|
1
|
Skou JC: The influence of some cations on
an adenosine triphosphatase from peripheral nerves. Biochim Biophys
Acta. 23:394–401. 1957. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kaplan JH: Biochemistry of Na,K-ATPase.
Annu Rev Biochem. 71:511–535. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mobasheri A, Avila J, Cózar-Castellano I,
Brownleader MD, Trevan M, Francis MJ, Lamb JF and Martín-Vasallo P:
Na+, K+-ATPase isozyme diversity; comparative biochemistry and
physiological implications of novel functional interactions. Biosci
Rep. 20:51–91. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rajasekaran SA, Gopal J, Willis D,
Espineda C, Twiss JL and Rajasekaran AK: Na,K-ATPase beta1-subunit
increases the translation efficiency of the alpha1-subunit in
MSV-MDCK cells. Mol Biol Cell. 15:3224–3232. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Blanco G, Sánchez G and Mercer RW:
Differential regulation of Na,K-ATPase isozymes by protein kinases
and arachidonic acid. Arch Biochem Biophys. 359:139–150. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Benarroch EE: Na+, K+-ATPase: Functions in
the nervous system and involvement in neurologic disease.
Neurology. 76:287–293. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lemas MV, Hamrick M, Takeyasu K and
Fambrough DM: 26 Amino acids of an extracellular domain of the
Na,K-ATPase alpha-subunit are sufficient for assembly with the
Na,K-ATPase beta-subunit. J Biol Chem. 269:8255–8259. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Geering K, Meyer DI, Paccolat MP,
Kraehenbühl JP and Rossier BC: Membrane insertion of alpha- and
beta-subunits of Na+,K+-ATPase. J Biol Chem. 260:5154–5160. 1985.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Blanco G: Na,K-ATPase subunit
heterogeneity as a mechanism for tissue-specific ion regulation.
Semin Nephrol. 25:292–303. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Geering K: Functional roles of Na,K-ATPase
subunits. Curr Opin Nephrol Hypertens. 17:526–532. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Geering K: FXYD proteins: new regulators
of Na-K-ATPase. Am J Physiol Renal Physiol. 290:F241–F250. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Contreras RG, Torres-Carrillo A,
Flores-Maldonado C, Shoshani L and Ponce A:
Na+/K+-ATPase: More than an electrogenic
pump. Int J Mol Sci. 25:61222024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Laursen M, Gregersen JL, Yatime L, Nissen
P and Fedosova UN: Structures and characterization of digoxin- and
bufalin-bound Na+,K+-ATPase compared with the ouabain-bound
complex. Proc Natl Acad Sci USA. 112:1755–1760. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Quintas LE, Pierre SV, Liu LJ, Bai Y, Liu
XC and Xie ZJ: Alterations of Na+/K+-ATPase function in caveolin-1
knockout cardiac fibroblasts. J Mol Cell Cardiol. 49:525–531. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Skou JC: The identification of the sodium
pump. Biosci Rep. 24:436–451. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xie ZJ and Askari A: Na(+)/K(+)-ATPase as
a signal transducer. Eur J Biochem. 269:2434–2439. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pierre SV and Xie Z: The Na,K-ATPase
receptor complex: Its organization and membership. Cell Biochem
Biophys. 46:303–316. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rajasekaran SA and Rajasekaran AK:
Na,K-ATPase and epithelial tight junctions. Front Biosci (Landmark
Ed). 14:2130–2148. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Barwe SP, Anikmar G, Moon SY, Zeng Y,
Whitelegge JP, Rajasekaran SA and Rajasekaran AK: Novel role for
Na,K-ATPase in phosphatidylinositol 3-kinase signaling and
suppression of cell motility. Mol Biol Cell. 16:1082–1094. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kimura T, Han W, Pagel P, Nairn AC and
Caplan MJ: Protein phosphatase 2A interacts with the Na,K-ATPase
and modulates its trafficking by inhibition of its association with
arrestin. PLoS One. 6:e292692011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ren Y, Anderson AT, Meyer G, Lauber KM,
Gallucci JC and Douglas Kinghorn A: Digoxin and its
Na+/K+-ATPase-targeted actions on
cardiovascular diseases and cancer. Bioorg Med Chem.
114:1179392024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Maxwell KD, Chuang J, Chaudhry M, Nie Y,
Bai F, Sodhi K, Liu J and Shapiro JI: The potential role of
Na-K-ATPase and its signaling in the development of anemia in
chronic kidney disease. Am J Physiol Renal Physiol. 320:F234–F242.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bartlett DE, Miller RB, Thiesfeldt S,
Lakhani HV, Shapiro JI and Sodhi K: The role of Na/K-ATPase
signaling in oxidative stress related to aging: Implications in
obesity and cardiovascular disease. Int J Mol Sci. 19:21392018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Thai AA, Solomon BJ, Sequist LV, Gainor JF
and Heist RE: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Luo G, Zhang Y, Rumgay H, Morgan E,
Langselius O, Vignat J, Colombet M and Bray F: Estimated worldwide
variation and trends in incidence of lung cancer by histological
subtype in 2022 and over time: A population-based study. Lancet
Respir Med. 13:348–363. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hirsch FR, Suda K, Wiens J and Bunn PA Jr:
New and emerging targeted treatments in advanced non-small-cell
lung cancer. Lancet. 388:1012–1024. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Stenkvist B, Bengtssion E, Dahlqvist B,
Eriksson O, Jarkrans T and Nordin B: Cardiac glycosides and breast
cancer, revisited. N Engl J Med. 306:4841982. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI
|
|
30
|
Felippe Gonçalves-de-Albuquerque C,
Ribeiro Silva A, Ignácio da Silva C, Caire Castro-Faria-Neto H and
Burth P: Na/K pump and beyond: Na/K-ATPase as a modulator of
apoptosis and autophagy. Molecules. 22:5782017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bejček J, Spiwok V, Kmoníčková E and
Rimpelová S: Na+/K+-ATPase revisited: On its
mechanism of action, role in cancer, and activity modulation.
Molecules. 26:19052021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Diederich M, Muller F and Cerella C:
Cardiac glycosides: From molecular targets to immunogenic cell
death. Biochem Pharmacol. 125:1–11. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Huynh TP, Mah V, Sampson VB, Chia D,
Fishbein MC, Horvath S, Alavi M, Wu DC, Harper J, Sarafian T, et
al: Na,K-ATPase is a target of cigarette smoke and reduced
expression predicts poor patient outcome of smokers with lung
cancer. Am J Physiol Lung Cell Mol Physiol. 302:L1150–L1158. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Schneider C, Spaink H, Alexe G, Dharia NV,
Meyer A, Merickel LA, Khalid D, Scheich S, Häupl B, Staudt LM, et
al: Targeting the sodium-potassium pump as a therapeutic strategy
in acute myeloid leukemia. Cancer Res. 84:3354–3370. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Espineda C, Seligson DB, Ball WJ Jr, Rao
JY, Palotie A, Horvath S, Huang Y, Shi T and Rajasekaran AK:
Analysis of the Na,K-ATPase alpha- and beta-subunit expression
profiles of bladder cancer using tissue microarrays. Cancer.
97:1859–1868. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Rajasekaran SA, Ball WJ Jr, Bander NH, Liu
H, Pardee JD and Rajasekaran AK: Reduced expression of beta-subunit
of Na,K-ATPase in human clear-cell renal cell carcinoma. J Urol.
162:574–580. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rajasekaran SA, Huynh TP, Wolle DG,
Espineda CE, Inge LJ, Skay A, Lassman C, Nicholas SB, Harper JF,
Reeves AE, et al: Na,K-ATPase subunits as markers for
epithelial-mesenchymal transition in cancer and fibrosis. Mol
Cancer Ther. 9:1515–1524. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Rajasekaran SA, Palmer LG, Moon SY, Soler
AP, Apodaca GL, Harper JF, Zheng Y and Rajasekaran AK: Na,K-ATPase
activity is required for formation of tight junctions, desmosomes,
and induction of polarity in epithelial cells. Mol Biol Cell.
12:3717–3732. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Barwe SP, Kim S, Rajasekaran SA, Bowie JU
and Rajasekaran KA: Janus model of the Na,K-ATPase beta-subunit
transmembrane domain: Distinct faces mediate alpha/beta assembly
and beta-beta homo-oligomerization. J Mol Biol. 365:706–714. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Inge LJ, Rajasekaran SA, Yoshimoto K,
Mischel PS, McBride W, Landaw E and Rajasekaran KA: Evidence for a
potential tumor suppressor role for the Na,K-ATPase beta1-subunit.
Histol Histopathol. 23:459–467. 2008.PubMed/NCBI
|
|
41
|
Shoshani L, Contreras RG, Roldán ML,
Moreno J, Lázaro A, Balda MS, Matter K and Cereijido M: The
polarized expression of Na+,K+-ATPase in epithelia depends on the
association between beta-subunits located in neighboring cells. Mol
Biol Cell. 16:1071–1081. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Vagin O, Tokhtaeva E and Sachs G: The role
of the beta1 subunit of the Na,K-ATPase and its glycosylation in
cell-cell adhesion. J Biol Chem. 281:39573–39587. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Udoh UaS, Banerjee M, Rajan PK, Sanabria
JD, Smith G, Schade M, Sanabria JA, Nakafuku Y, Sodhi K, Pierre SV,
et al: Tumor-suppressor role of the α1-Na/K-ATPase signalosome in
NASH related hepatocellular carcinoma. Int J Mol Sci. 23:73592022.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mijatovic T, Roland I, Quaquebeke EV,
Nilsson B, Mathieu A, Vynckt FV, Darro F, Blanco G, Facchini V and
Kiss R: The alpha1 subunit of the sodium pump could represent a
novel target to combat non-small cell lung cancers. J Pathol.
212:170–179. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu CC, Kim YJ, Teh R, Garcia A, Hamilton
EJ, Cornelius F, Baxter RC and Rasmussen HH: Displacement of native
FXYD protein from Na+/K+-ATPase with novel
FXYD peptide derivatives: Effects on doxorubicin cytotoxicity.
Front Oncol. 12:8592162022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu CC, Teh R, Mozar CA, Baxter RC and
Rasmussen HH: Silencing overexpression of FXYD3 protein in breast
cancer cells amplifies effects of doxorubicin and γ-radiation on
Na(+)/K(+)-ATPase and cell survival. Breast Cancer Res Treat.
155:203–213. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cordeiro BM, Leite Fontes CF and
Meyer-Fernandes JR: Molecular basis of Na, K-ATPase regulation of
diseases: Hormone and FXYD2 interactions. Int J Mol Sci.
25:133982024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Okudela K, Yazawa T, Ishii J, Woo T,
Mitsui H, Bunai T, Sakaeda M, Shimoyamada H, Sato H, Tajiri M, et
al: Down-regulation of FXYD3 expression in human lung cancers: Its
mechanism and potential role in carcinogenesis. Am J Pathol.
175:2646–2656. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liu J, Feng Y, Zeng X, He M, Gong Y and
Liu Y: Extracellular vesicles-encapsulated let-7i shed from bone
mesenchymal stem cells suppress lung cancer via KDM3A/DCLK1/FXYD3
axis. J Cell Mol Med. 25:1911–1926. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Crambert G, Li C, Claeys D and Geering K:
FXYD3 (Mat-8), a new regulator of Na,K-ATPase. Mol Biol Cell.
16:2363–2371. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Glaviano A, Foo ASC, Lam HY, Yap KCH,
Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al:
PI3K/AKT/mTOR signaling transduction pathway and targeted therapies
in cancer. Mol Cancer. 22:1382023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
LoPiccolo J, Blumenthal GM, Bernstein WB
and Dennis PA: Targeting the PI3K/Akt/mTOR pathway: Effective
combinations and clinical considerations. Drug Resist Updat.
11:32–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ren Y, Wu S, Burdette JE, Cheng X and
Kinghorn AD: Structural insights into the interactions of digoxin
and Na+/K+-ATPase and other targets for the
inhibition of cancer cell proliferation. Molecules. 26:36722021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhu Z, Sun H, Ma G, Wang Z, Li E and Liu Y
and Liu Y: Bufalin induces lung cancer cell apoptosis via the
inhibition of PI3K/Akt pathway. Int J Mol Sci. 13:2025–2035. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chanvorachote P and Pongrakhananon V:
Ouabain downregulates Mcl-1 and sensitizes lung cancer cells to
TRAIL-induced apoptosis. Am J Physiol Cell Physiol. 304:C263–C272.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang K, Li Z, Chen Y, Yin F, Ji X, Zhou J,
Li X, Zeng T, Fei C, Ren C, et al: Na, K-ATPase α1 cooperates with
its endogenous ligand to reprogram immune microenvironment of lung
carcinoma and promotes immune escape. Sci Adv. 9:eade53932023.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Song X, Xie L, Wang X, Zeng Q, Chen TC,
Wang W and Song X: Temozolomide-perillyl alcohol conjugate induced
reactive oxygen species accumulation contributes to its
cytotoxicity against non-small cell lung cancer. Sci Rep.
6:227622016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lauf PK, Alqahtani T, Flues K, Meller L
and Adragna NC: Interaction between Na-K-ATPase and Bcl-2 proteins
BclXL and Bak. Am J Physiol Cell Physiol. 308:C51–C60. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sun J, Chen L, Jiang P, Duan B, Wang R, Xu
J, Liu W, Xu Y, Xie Z, Feng F and Qu W: Phenylethanoid glycosides
of Callicarpa kwangtungensis Chun exert cardioprotective effect by
weakening Na+-K+-ATPase/Src/ERK1/2 pathway and inhibiting apoptosis
mediated by oxidative stress and inflammation. J Ethnopharmacol.
258:1128812020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang Z, Pei S, Cui H, Zhang J and Jia Z:
Zoonotic spillover and extreme weather events drive the global
outbreaks of airborne viral emerging infectious diseases. J Med
Virol. 96:e297372024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Majumder J and Minko T: Recent
developments on therapeutic and diagnostic approaches for COVID-19.
AAPS J. 23:142021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ochani R, Asad A, Yasmin F, Shaikh S,
Khalid H, Batra S, Sohail MR, Mahmood SF, Ochani R, Hussham Arshad
M, et al: COVID-19 pandemic: From origins to outcomes. A
comprehensive review of viral pathogenesis, clinical
manifestations, diagnostic evaluation, and management. Infez Med.
29:20–36. 2021.PubMed/NCBI
|
|
63
|
Nyachoti DO, Fwelo P, Springer AE and
Kelder SH: Association between gross national income per capita and
COVID-19 vaccination coverage: A global ecological study. BMC
Public Health. 23:24152023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
de Wit E, van Doremalen N, Falzarano D and
Munster VJ: SARS and MERS: Recent insights into emerging
coronaviruses. Nat Rev Microbiol. 14:523–534. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He
JX, Liu L, Shan H, Lei CL, Hui DSC, et al: Clinical characteristics
of coronavirus disease 2019 in China. N Engl J Med. 382:1708–1720.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Vitalii K and István V: Molecular
mechanisms of Na,K-ATPase dysregulation driving alveolar epithelial
barrier failure in severe COVID-19. Am J Physiol Lung Cell Mol
Physiol. 320:L1186–L1193. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Souza E, Souza KFC, Moraes BPT, Paixão
ICNP, Burth P, Silva AR and Gonçalves-de-Albuquerque CF:
Na+/K+-ATPase as a target of cardiac
glycosides for the treatment of SARS-CoV-2 infection. Front
Pharmacol. 12:6247042021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Blanco-Melo D, Nilsson-Payant BE, Liu WC,
Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D,
et al: Imbalanced host response to SARS-CoV-2 drives development of
COVID-19. Cell. 181:1036–1045.e9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen F, Zhang Y, Sucgang R, Ramani S,
Corry D, Kheradmand F and Creighton CJ: Meta-analysis of host
transcriptional responses to SARS-CoV-2 infection reveals their
manifestation in human tumors. Sci Rep. 11:24592021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ambade V and Ambade S: SARS-CoV-2
infecting endothelial cells, biochemical alterations, autopsy
findings and outcomes in COVID-19, suggest role of
hypoxia-inducible factor-1. J Med Biochem. 41:14–20. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hamming I, Timens W, Bulthuis MLC, Lely
AT, Navis GJ and van Goor H: Tissue distribution of ACE2 protein,
the functional receptor for SARS coronavirus. A first step in
understanding SARS pathogenesis. J Pathol. 203:631–637. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A,
Buchen YD, Sodhi K, Abraham NG and Shapiro JI: The pivotal role of
adipocyte-Na K peptide in reversing systemic inflammation in
obesity and COVID-19 in the development of heart failure.
Antioxidants (Basel). 9:11292020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li F, Li J, Wang PH, Yang N, Huang J, Ou
J, Xu T, Zhao X, Liu T, Huang X, et al: SARS-CoV-2 spike promotes
inflammation and apoptosis through autophagy by ROS-suppressed
PI3K/AKT/mTOR signaling. Biochim Biophys Acta Mol Basis Dis.
1867:1662602021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Basile MS, Cavalli E, McCubrey J,
Hernández-Bello J, Muñoz-Valle JF, Fagone P and Nicoletti F: The
PI3K/Akt/mTOR pathway: A potential pharmacological target in
COVID-19. Drug Discov Today. 27:848–856. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Semenza GL: Hypoxia-inducible factors in
physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang H, Qian DZ, Tan YS, Lee K, Gao P,
Ren YR, Rey S, Hammers H, Chang D, Pili R, et al: Digoxin and other
cardiac glycosides inhibit HIF-1alpha synthesis and block tumor
growth. Proc Natl Acad Sci USA. 105:19579–19586. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ha DP, Shin WJ, Liu Z, Doche MiE, Lau R,
Leli NM, Conn CS, Russo M, Lorenzato A, Koumenis C, et al:
Targeting stress induction of GRP78 by cardiac glycoside oleandrin
dually suppresses cancer and COVID-19. Cell Biosci. 14:1152024.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Newman RA, Sastry KJ, Arav-Boger R, Cai H,
Matos R and Harrod R: Antiviral effects of oleandrin. J Exp
Pharmacol. 12:503–515. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Van Kanegan MJ, Dunn DE, Kaltenbach LS,
Shah B, He DN, McCoy DD, Yang PY, Peng JN, Shen L, Du L, et al:
Dual activities of the anti-cancer drug candidate PBI-05204 provide
neuroprotection in brain slice models for neurodegenerative
diseases and stroke. Sci Rep. 6:256262016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
RECOVERY Collaborative Group and Horby P,
; Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N,
Brightling C, Ustianowski A, et al: Dexamethasone in hospitalized
patients with Covid-19-preliminary report. N Engl J Med.
384:693–704. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Devarajan P and Benz EJ Jr: Translational
regulation of Na-K-ATPase subunit mRNAs by glucocorticoids. Am J
Physiol Renal Physiol. 279:F1132–F1138. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Matthay MA, Arabi Y, Arroliga AC, Bernard
G, Bersten AD, Brochard LJ, Calfee CS, Combes A, Daniel BM,
Ferguson ND, et al: A new global definition of acute respiratory
distress syndrome. Am J Respir Crit Care Med. 209:37–47. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Matthay MA, Zemans RL, Zimmerman GA, Arabi
YM, Beitler JR, Mercat A, Herridge M, Randolph AG and Calfee CS:
Acute respiratory distress syndrome. Nat Rev Dis Primers. 5:182019.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bernard GR, Artigas A, Brigham KL, Carlet
J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A and Spragg R:
Report of the American-European consensus conference on ARDS:
Definitions, mechanisms, relevant outcomes and clinical trial
coordination. The consensus committee. Intensive Care Med.
20:225–232. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
ARDS Definition Task Force, . Ranieri VM,
Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E,
Camporota L and Slutsky AS: Acute respiratory distress syndrome:
The Berlin definition. JAMA. 307:2526–2533. 2012.PubMed/NCBI
|
|
86
|
Hu Q, Zhang S, Yang Y, Yao JQ, Tang WF,
Lyon CJ, Hu TY and Wan MH: Extracellular vesicles in the
pathogenesis and treatment of acute lung injury. Mil Med Res.
9:612022.PubMed/NCBI
|
|
87
|
Meyer NJ, Gattinoni L and Calfee CS: Acute
respiratory distress syndrome. Lancet. 398:622–637. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Herold S, Gabrielli NM and Vadász I: Novel
concepts of acute lung injury and alveolar-capillary barrier
dysfunction. Am J Physiol Lung Cell Mol Physiol. 305:L665–L681.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Matthay MA, Folkesson HG and Clerici C:
Lung epithelial fluid transport and the resolution of pulmonary
edema. Physiol Rev. 82:569–600. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gusarova GA, Trejo HE, Dada LA, Briva A,
Welch LC, Hamanaka RB, Mutlu GM, Chandel NS, Prakriya M and
Sznajder JI: Hypoxia leads to Na,K-ATPase downregulation via Ca(2+)
release-activated Ca(2+) channels and AMPK activation. Mol Cell
Biol. 31:3546–3556. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Berger G, Guetta J, Klorin G, Badarneh R,
Braun E, Brod V, Saleh NA, Katz A, Bitterman H and Azzam ZS: Sepsis
impairs alveolar epithelial function by downregulating Na-K-ATPase
pump. Am J Physiol Lung Cell Mol Physiol. 301:L23–L30. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Peteranderl C, Morales-Nebreda L,
Selvakumar B, Lecuona E, Vadász I, Morty RE, Schmoldt C, Bespalowa
J, Wolff T, Pleschka S, et al: Macrophage-epithelial paracrine
crosstalk inhibits lung edema clearance during influenza infection.
J Clin Invest. 126:1566–1580. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gonçalves-de-Albuquerque CF, Silva AR,
Burth P, Castro-Faria MV and Castro-Faria-Neto HC: Acute
Respiratory Distress Syndrome: Role of oleic acid-triggered lung
injury and inflammation. Mediators Inflamm. 2015:2604652015.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gonçalves-de-Albuquerque CF, Burth P,
Silva AR, de Moraes IM, de Jesus Oliveira FM, Santelli RE, Freire
AS, Bozza PT, Younes-Ibrahim M and de Castro-Faria MV: Oleic acid
inhibits lung Na/K-ATPase in mice and induces injury with lipid
body formation in leukocytes and eicosanoid production. J Inflamm
(Lond). 10:342013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Silva AR, de Souza E Souza KFC, Souza TB,
Younes-Ibrahim M, Burth P, de Castro Faria Neto HC and
Gonçalves-de-Albuquerque CF: The Na/K-ATPase role as a signal
transducer in lung inflammation. Front Immunol. 14:12875122024.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lei J and Ingbar DH: Src kinase integrates
PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase
activity in adult rat alveolar cells. Am J Physiol Lung Cell Mol
Physiol. 301:L765–L771. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Upadhyay D, Lecuona E, Comellas A, Kamp DW
and Sznajder JI: Fibroblast growth factor-10 upregulates
Na,K-ATPase via the MAPK pathway. FEBS Lett. 545:173–176. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang Q, Yan SF, Hao Y and Jin SW:
Specialized pro-resolving mediators regulate alveolar fluid
clearance during acute respiratory distress syndrome. Chin Med J
(Engl). 131:982–989. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang JL, Zhuo XJ, Lin J, Luo LC, Ying WY,
Xie X, Zhang HW, Yang JX, Li D, Smith FG and Jin SW: Maresin1
stimulates alveolar fluid clearance through the alveolar epithelial
sodium channel Na,K-ATPase via the ALX/PI3K/Nedd4-2 pathway. Lab
Invest. 97:543–554. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yang Q, Xu HR, Xiang SY, Zhang C, Ye Y,
Shen CX, Mei HX, Zhang PH, Ma HY, Zheng SX, et al: Resolvin
conjugates in tissue regeneration 1 promote alveolar fluid
clearance by activating alveolar epithelial sodium channels and Na,
K-ATPase in lipopolysaccharide-induced acute lung injury. J
Pharmacol Exp Ther. 379:156–165. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang C, Meng Y, Wang Y, Jiang Z, Xu M, Bo
L and Deng X: Ouabain protects mice against
lipopolysaccharide-induced acute lung injury. Med Sci Monit.
24:4455–4464. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wang Q, Lian QQ, Li R, Ying BY, He Q, Chen
F, Zheng X, Yang Y, Wu DR, Zheng SX, et al: Lipoxin A(4) activates
alveolar epithelial sodium channel, Na,K-ATPase, and increases
alveolar fluid clearance. Am J Respir Cell Mol Biol. 48:610–618.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Emr BM, Roy S, Kollisch-Singule M, Gatto
LA, Barravecchia M, Lin X, Young JL, Wang G, Liu J, Satalin J, et
al: Electroporation-mediated gene delivery of Na+,K+-ATPase, and
ENaC subunits to the lung attenuates acute respiratory distress
syndrome in a two-hit porcine model. Shock. 43:16–23. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Stern M, Ulrich K, Robinson C, Copeland J,
Griesenbach U, Masse C, Cheng S, Munkonge F, Geddes D, Berthiaume Y
and Alton E: Pretreatment with cationic lipid-mediated transfer of
the Na+K+-ATPase pump in a mouse model in vivo augments resolution
of high permeability pulmonary edema. Gene Ther. 7:960–966. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang J, Chang J, Beg MA, Huang W, Zhao Y,
Dai W, Wu X, Cui W, Pillai SS, Lakhani HV, et al: Na/K-ATPase
suppresses LPS-induced pro-inflammatory signaling through Lyn.
iScience. 25:1049632022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Flodby P, Kim YH, Beard LL, Gao D, Ji Y,
Kage H, Liebler JM, Minoo P, Kim KJ, Borok Z and Crandall ED:
Knockout mice reveal a major role for alveolar epithelial type I
cells in alveolar fluid clearance. Am J Respir Cell Mol Biol.
55:395–406. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li G, Flodby P, Luo J, Kage H, Sipos A,
Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, et al: Knockout mice
reveal key roles for claudin 18 in alveolar barrier properties and
fluid homeostasis. Am J Respir Cell Mol Biol. 51:210–222. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lin X, Barravecchia M, Kothari P, Young JL
and Dean DA: β1-Na(+),K(+)-ATPase gene therapy upregulates tight
junctions to rescue lipopolysaccharide-induced acute lung injury.
Gene Ther. 23:489–499. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kerem B, Rommens JM, Buchanan JA,
Markiewicz D, Cox TK, Chakravarti A, Buchwald M and Tsui LC:
Identification of the cystic fibrosis gene: Genetic analysis.
Science. 245:1073–1080. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Riordan JR, Romments JM, Kerem B, Alon N,
Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et
al: Identification of the cystic fibrosis gene: Cloning and
characterization of complementary DNA. Science. 245:1066–1073.
1989. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Rommens JM, Iannuzzi MC, Kerem B, Drumm
ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et
al: Identification of the cystic fibrosis gene: Chromosome walking
and jumping. Science. 245:1059–1065. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Endres TM and Konstan MW: What is cystic
fibrosis? JAMA. 327:1912022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Rafeeq MM and Murad HAS: Cystic fibrosis:
Current therapeutic targets and future approaches. J Transl Med.
15:842017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Natarajan V: Is PI3K a villain in cystic
fibrosis? Am J Respir Cell Mol Biol. 62:552–553. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Reilly R, Mroz MS, Dempsey E, Wynne K,
Keely SJ, McKone EF, Hiebel C, Behl C and Coppinger JA: Targeting
the PI3K/Akt/mTOR signalling pathway in cystic fibrosis. Sci Rep.
7:76422017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Peckham D, Holland E, Range S and Knox AJ:
Na+/K+ ATPase in lower airway epithelium from cystic fibrosis and
non-cystic-fibrosis lung. Biochem Biophys Res Commun. 232:464–468.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Luczay A, Vásárhelyi B, Dobos M, Holics K,
Ujhelyi R and Tulassay T: Altered erythrocyte sodium-lithium
counter-transport and Na+/K(+)-ATPase activity in cystic fibrosis.
Acta Paediatr. 86:245–247. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Miller TJ and Davis PB: FXYD5 modulates
Na+ absorption and is increased in cystic fibrosis airway
epithelia. Am J Physiol Lung Cell Mol Physiol. 294:L654–L664. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Raghavan D, Gao A, Ahn C, Kaza V, Finklea
J, Torres F and Jain R: Lung transplantation and gender effects on
survival of recipients with cystic fibrosis. J Heart Lung
Transplant. 35:1487–1496. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Saint-Criq V, Kim SH, Katzenellenbogen JA
and Harvey BJ: Non-genomic estrogen regulation of ion transport and
airway surface liquid dynamics in cystic fibrosis bronchial
epithelium. PLoS One. 8:e785932013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Matalon S, Bartoszewski R and Collawn JF:
Role of epithelial sodium channels in the regulation of lung fluid
homeostasis. Am J Physiol Lung Cell Mol Physiol. 309:L1229–L1238.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Richeldi L, Collard HR and Jones MG:
Idiopathic pulmonary fibrosis. Lancet. 389:1941–1952. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Cai M, Zhu M, Ban C, Su J, Ye Q, Liu Y,
Zhao W, Wang C and Dai H: Clinical features and outcomes of 210
patients with idiopathic pulmonary fibrosis. Chin Med J (Engl).
127:1868–1873. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Li B, Huang X, Xu X, Ning W, Dai H and
Wang C: The profibrotic effect of downregulated Na,K-ATPase β1
subunit in alveolar epithelial cells during lung fibrosis. Int J
Mol Med. 44:273–280. 2019.PubMed/NCBI
|
|
125
|
Rodrigo R, Trujillo S, Bosco C, Orellana
M, Thielemann L and Araya J: Changes in (Na + K)-adenosine
triphosphatase activity and ultrastructure of lung and kidney
associated with oxidative stress induced by acute ethanol
intoxication. Chest. 121:589–596. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Nam LB and Keum YS: Regulation of NRF2 by
Na+/K+-ATPase: Implication of tyrosine
phosphorylation of Src. Free Radic Res. 54:883–893. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J
and Weng Q: Targeting PI3K/AKT signaling for treatment of
idiopathic pulmonary fibrosis. Acta Pharm Sin B. 12:18–32. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ludens JH, Clark MA, DuCharme DW, Harris
DW, Lutzke BS, Mandel F, Mathews WR, Sutter DM and Hamlyn JM:
Purification of an endogenous digitalislike factor from human
plasma for structural analysis. Hypertension. 17:923–929. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Sophocleous A, Elmatzoglou I and
Souvatzoglou A: Circulating endogenous digitalis-like factor(s)
(EDLF) in man is derived from the adrenals and its secretion is
ACTH-dependent. J Endocrinol Invest. 26:668–674. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Li B, Huang X, Liu Z, Xu X, Xiao H, Zhang
X, Dai H and Wang C: Ouabain ameliorates bleomycin induced
pulmonary fibrosis by inhibiting proliferation and promoting
apoptosis of lung fibroblasts. Am J Transl Res. 10:2967–2974.
2018.PubMed/NCBI
|
|
131
|
La J, Reed EB, Koltsova S, Akimova O,
Hamanaka RB, Mutlu GM, Orlov SN and Dulin NO: Regulation of
myofibroblast differentiation by cardiac glycosides. Am J Physiol
Lung Cell Mol Physiol. 310:L815–L823. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Orlov SN, La J, Smolyaninova LV and Dulin
NO: Na+,K+-ATPase as a target for treatment of tissue fibrosis.
Curr Med Chem. 26:564–575. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Johnson S, Sommer N, Cox-Flaherty K,
Weissmann N, Ventetuolo CE and Maron BA: Pulmonary hypertension: A
contemporary review. Am J Respir Crit Care Med. 208:528–548. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Mocumbi A, Humbert M, Saxena A, Jing ZC,
Sliwa K, Thienemann F, Archer SL and Stewart S: Pulmonary
hypertension. Nat Rev Dis Primers. 10:12024. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Humbert M, Kovacs G, Hoeper MM,
Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS,
Escribano-Subias P, Ferrari P, et al: 2022 ESC/ERS guidelines for
the diagnosis and treatment of pulmonary hypertension. Eur Respir
J. 61:22008792023. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Kovacs G, Bartolome S, Denton CP,
Gatzoulis MA, Gu S, Khanna D, Badesch D and Montani D: Definition,
classification and diagnosis of pulmonary hypertension. Eur Respir
J. 64:24013242024. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Poch D and Mandel J: Pulmonary
hypertension. Ann Intern Med. 174:ITC49–ITC64. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Bubb KJ, Tang O, Gentile C, Moosavi SM,
Hansen T, Liu CC, Di Bartolo BA and Figtree GA: FXYD1 is protective
against vascular dysfunction. Hypertension. 77:2104–2116. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Pavlovic D, Hall AR, Kennington EJ,
Aughton K, Boguslavskyi A, Fuller W, Despa S, Bers DM and Shattock
MJ: Nitric oxide regulates cardiac intracellular Na+ and
Ca2+by modulating Na/K ATPase via PKCε and
phospholemman-dependent mechanism. J Mol Cell Cardiol. 61:164–171.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hansen TS, Karimi Galougahi K, Tang O,
Tsang M, Scherrer-Crosbie M, Arystarkhova E, Sweadner K, Bursill C,
Bubb KJ and Figtree GA: The FXYD1 protein plays a protective role
against pulmonary hypertension and arterial remodeling via redox
and inflammatory mechanisms. Am J Physiol Heart Circ Physiol.
326:H623–H635. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Ghosh B, Kar P, Mandal A, Dey K,
Chakraborti T and Chakraborti S: Ca2+ influx mechanisms in caveolae
vesicles of pulmonary smooth muscle plasma membrane under
inhibition of alpha2beta1 isozyme of Na+/K+-ATPase by ouabain. Life
Sci. 84:139–148. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Fürstenwerth H: Ouabain-the insulin of the
heart. Int J Clin Pract. 64:1591–1594. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Guerrero A, Herranz N, Sun B, Wagner V,
Gallage S, Guiho R, Wolter K, Pombo J, Irvine EE, Innes AJ, et al:
Cardiac glycosides are broad-spectrum senolytics. Nat Metab.
1:1074–1088. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Laredo J, Hamilton BP and Hamlyn JM:
Secretion of endogenous ouabain from bovine adrenocortical cells:
Role of the zona glomerulosa and zona fasciculata. Biochem Biophys
Res Commun. 212:487–493. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
De Angelis C and Haupert GT Jr: Hypoxia
triggers release of an endogenous inhibitor of Na(+)-K(+)-ATPase
from midbrain and adrenal. Am J Physiol. 274:F182–F188.
1998.PubMed/NCBI
|