et al: Novel sesquiterpene glycoside from loquat leaf alleviates type 2 diabetes mellitus combined with nonalcoholic fatty liver disease by improving insulin resistance, oxidative stress, inflammation, and gut microbiota composition. J Agric Food Chem. 69:14176–14191. 2021. View Article : Google Scholar : PubMed/NCBI

185 

Stutz A, Golenbock DT and Latz E: Inflammasomes: Too big to miss. J Clin Invest. 119:3502–3511. 2009. View Article : Google Scholar : PubMed/NCBI

186 

Wan Z, Fan Y, Liu X, Xue J, Han Z, Zhu C and Wang X: NLRP3 inflammasome promotes diabetes-induced endothelial inflammation and atherosclerosis. Diabetes Metab Syndr Obes. 12:1931–1942. 2019. View Article : Google Scholar : PubMed/NCBI

187 

Liu X, Zhou D, Su Y, Liu H, Su Q, Shen T, Zhang M, Mi X, Zhang Y, Yue S, et al: PDIA4 targets IRE1α/sXBP1 to alleviate NLRP3 inflammasome activation and renal tubular injury in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis. 1871:1676452025. View Article : Google Scholar : PubMed/NCBI

188 

Santos KN, Bizzotto JQ, Bueno-Pereira TO, Romao-Veiga M, Ribeiro-Vasques VR, Oliveira LRC, Sandrim VC and Nunes PR: Preeclamptic plasma disrupts endothelial function and promotes inflammation in endothelial cells: beneficial effects of glibenclamide and MCC950 in this scenario. J Recept Signal Transduct Res. 45:237–249. 2025. View Article : Google Scholar : PubMed/NCBI

189 

Deng D, Ma L, Shen J, Huang L, Zhang T, Yang X, Huang S, Zhao W, Zhou Y, Fan S, et al: PD-1 attenuates neuropathic pain by ameliorating NLRP3 inflammasome-mediated microglia pyroptosis. Mol Neurobiol. Jul 19–2025.(Epub ahead of print). View Article : Google Scholar

190 

Chen Y, Luo Y, Liu Y, Qiu X, Luo D and Liu A: Mediation of macrophage M1 polarization dynamics change by ubiquitin-autophagy-pathway regulated NLRP3 inflammasomes in PD-1 inhibitor-related myocardial inflammatory injury. Inflamm Res. 74:562025. View Article : Google Scholar : PubMed/NCBI

191 

Sanchez-Rangel E and Inzucchi SE: Metformin: Clinical use in type 2 diabetes. Diabetologia. 60:1586–1593. 2017. View Article : Google Scholar : PubMed/NCBI

192 

Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q, et al: Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 214:3219–3238. 2017. View Article : Google Scholar : PubMed/NCBI

193 

Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, Pistell P, Newman S, Carter R, Laque A, et al: Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18:519–532. 2013. View Article : Google Scholar : PubMed/NCBI

194 

Xu Y, Ren Y, Zou W, Ji S and Shen W: Neutrophil extracellular traps promote erectile dysfunction in rats with diabetes mellitus by enhancing NLRP3-mediated pyroptosis. Sci Rep. 14:164572024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiao X and Tian G: Role of the NLRP3 inflammasome in diabetes and its complications (Review). Mol Med Rep 32: 292, 2025.
APA
Jiao, X., & Tian, G. (2025). Role of the NLRP3 inflammasome in diabetes and its complications (Review). Molecular Medicine Reports, 32, 292. https://doi.org/10.3892/mmr.2025.13657
MLA
Jiao, X., Tian, G."Role of the NLRP3 inflammasome in diabetes and its complications (Review)". Molecular Medicine Reports 32.5 (2025): 292.
Chicago
Jiao, X., Tian, G."Role of the NLRP3 inflammasome in diabetes and its complications (Review)". Molecular Medicine Reports 32, no. 5 (2025): 292. https://doi.org/10.3892/mmr.2025.13657
Copy and paste a formatted citation
x
Spandidos Publications style
Jiao X and Tian G: Role of the NLRP3 inflammasome in diabetes and its complications (Review). Mol Med Rep 32: 292, 2025.
APA
Jiao, X., & Tian, G. (2025). Role of the NLRP3 inflammasome in diabetes and its complications (Review). Molecular Medicine Reports, 32, 292. https://doi.org/10.3892/mmr.2025.13657
MLA
Jiao, X., Tian, G."Role of the NLRP3 inflammasome in diabetes and its complications (Review)". Molecular Medicine Reports 32.5 (2025): 292.
Chicago
Jiao, X., Tian, G."Role of the NLRP3 inflammasome in diabetes and its complications (Review)". Molecular Medicine Reports 32, no. 5 (2025): 292. https://doi.org/10.3892/mmr.2025.13657
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team