|
1
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung
H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45.
2025.PubMed/NCBI
|
|
2
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
3
|
Cheng C, Wang P, Yang Y, Du X, Xia H, Liu
J, Lu L, Wu H and Liu Q: Smoking-induced M2-TAMs, via circEML4 in
EVs, promote the progression of NSCLC through ALKBH5-regulated m6A
modification of SOCS2 in NSCLC cells. Adv Sci (Weinh).
10:e23009532023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li Y, Liu T, Wang X, Jia Y and Cui H:
Autophagy and glycometabolic reprograming in the malignant
progression of lung cancer: A review. Technol Cancer Res Treat.
22:153303382311905452023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Boukouris AE, Michaelidou K, Joosse SA,
Charpidou A, Mavroudis D, Syrigos KN and Agelaki S: A comprehensive
overview of minimal residual disease in the management of
early-stage and locally advanced non-small cell lung cancer. NPJ
Precis Oncol. 9:1782025. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu Y, Ao X, Yu W, Zhang Y and Wang J:
Biogenesis, functions, and clinical implications of circular RNAs
in non-small cell lung cancer. Mol Ther Nucleic Acids. 27:50–72.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ju X, Tang Y, Qu R and Hao S: The emerging
role of Circ-SHPRH in cancer. Onco Targets Ther. 14:4177–4188.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mu Q, Lv Y, Luo C, Liu X, Huang C, Xiu Y
and Tang L: Research progress on the functions and mechanism of
circRNA in cisplatin resistance in tumors. Front Pharmacol.
12:7093242021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu
M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA
circSATB2 promotes progression of non-small cell lung cancer cells.
Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li B, Zhu L, Lu C, Wang C, Wang H, Jin H,
Ma X, Cheng Z, Yu C, Wang S, et al: circNDUFB2 inhibits non-small
cell lung cancer progression via destabilizing IGF2BPs and
activating anti-tumor immunity. Nat Commun. 12:2952021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang C, Tan S, Li J, Liu WR, Peng Y and Li
W: CircRNAs in lung cancer-Biogenesis, function and clinical
implication. Cancer Lett. 492:106–115. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol
Cell. 66:9–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kristensen LS, Hansen TB, Venø MT and
Kjems J: Circular RNAs in cancer: Opportunities and challenges in
the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang G, Tong J, Li Y, Qiu X, Chen A, Chang
C and Yu G: Overview of CircRNAs roles and mechanisms in liver
fibrosis. Biomolecules. 13:9402023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jia Y, Xu L, Leng S, Sun Y, Huang X, Wang
Y, Ren H, Li G, Bai Y, Zhang Z, et al: Nose-to-brain delivery of
Circular RNA SCMH1-loaded lipid nanoparticles for ischemic stroke
therapy. Adv Mater. 37:e25005982025. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Du WW, Rafiq M, Yuan H, Li X, Wang S, Wu
J, Wei J, Li RK, Guo H and Yang BB: A novel protein NAB1-356
encoded by circRNA circNAB1 mitigates atrial fibrillation by
reducing inflammation and fibrosis. Adv Sci (Weinh).
12:e24119592025. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bai H, Lei K, Huang F, Jiang Z and Zhou X:
Exo-circRNAs: A new paradigm for anticancer therapy. Mol Cancer.
18:562019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yang H, Li X, Meng Q, Sun H, Wu S, Hu W,
Liu G, Li X, Yang Y and Chen R: Correction: CircPTK2
(hsa_circ_0005273) as a novel therapeutic target for metastatic
colorectal cancer. Mol Cancer. 23:692024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yong W, Deng S, Tan Y and Li S: Circular
RNA circSLC8A1 inhibits the proliferation and invasion of non-small
cell lung cancer cells through targeting the miR-106b-5p/FOXJ3
axis. Cell Cycle. 20:2597–2606. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J,
Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable
in exosomes: A promising biomarker for cancer diagnosis. Cell Res.
25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Qian L, Yu S, Chen Z, Meng Z, Huang S and
Wang P: The emerging role of circRNAs and their clinical
significance in human cancers. Biochim Biophys Acta Rev Cancer.
1870:247–260. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li W, Liu JQ, Chen M, Xu J and Zhu D:
Circular RNA in cancer development and immune regulation. J Cell
Mol Med. 26:1785–1798. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li J, Sun D, Pu W, Wang J and Peng Y:
Circular RNAs in cancer: Biogenesis, function, and clinical
significance. Trends Cancer. 6:319–336. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schmidt CA and Matera AG: tRNA introns:
Presence, processing, and purpose. Wiley Interdiscip Rev RNA.
11:e15832020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dong ZR, Ke AW, Li T, Cai JB, Yang YF,
Zhou W, Shi GM and Fan J: CircMEMO1 modulates the promoter
methylation and expression of TCF21 to regulate hepatocellular
carcinoma progression and sorafenib treatment sensitivity. Mol
Cancer. 20:752021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao
F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7
circular RNA in repressing glioma tumorigenesis. J Natl Cancer
Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang J, Luo Z, Zheng Y, Duan M, Qiu Z and
Huang C: CircRNA as an Achilles heel of cancer: Characterization,
biomarker and therapeutic modalities. J Transl Med. 22:7522024.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R
and Zhang C: The role of the dysregulation of circRNAs expression
in glioblastoma multiforme. J Mol Neurosci. 75:92025. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tay Y, Rinn J and Pandolfi PP: The
multilayered complexity of ceRNA crosstalk and competition. Nature.
505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Peng D, Luo L, Zhang X, Wei C, Zhang Z and
Han L: CircRNA: An emerging star in the progression of glioma.
Biomed Pharmacother. 151:1131502022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li QH, Liu Y, Chen S, Zong ZH, Du YP,
Sheng XJ and Zhao Y: circ-CSPP1 promotes proliferation, invasion
and migration of ovarian cancer cells by acting as a miR-1236-3p
sponge. Biomed Pharmacother. 114:1088322019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lv W, Tan Y, Xiong M, Zhao C, Wang Y, Wu
M, Wu Y and Zhang Q: Analysis and validation of m6A regulatory
network: A novel circBACH2/has-miR-944/HNRNPC axis in breast cancer
progression. J Transl Med. 19:5272021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang D, Hu Z, Zhang Y, Zhang X, Xu J, Fu
H, Zhu Z, Feng D and Cai Q: CircHIPK3 promotes the tumorigenesis
and development of gastric cancer through miR-637/AKT1 pathway.
Front Oncol. 11:6377612021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cheng Z, Yu C, Cui S, Wang H, Jin H, Wang
C, Li B, Qin M, Yang C, He J, et al: circTP63 functions as a ceRNA
to promote lung squamous cell carcinoma progression by upregulating
FOXM1. Nat Commun. 10:32002019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
He Z and Zhu Q: Circular RNAs: Emerging
roles and new insights in human cancers. Biomed Pharmacother.
165:1152172023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zeng Y, Zou Y, Gao G, Zheng S, Wu S, Xie X
and Tang H: The biogenesis, function and clinical significance of
circular RNAs in breast cancer. Cancer Biol Med. 10:14–29.
2021.PubMed/NCBI
|
|
42
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun
Y, Ma N and Jiao Y: Mechanisms and therapeutic implications of gene
expression regulation by circRNA-protein interactions in cancer.
Commun Biol. 8:772025. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang A, Zheng H, Wu Z, Chen M and Huang
Y: Circular RNA-protein interactions: Functions, mechanisms, and
identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang L, Wilusz JE and Chen LL: Biogenesis
and regulatory roles of circular RNAs. Annu Rev Cell Dev Biol.
38:263–289. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang
L, Ma J, Li X, Zeng Y, Yang Z, et al: A circular RNA promotes
tumorigenesis by inducing c-myc nuclear translocation. Cell Death
Differ. 24:1609–1620. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
24:256–264. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P
and Yang BB: Foxo3 circular RNA retards cell cycle progression via
forming ternary complexes with p21 and CDK2. Nucleic Acids Res.
44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liang Y, Wang H, Chen B, Mao Q, Xia W,
Zhang T, Song X, Zhang Z, Xu L, Dong G and Jiang F: circDCUN1D4
suppresses tumor metastasis and glycolysis in lung adenocarcinoma
by stabilizing TXNIP expression. Mol Ther Nucleic Acids.
23:355–368. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and
Xu RH: Circular RNA: Metabolism, functions and interactions with
proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hollensen AK, Sørensen MH, Thomsen SV,
Thomsen HS and Damgaard CK: Using circular RNAs to target toxic
RNA-binding proteins in amyotrophic lateral sclerosis. Mol Ther
Methods Clin Dev. 33:1015252025. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim KK, Nam J, Mukouyama YS and Kawamoto
S: Rbfox3-regulated alternative splicing of Numb promotes neuronal
differentiation during development. J Cell Biol. 200:443–458. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Conn VM, Hugouvieux V, Nayak A, Conos SA,
Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta
C and Conn SJ: A circRNA from SEPALLATA3 regulates splicing of its
cognate mRNA through R-loop formation. Nat Plants. 3:170532017.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang X, Li J, Bian X, Wu C, Hua J, Chang
S, Yu T, Li H, Li Y, Hu S, et al: CircURI1 interacts with
hnRNPM to inhibit metastasis by modulating alternative splicing in
gastric cancer. Proc Natl Acad Sci USA. 118:e20128811182021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ashwal-Fluss R, Meyer M, Pamudurti NR,
Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and
Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol
Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang L, Long H, Zheng Q, Bo X, Xiao X and
Li B: Circular RNA circRHOT1 promotes hepatocellular carcinoma
progression by initiation of NR2F6 expression. Mol Cancer.
18:1192019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhong Y, Yang Y, Wang X, Ren B, Wang X,
Shan G and Chen L: Systematic identification and characterization
of exon-intron circRNAs. Genome Res. 34:376–393. 2024.PubMed/NCBI
|
|
57
|
Tang X, Ren H, Guo M, Qian J, Yang Y and
Gu C: Review on circular RNAs and new insights into their roles in
cancer. Comput Struct Biotechnol J. 19:910–928. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shafaghat Z, Radmehr S, Saharkhiz S,
Khosrozadeh A, Feiz K, Alkhathami AG, Taheripak G, Farani M,
Rahmati R, Zarimeidani F, et al: Circular RNA, A molecule with
potential chemistry and applications in RNA-based cancer
therapeutics: An insight into recent advances. Top Curr Chem
(Cham). 383:212025. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen CY and Sarnow P: Initiation of
protein synthesis by the eukaryotic translational apparatus on
circular RNAs. Science. 268:415–417. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang
Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of
circular RNAs driven by N6-methyladenosine. Cell Res.
27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu X, Zhang Y, Zhou S, Dain L, Mei L and
Zhu G: Circular RNA: An emerging frontier in RNA therapeutic
targets, RNA therapeutics, and mRNA vaccines. J Control Release.
348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Legnini I, Di Timoteo G, Rossi F, Morlando
M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade
M, et al: Circ-ZNF609 is a circular RNA that can be translated and
functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang
J, Xia L, Yin Q, Zou B, Zheng J, et al: A novel protein encoded by
circFNDC3B inhibits tumor progression and EMT through regulating
Snail in colon cancer. Mol Cancer. 19:712020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang
H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes
EIF6-224aa to promote TNBC progression via stabilizing MYH9 and
activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Song JX, Wang Y, Hua ZP, Huang Y, Hu LF,
Tian MR, Qiu L, Liu H and Zhang J: FATS inhibits the Wnt pathway
and induces apoptosis through degradation of MYH9 and enhances
sensitivity to paclitaxel in breast cancer. Cell Death Dis.
15:8352024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen L and Shan G: CircRNA in cancer:
Fundamental mechanism and clinical potential. Cancer Lett.
505:49–57. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Huang Q, Li Y, Huang Y, Wu J, Bao W, Xue
C, Li X, Dong S, Dong Z and Hu S: Advances in molecular pathology
and therapy of non-small cell lung cancer. Signal Transduct Target
Ther. 10:1862025. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jang HJ, Min HY, Kang YP, Boo HJ, Kim J,
Ahn JH, Oh SH, Jung JH, Park CS, Park JS, et al: Tobacco-induced
hyperglycemia promotes lung cancer progression via cancer
cell-macrophage interaction through paracrine IGF2/IR/NPM1-driven
PD-L1 expression. Nat Commun. 15:49092024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wei X, Xiang X, Wang H, Wang Z, Xing S,
Peng W, Ye L, Qu Y, Chen L, Yang B, et al: Tumor cell-intrinsic
circular RNA circFNDC3B attenuates CD8+ T cells
infiltration in non-small cell lung cancer. Commun Biol. 8:7112025.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sun K, Yao H, Zhang P, Sun Y, Ma J and Xia
Q: Emerging landscape of circFNDC3B and its role in human
malignancies. Front Oncol. 13:10979562023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang Y, Luo J, Yang W and Ye WC: CircRNAs
in colorectal cancer: Potential biomarkers and therapeutic targets.
Cell Death Dis. 14:3532023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang C, Ma L, Niu Y, Wang Z, Xu X, Li Y
and Yu Y: Circular RNA in lung cancer research: Biogenesis,
functions, and roles. Int J Biol Sci. 16:803–814. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang PF, Pei X, Li KS, Jin LN, Wang F, Wu
J and Zhang XM: Circular RNA circFGFR1 promotes progression and
anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung
cancer cells. Mol Cancer. 19:212020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hong W, Xue M, Jiang J, Zhang Y and Gao X:
Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell
growth, stemness, drug resistance and immune evasion in non-small
cell lung cancer (NSCLC). J Exp Clin Cancer Res. 39:1492020.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan
Q, Tang Y, He Y, Liao Q, Li X, et al: The influence of circular
RNAs on autophagy and disease progression. Autophagy. 18:240–253.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wei S, Zheng Y, Jiang Y, Li X, Geng J,
Shen Y, Li Q, Wang X, Zhao C, Chen Y, et al: The circRNA circPTPRA
suppresses epithelial-mesenchymal transitioning and metastasis of
NSCLC cells by sponging miR-96-5p. EBioMedicine. 44:182–193. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li J, Zhang Q, Jiang D, Shao J, Li W and
Wang C: CircRNAs in lung cancer- role and clinical application.
Cancer Lett. 544:2158102022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhao M, Ma W and Ma C: Circ_0067934
promotes non-small cell lung cancer development by regulating
miR-1182/KLF8 axis and activating Wnt/β-catenin pathway. Biomed
Pharmacother. 129:1104612020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang L, Tong X, Zhou Z, Wang S, Lei Z,
Zhang T, Liu Z, Zeng Y, Li C, Zhao J, et al: Circular RNA
hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced
epithelial-mesenchymal transition and metastasis by controlling
TIF1γ in non-small cell lung cancer. Mol Cancer. 17:1402018.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xue YB, Ding MQ, Xue L and Luo JH:
CircAGFG1 sponges miR-203 to promote EMT and metastasis of
non-small-cell lung cancer by upregulating ZNF281 expression.
Thorac Cancer. 10:1692–1701. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q,
Zhang XH and Zheng J: Invasion and metastasis in cancer: Molecular
insights and therapeutic targets. Signal Transduct Target Ther.
10:572025. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yi M, Xu L, Jiao Y, Luo S, Li A and Wu K:
The role of cancer-derived microRNAs in cancer immune escape. J
Hematol Oncol. 13:252020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang Y, Liu X, Shen T, Wang Q, Zhou S,
Yang S, Liao S, Su T, Mei L, Zhang B, et al: Small circular RNAs as
vaccines for cancer immunotherapy. Nat Biomed Eng. 9:249–267. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cao Y, He Y, Liao L and Xu L: Circular
RNAs perspective: Exploring the direction of immunotherapy for
colorectal cancer. Front Oncol. 15:15541792025. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Liu Z, Wang T, She Y, Wu K, Gu S, Li L,
Dong C, Chen C and Zhou Y: N-methyladenosine-modified circIGF2BP3
inhibits CD8 T-cell responses to facilitate tumor immune evasion by
promoting the deubiquitination of PD-L1 in non-small cell lung
cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tian Q, Wu T, Zhang X, Xu K, Yin X, Wang
X, Shi S, Wang P, Gao L, Xu S, et al: Immunomodulatory functions of
the circ_001678/miRNA-326/ZEB1 axis in non-small cell lung cancer
via the regulation of PD-1/PD-L1 pathway. Hum Mol Genet.
31:4094–4106. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Han R, Rao X, Zhou H and Lu L: Synergistic
immunoregulation: Harnessing CircRNAs and PiRNAs to amplify
PD-1/PD-L1 inhibition therapy. Int J Nanomedicine. 19:4803–4834.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M
and Liu L: Mechanisms of immune checkpoint inhibitors: Insights
into the regulation of circular RNAS involved in cancer hallmarks.
Cell Death Dis. 15:32024. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li JX, Huang JM, Jiang ZB, Li RZ, Sun A,
Leung ELH and Yan PY: Current clinical progress of PD-1/PD-L1
immunotherapy and potential combination treatment in non-small cell
lung cancer. Integr Cancer Ther. 18:15347354198900202019.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Almawash S: Revolutionary cancer therapy
for personalization and improved efficacy: Strategies to overcome
resistance to immune checkpoint inhibitor therapy. Cancers (Basel).
17:8802025. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen YG, Chen R, Ahmad S, Verma R, Kasturi
SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al:
N6-Methyladenosine modification controls circular RNA immunity. Mol
Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gong Z, Hu W, Zhou C, Guo J, Yang L and
Wang B: Recent advances and perspectives on the development of
circular RNA cancer vaccines. NPJ Vaccines. 10:412025. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Bu T, Yang Z, Zhao J, Gao Y, Li F and Yang
R: Expanding the potential of circular RNA (CircRNA) vaccines: A
promising therapeutic approach. Int J Mol Sci. 26:3792025.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bilotta MT, Antignani A and Fitzgerald DJ:
Managing the TME to improve the efficacy of cancer therapy. Front
Immunol. 13:9549922022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Fridman ES, Ginini L and Gil Z: The role
of extracellular vesicles in metabolic reprogramming of the tumor
microenvironment. Cells. 11:14332022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xu Y, Jiang T, Wu C and Zhang Y: CircAKT3
inhibits glycolysis balance in lung cancer cells by regulating
miR-516b-5p/STAT3 to inhibit cisplatin sensitivity. Biotechnol
Lett. 42:1123–1135. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li C, Liu H, Niu Q and Gao J:
Circ_0000376, a novel circRNA, promotes the progression of
non-small cell lung cancer through regulating the miR-1182/NOVA2
network. Cancer Manag Res. 12:7635–7647. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chen T, Liu Y, Li C, Xu C, Ding C, Chen J
and Zhao J: Tumor-derived exosomal circFARSA mediates M2 macrophage
polarization via the PTEN/PI3K/AKT pathway to promote non-small
cell lung cancer metastasis. Cancer Treat Res Commun.
28:1004122021.PubMed/NCBI
|
|
99
|
Zhang Q, Wang W, Zhou Q, Chen C, Yuan W,
Liu J, Li X and Sun Z: Roles of circRNAs in the tumour
microenvironment. Mol Cancer. 19:142020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liang H, Yan W, Liu Z, He Y, Hu J, Shu Z,
Li H, Othmane B, Ren W, Quan C, et al: Immunomodulatory behavior of
CircRNAs in tumor microenvironment. Oncol Res. 33:1105–1119. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu G, Liu Q, Jia L, Chai Z, Jing L, Xu F
and Fan Y: Exosomal circRNAs: Key modulators in breast cancer
progression. Cell Death Discov. 11:1962025. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ma Z, Shuai Y, Gao X, Wen X and Ji J:
Circular RNAs in the tumour microenvironment. Mol Cancer. 19:82020.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Liu X, Abraham JM, Cheng Y, Wang Z, Wang
Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, et al:
Synthetic circular RNA functions as a miR-21 sponge to suppress
gastric carcinoma cell proliferation. Mol Ther Nucleic Acids.
13:312–321. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chen X and Lu Y: Circular RNA:
Biosynthesis in vitro. Front Bioeng Biotechnol. 9:7878812021.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ho CK, Wang LK, Lima CD and Shuman S:
Structure and mechanism of RNA ligase. Structure. 12:327–339. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Puttaraju M and Been MD: Group I permuted
intron-exon (PIE) sequences self-splice to produce circular exons.
Nucleic Acids Res. 20:5357–5364. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhang Z and Wang Z: Cellular functions and
biomedical applications of circular RNAs. Acta Biochim Biophys Sin
(Shanghai). 57:157–168. 2024.PubMed/NCBI
|
|
108
|
Zhang H, Qin C, An C, Zheng X, Wen S, Chen
W, Liu X, Lv Z, Yang P, Xu W, et al: Application of the
CRISPR/Cas9-based gene editing technique in basic research,
diagnosis, and therapy of cancer. Mol Cancer. 20:1262021.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li R, Jiang J, Shi H, Qian H, Zhang X and
Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci.
77:1661–1680. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y,
Wu Z, Tang H, Zhang X, Tian F, et al: Circular RNA vaccines against
SARS-CoV-2 and emerging variants. Cell. 185:1728–1744. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yang Q, Li F, He AT and Yang BB: Circular
RNAs: Expression, localization, and therapeutic potentials. Mol
Ther. 29:1683–1702. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Li X, Wu Y and Jin Y: Exosomal LncRNAs and
CircRNAs in lung cancer: Emerging regulators and potential
therapeutic targets. Noncoding RNA Res. 9:1069–1079. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani
F and Foged C: Advances in the design and delivery of RNA vaccines
for infectious diseases. Adv Drug Deliv Rev. 213:1154192024.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming
Y, Cheng J, Li J, Zeng Z, Zuo Y, et al: Characterization of
distinct circular RNA signatures in solid tumors. Mol Cancer.
21:632022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Liu W, Zhao J, Jin M and Zhou M:
circRAPGEF5 contributes to papillary thyroid proliferation and
metastatis by regulation miR-198/FGFR1. Mol Ther Nucleic Acids.
14:609–616. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Chen Q, Liu T, Bao Y, Zhao T, Wang J, Wang
H, Wang A, Gan X, Wu Z and Wang L: CircRNA cRAPGEF5 inhibits the
growth and metastasis of renal cell carcinoma via the
miR-27a-3p/TXNIP pathway. Cancer Lett. 469:68–77. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang
Y, Li X, Wu Z, Yang D, Zhou Y, et al: Circular RNAs in cancer:
Emerging functions in hallmarks, stemness, resistance and roles as
potential biomarkers. Mol Cancer. 18:902019. View Article : Google Scholar : PubMed/NCBI
|