Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2025 Volume 32 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 32 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Purchase PDF
Review

Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review)

  • Authors:
    • Guangyan Yu
    • Qiuling Xu
    • Ran An
  • View Affiliations / Copyright

    Affiliations: Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
  • Article Number: 306
    |
    Published online on: September 2, 2025
       https://doi.org/10.3892/mmr.2025.13671
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Leukemia is a malignant clonal disease originating from hematopoietic stem cells, whose complex pathogenesis is associated with multiple factors. Epigenetic regulation has been found to play an important role in the occurrence and development of leukemia, and has become a major focus of research. Fucoidan (FPS), a natural sulfated polysaccharide primarily extracted from marine brown algae, is rich in L‑fucose and sulfate groups. It has a variety of biological activities, including antioxidant, antiviral, immunomodulatory and antitumor activities. Notably, FPS exhibits antileukemic potential by epigenetically inhibiting the protein expression of DNA methyltransferases, regulating methylation levels at the promoter regions of specific genes such as peroxiredoxin 2, influencing the activity of histone‑modifying enzymes, and controlling the expression of non‑coding RNAs (ncRNAs), including microRNAs and long ncRNAs. These effects collectively suppress the proliferative and differentiation of leukemic cells. The present review examines the epigenetic regulatory mechanisms by which FPS may inhibit leukemia, including DNA methylation, histone modification and ncRNA‑associated mechanisms. In addition, it also discusses the potential advantages and challenges of FPS in the treatment of leukemia, as well as future research directions for FPS in leukemia therapy, aiming to provide a stronger theoretical basis for its clinical application.
View Figures

Figure 1

Structure of fucoidan. Figure was
drawn with KingDraw (version 3.6.8, Qingdao Qingyuan Precision
Agriculture Technology Co., Ltd, China).

Figure 2

Epigenetic regulation mechanisms in
leukemia. Environmental pollutants induce leukemogenic epigenetic
alterations through abnormal DNA methylation, aberrant histone
acetylation/methylation and the dysregulation of non-coding RNAs,
which promote leukemogenesis. miR-29s, microRNA-29s; DNMTs, DNA
methyltransferases; PRDX2, peroxiredoxin 2; STAT5, signal
transduction and activator of transcription 5; PTEN, phosphatase
and tensin homolog; Ras, renin-angiotensin system; Rap1,
Ras-associated protein 1.

Figure 3

Association between fucoidan and
epigenetic regulation in leukemia. Fucoidan targets DNMTs,
histone-modifying enzymes and non-coding RNAs to reverse aberrant
DNA methylation, histone modification and miRNA expression, thereby
suppressing the progression of leukemia. DNMT, DNA
methyltransferase; miR-29b, microRNA-29b; PRDX2, peroxiredoxin 2;
PTEN, phosphatase and tensin homolog.
View References

1 

Zheng Z, Wang L, Cheng S, Wang Y and Zhao W: Autophagy and Leukemia. Adv Exp Med Biol. 1207:601–613. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Yang X, Wong MPM and Ng RK: Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci. 20:45762019. View Article : Google Scholar : PubMed/NCBI

3 

Xu H, Yu H, Jin R, Wu X and Chen H: Genetic and epigenetic targeting therapy for pediatric acute lymphoblastic leukemia. Cells. 10:33492021. View Article : Google Scholar : PubMed/NCBI

4 

Gowda C, Song C, Ding Y, Iyer S, Dhanyamraju PK, McGrath M, Bamme Y, Soliman M, Kane S, Payne JL and Dovat S: Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv Biol Regul. 75:1006652020. View Article : Google Scholar : PubMed/NCBI

5 

Yang L, Rau R and Goodell MA: DNMT3A in haematological malignancies. Nat Rev Cancer. 15:152–165. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, et al: DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 363:2424–2433. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, Fulton R, Schmidt H, Kalicki-Veizer J, O'Laughlin M, et al: Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 25:1153–1158. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R and Lichter P: Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet. 14:765–780. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Jiang Y, Hatzi K and Shaknovich R: Mechanisms of epigenetic deregulation in lymphoid neoplasms. Blood. 121:4271–4279. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Ghazimoradi MH, Karimpour-Fard N and Babashah S: The promising role of Non-coding RNAs as biomarkers and therapeutic targets for leukemia. Genes (Basel). 14:1312023. View Article : Google Scholar : PubMed/NCBI

11 

Li T, Hong J, Ma Y, Yang B, Wang G, Wang S, Chen J and Chi X: Regulatory mechanism of long noncoding RNA in the occurrence and development of leukemia: A review. Sheng Wu Gong Cheng Xue Bao. 37:3933–3944. 2021.(In Chinese). PubMed/NCBI

12 

Cruz-Miranda GM, Hidalgo-Miranda A, Bárcenas-López DA, Núñez-Enríquez JC, Ramírez-Bello J, Mejía-Aranguré JM and Jiménez-Morales S: Long Non-coding RNA and acute leukemia. Int J Mol Sci. 20:7352019. View Article : Google Scholar : PubMed/NCBI

13 

Chen Y and Shen YQ: Role of reactive oxygen species in regulating epigenetic modifications. Cell Signal. 125:1115022025. View Article : Google Scholar : PubMed/NCBI

14 

Alimohammadi M, Abolghasemi H, Cho WC, Reiter RJ, Mafi A, Aghagolzadeh M and Hushmandi K: Interplay between LncRNAs and autophagy-related pathways in leukemia: Mechanisms and clinical implications. Med Oncol. 42:1542025. View Article : Google Scholar : PubMed/NCBI

15 

Ma D, Wei J, Chen S, Wang H, Ning L, Luo SH, Liu CL, Song G and Yao Q: Fucoidan inhibits the progression of hepatocellular carcinoma via causing lncRNA LINC00261 overexpression. Front Oncol. 11:6539022021. View Article : Google Scholar : PubMed/NCBI

16 

Yan MD, Lin HY and Hwang PA: The anti-tumor activity of brown seaweed Oligo-fucoidan via lncRNA expression modulation in HepG2 cells. Cytotechnology. 71:363–374. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Conchie J and Percival EGV: Fucoidin. Part II. The hydrolysis of a methylated Fucoidin prepared from fucus vesiculosus. J Chem Soc. 827–832. 1950. View Article : Google Scholar

18 

Li Y, Zhao W, Wang L, Chen Y, Zhang H, Wang T, Yang X, Xing F, Yan J and Fang X: Protective effects of fucoidan against hydrogen peroxide-induced oxidative damage in porcine intestinal epithelial cells. Animals (Basel). 9:11082019. View Article : Google Scholar : PubMed/NCBI

19 

Liang Z, Liu Z, Sun X, Tao M, Xiao X, Yu G and Wang X: The effect of fucoidan on cellular oxidative stress and the CatD-Bax signaling axis in MN9D cells damaged by 1-methyl-4-phenypyridinium. Front Aging Neurosci. 10:4292019. View Article : Google Scholar : PubMed/NCBI

20 

Yoo HJ, You DJ and Lee KW: Characterization and immunomodulatory effects of high molecular weight fucoidan fraction from the Sporophyll of Undaria pinnatifida in cyclophosphamide-induced immunosuppressed mice. Mar Drugs. 17:4472019. View Article : Google Scholar : PubMed/NCBI

21 

Wang Y, Xing M, Cao Q, Ji A, Liang H and Song S: Biological activities of fucoidan, the factors mediating its therapeutic effects: A review of recent studies. Mar Drugs. 17:1832019. View Article : Google Scholar : PubMed/NCBI

22 

Luthuli S, Wu S, Cheng Y, Zheng X, Wu M and Tong H: Therapeutic effects of fucoidan: A review on recent studies. Mar Drugs. 17:4872019. View Article : Google Scholar : PubMed/NCBI

23 

Kim EA, Lee SH, Ko CI, Cha SH, Kang MC, Kang SM, Ko SC, Lee WW, Ko JY, Lee JH, et al: Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model. Carbohydr Polym. 102:185–191. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Shiau JP, Chuang YT, Cheng YB, Tang JY, Hou MF, Yen CY and Chang HW: Impacts of Oxidative Stress and PI3K/AKT/mTOR on metabolism and the future direction of investigating fucoidan-modulated metabolism. Antioxidants (Basel). 11:9112022. View Article : Google Scholar : PubMed/NCBI

25 

Jin JO, Song MG, Kim YN, Park JI and Kwak JY: The mechanism of fucoidan-induced apoptosis in leukemic cells: Involvement of ERK1/2, JNK, glutathione, and nitric oxide. Mol Carcinog. 49:771–782. 2010.PubMed/NCBI

26 

Park HS, Hwang HJ, Kim GY, Cha HJ, Kim WJ, Kim ND, Yoo YH and Choi YH: Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bc-2 family. Mar Drugs. 11:2347–2364. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Maruyama H, Tamauchi H, Iizuka M and Nakano T: The role of NK cells in anti-tumor activity of dietary fucoidan from Undaria pinnatifda sporophylls (Mekabu). Planta Med. 72:1415–1417. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Liao CH, Lai IC, Kuo HC, Chuang SE, Lee HL, Whang-Peng J, Yao CJ and Lai GM: Epigenetic modification and differentiation induction of malignant glioma cells by oligo-fucoidan. Mar Drugs. 17:5252019. View Article : Google Scholar : PubMed/NCBI

29 

Yan MD, Yao CJ, Chow JM, Chang CL, Hwang PA, Chuang SE, Whang-Peng J and Lai GM: Fucoidan elevates MicroRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells. Mar Drugs. 13:6099–6116. 2015. View Article : Google Scholar : PubMed/NCBI

30 

El Asri S, Ben Mrid R, Zouaoui Z, Roussi Z, Ennoury A, Nhiri M and Chibi F: Advances in structural modification of fucoidans, ulvans, and carrageenans to improve their biological functions for potential therapeutic application. Carbohydr Res. 549:1093582025. View Article : Google Scholar : PubMed/NCBI

31 

Zhao A, Zhou H, Yang J, Li M and Niu T: Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther. 8:712023. View Article : Google Scholar : PubMed/NCBI

32 

Xu H, Wen Y, Jin R and Chen H: Epigenetic modifications and targeted therapy in pediatric acute myeloid leukemia. Front Pediatr. 10:9758192022. View Article : Google Scholar : PubMed/NCBI

33 

Mehdipour P, Santoro F and Minucci S: Epigenetic alterations in acute myeloid leukemias. FEBS J. 282:1786–1800. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A and Zarghami N: Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother. 106:1668–1677. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Cruz-Rodriguez N, Combita AL and Zabaleta J: Epigenetics in hematological malignancies. Methods Mol Biol. 1856:87–101. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Wei A and Wu H: Mammalian DNA methylome dynamics: Mechanisms, functions and new frontiers. Development. 149:dev1826832022. View Article : Google Scholar : PubMed/NCBI

37 

Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M and Gowher H: Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer. 3:zcab0452021. View Article : Google Scholar : PubMed/NCBI

39 

Kalinkova L, Sevcikova A, Stevurkova V, Fridrichova I and Ciernikova S: Targeting DNA methylation in leukemia, myelodysplastic syndrome, and lymphoma: A potential diagnostic, prognostic, and therapeutic Tool. Int J Mol Sci. 24:6332022. View Article : Google Scholar : PubMed/NCBI

40 

Rahmani M, Talebi M, Hagh MF, Feizi AAH and Solali S: Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia. Biomed Pharmacother. 97:1493–1500. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Zhou L and Yin X: Clinical applications of abnormal DNA methylation in chronic myeloid leukemia. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 49:122–127. 2024.(In English, Chinese). PubMed/NCBI

42 

Palomo L, Malinverni R, Cabezón M, Xicoy B, Arnan M, Coll R, Pomares H, García O, Fuster-Tormo F, Grau J, et al: DNA methylation profile in chronic myelomonocytic leukemia associates with distinct clinical, biological and genetic features. Epigenetics. 13:8–18. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Wu Y, Zhu H and Wu H: PTEN in regulating hematopoiesis and leukemogenesis. Cold Spring Harb Perspect Med. 10:a0362442020. View Article : Google Scholar : PubMed/NCBI

44 

Li M, Liu H, Xu ZF, Liu XR, Wang Y, Rao Q, Wang JX and Wang M: Promoter methylation status of PTEN gene and the effect of induced demethylation in leukemia cell lines. Zhonghua Xue Ye Xue Za Zhi. 29:289–292. 2008.(In Chinese). PubMed/NCBI

45 

Zhang Y, Chen D, Shi R, Wang X, Ji X, Han K, Tian Y and Gao Y: Chemical exposure, leukemia related DNA methylation changes and childhood acute leukemia. Zhonghua Yu Fang Yi Xue Za Zhi. 49:800–809. 2015.(In Chinese). PubMed/NCBI

46 

Takeuchi A, Nishioka C, Ikezoe T, Yang J and Yokoyama A: STAT5A regulates DNMT3A in CD34(+)/CD38(−) AML cells. Leuk Res. 39:897–905. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Bera R, Chiu MC, Huang YJ, Liang DC, Lee YS and Shih LY: Genetic and epigenetic perturbations by DNMT3A-R882 mutants impaired apoptosis through augmentation of PRDX2 in myeloid leukemia cells. Neoplasia. 20:1106–1120. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Sanchez R and Mackenzie SA: Integrative network analysis of differentially methylated and expressed genes for biomarker identification in leukemia. Sci Rep. 10:21232020. View Article : Google Scholar : PubMed/NCBI

49 

Shen N, Yan F, Pang J, Wu LC, Al-Kali A, Litzow MR and Liu S: A nucleolin-DNMT1 regulatory axis in acute myeloid leukemogenesis. Oncotarget. 5:5494–5509. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Shen N, Yan F, Pang J, Zhao N, Gangat N, Wu L, Bode AM, Al-Kali A, Litzow MR and Liu S: Inactivation of receptor tyrosine kinasesreverts aberrant DNA methylation in acute myeloid leukemia. Clin Cancer Res. 23:6254–6266. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Zhang GH, Lu Y, Ji BQ, Ren JC, Sun P, Ding S, Liao X, Liao K, Liu J, Cao J, et al: Do mutations in DNMT3A/3B affect global DNA hypomethylation among benzene-exposed workers in Southeast China?: Effects of mutations in DNMT3A/3B on global DNA hypomethylation. Environ Mol Mutagen. 58:678–687. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Scourzic L, Couronné L, Pedersen MT, Della Valle V, Diop M, Mylonas E, Calvo J, Mouly E, Lopez CK, Martin N, et al: DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia. 30:1388–1398. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Giacopelli B, Wang M, Cleary A, Wu YZ, Schultz AR, Schmutz M, Blachly JS, Eisfeld AK, Mundy-Bosse B, Vosberg S, et al: DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Res. 31:747–761. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Huang J, Xie J, Wang Y, Sheng M, Sun Y, Chen P, Rong S, Yin D, Wang Y, Zhu P, et al: STING mediates increased self-renewal and lineage skewing in DNMT3A-mutated hematopoietic stem/progenitor cells. Leukemia. 39:929–941. 2025. View Article : Google Scholar : PubMed/NCBI

55 

Mansouri L, Wierzbinska JA, Plass C and Rosenquist R: Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact. Semin Cancer Biol. 51:1–11. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Birch NW and Shilatifard A: The role of histone modifications in leukemogenesis. J Biosci. 45:62020. View Article : Google Scholar : PubMed/NCBI

57 

Li Y, Ning Q, Shi J, Chen Y, Jiang M, Gao L, Huang W, Jing Y, Huang S, Liu A, et al: A novel epigenetic AML1-ETO/THAP10/miR-383 mini-circuitry contributes to t(8;21) leukaemogenesis. EMBO Mol Med. 9:933–949. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Palande KK, Beekman R, van der Meeren LE, Beverloo HB, Valk PJ and Touw IP: The antioxidant protein peroxiredoxin 4 is epigenetically down regulated in acute promyelocytic leukemia. PLoS One. 6:e163402011. View Article : Google Scholar : PubMed/NCBI

59 

Chen ZH, Zhu M, Yang J, Liang H, He J, He S, Wang P, Kang X, McNutt MA, Yin Y, et al: PTEN interacts with histone H1 and controls chromatin condensation. Cell Rep. 8:2003–2014. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Lund K, Adams PD and Copland M: EZH2 in normal and malignant hematopoiesis. Leukemia. 28:44–49. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, Loizou E, Holmfeldt L, Strikoudis A, King B, et al: Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 514:513–517. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Psvv C, Joseph A, Ebenezer P, Sankar V, Suravajhala R, Rao RSP and Suravajhala P: An introduction to non-coding RNAs. Prog Mol Biol Transl Sci. 214:1–17. 2025. View Article : Google Scholar : PubMed/NCBI

63 

Yang J, Liang F, Zhang F, Zhao H, Gong Q and Gao N: Recent advances in the reciprocal regulation of m6A modification with non-coding RNAs and its therapeutic application in acute myeloid leukemia. Pharmacol Ther. 259:1086712024. View Article : Google Scholar : PubMed/NCBI

64 

Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X and Fu L: Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol. 12:512019. View Article : Google Scholar : PubMed/NCBI

65 

Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Murai M, Toyota M, Satoh A, Suzuki H, Akino K, Mita H, Sasaki Y, Ishida T, Shen L, Garcia-Manero G, et al: Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer. 92:1165–1172. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Hasegawa D, Manabe A, Kubota T, Kawasaki H, Hirose I, Ohtsuka Y, Tsuruta T, Ebihara Y, Goto Y, Zhao XY, et al: Methylation status of the p15 and p16 genes in paediatric myelodysplastic syndrome and juvenile myelomonocytic leukaemia. Br J Haematol. 128:805–812. 2005. View Article : Google Scholar : PubMed/NCBI

68 

Schwarzer A, Emmrich S, Schmidt F, Beck D, Ng M, Reimer C, Adams FF, Grasedieck S, Witte D, Käbler S, et al: The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun. 8:2182017. View Article : Google Scholar : PubMed/NCBI

69 

Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M and Pourghadamyari H: MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 234:8465–8486. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Wallace JA and O'Connell RM: MicroRNAs and acute myeloid leukemia: Therapeutic implications and emerging concepts. Blood. 130:1290–1301. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Yan J, Yao L, Li P, Wu G and Lv X: Long non-coding RNA MIR17HG sponges microRNA-21 to upregulate PTEN and regulate homoharringtonine-based chemoresistance of acute myeloid leukemia cells. Oncol Lett. 23:242022. View Article : Google Scholar : PubMed/NCBI

72 

Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P and Tassone P: miR-29s: A family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget. 6:12837–12861. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Wei Y, Lu W, Yu Y, Zhai Y, Guo H, Yang S, Zhao C, Zhang Y, Liu J, Liu Y, et al: miR-29c&b2 encourage extramedullary infiltration resulting in the poor prognosis of acute myeloid leukemia. Oncogene. 40:3434–3448. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Schmid VK, Khadour A, Ahmed N, Brandl C, Nitschke L, Rajewsky K, Jumaa H and Hobeika E: B-cell antigen receptor expression and phosphatidylinositol 3-kinase signaling regulate genesis and maintenance of mouse chronic lymphocytic leukemia. Haematologica. 107:1796–1814. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Akbarzadeh M, Mihanfar A, Akbarzadeh S, Yousefi B and Majidinia M: Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sci. 285:1199842021. View Article : Google Scholar : PubMed/NCBI

76 

Yadav P, Bandyopadhayaya S, Ford BM and Mandal C: Interplay between DNA Methyltransferase 1 and microRNAs during tumorigenesis. Curr Drug Targets. 22:1129–1148. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Zhang TJ, Zhang LC, Xu ZJ and Zhou JD: Expression and prognosis analysis of DNMT family in acute myeloid leukemia. Aging (Albany NY). 12:14677–14690. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Carraway HE, Malkaram SA, Cen Y, Shatnawi A, Fan J, Ali HEA, Abd Elmageed ZY, Buttolph T, Denvir J, Primerano DA and Fandy TE: Activation of SIRT6 by DNA hypomethylating agents and clinical consequences on combination therapy in leukemia. Sci Rep. 10:103252020. View Article : Google Scholar : PubMed/NCBI

79 

Richter WF, Shah RN and Ruthenburg AJ: Non-canonical H3K79me2-dependent pathways promote the survival of MLL-rearranged leukemia. Elife. 10:e649602021. View Article : Google Scholar : PubMed/NCBI

80 

Huang FL, Yu SJ and Li CL: Role of autophagy and apoptosis in acute lymphoblastic leukemia. Cancer Control. 28:107327482110191382021. View Article : Google Scholar : PubMed/NCBI

81 

Boustani H, Khodadi E and Shahidi M: Autophagy in hematological malignancies: Molecular aspects in leukemia and lymphoma. Lab Med. 52:16–23. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational modifications in autophagy: Biological functions and therapeutic targets. Signal Transduct Target Ther. 8:322023. View Article : Google Scholar : PubMed/NCBI

83 

Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, Shao X, He Q and Ying M: The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy. 17:2665–2679. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Zhang N, Xue M, Sun T, Yang J, Pei Z and Qin K: Fucoidan as an autophagy regulator: Mechanisms and therapeutic potentials for cancer and other diseases. Nutr Cancer. 74:1568–1579. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L and Wu N: Opportunities and challenges of fucoidan for tumors therapy. Carbohydr Polym. 324:1215552024. View Article : Google Scholar : PubMed/NCBI

86 

Aanniz T, Bouyahya A, Balahbib A, El Kadri K, Khalid A, Makeen HA, Alhazmi HA, El Omari N, Zaid Y, Wong RS, et al: Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: Mechanisms insights and efficiencies. Chem Biol Interact. 392:1109072024. View Article : Google Scholar : PubMed/NCBI

87 

Ow SH, Chua PJ and Bay BH: Epigenetic regulation of peroxiredoxins: Implications in the pathogenesis of cancer. Exp Biol Med (Maywood). 242:140–147. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Nepstad I, Hatfield KJ, Grønningsæter IS and Reikvam H: The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int J Mol Sci. 21:29072020. View Article : Google Scholar : PubMed/NCBI

89 

Bernardo VS, Torres FF, de Paula CP, da Silva JPMO, de Almeida EA, da Cunha AF and da Silva DGH: Potential cytoprotective and regulatory effects of ergothioneine on gene expression of proteins involved in erythroid adaptation mechanisms and redox pathways in K562 Cells. Genes (Basel). 13:23682022. View Article : Google Scholar : PubMed/NCBI

90 

van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A and Pijnenborg JMA: Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar Drugs. 17:322019. View Article : Google Scholar : PubMed/NCBI

91 

Li Y, Chen X and Lu C: The interplay between DNA and histone methylation: Molecular mechanisms and disease implications. EMBO Rep. 22:e518032021. View Article : Google Scholar : PubMed/NCBI

92 

Huang W, Li H, Yu Q, Xiao W and Wang DO: LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 41:1002022. View Article : Google Scholar : PubMed/NCBI

93 

Wang S, Wu W and Claret FX: Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics. 12:187–197. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Afgar A, Ramezani Zadeh Kermani M, Pabarja A, Afgar AR, Kavyani B, Arezoomand H, Zanganeh S, Sanaei MJ, Sattarzadeh Bardsiri M and Vahidi R: 6-Gingerol modulates miRNAs and PODXL gene expression via methyltransferase enzymes in NB4 cells: An in silico and in vitro study. Sci Rep. 14:183562024. View Article : Google Scholar : PubMed/NCBI

95 

Chen YL, Zhang ZX, Shou LH and Di JY: Regulation of DNA methylation and tumor suppression gene expression by miR-29b in leukemia patients and related mechanisms. Eur Rev Med Pharmacol Sci. 22:158–165. 2018.PubMed/NCBI

96 

Yang Y, Hassan SHA, Awasthi MK, Gajendran B, Sharma M, Ji M-K and Salama El-S: The recent progress on the bioactive compounds from algal biomass for human health applications. Food Bioscience. 51:1022672023. View Article : Google Scholar

97 

Geng H, Chen M, Guo C, Wang W and Chen D: Marine polysaccharides: Biological activities and applications in drug delivery systems. Carbohydr Res. 538:1090712024. View Article : Google Scholar : PubMed/NCBI

98 

Mustafa S, Pawar JS and Ghosh I: Fucoidan induces ROS-dependent epigenetic modulation in cervical cancer HeLa cell. Int J Biol Macromol. 181:180–192. 2021. View Article : Google Scholar : PubMed/NCBI

99 

DesJarlais R and Tummino PJ: Role of histone-modifying enzymes and their complexes in regulation of chromatin biology. Biochemistry. 55:1584–1599. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Kim J, Lee H, Yi SJ and Kim K: Gene regulation by histone-modifying enzymes under hypoxic conditions: A focus on histone methylation and acetylation. Exp Mol Med. 54:878–889. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Deng Y, Cheng Q and He J: HDAC inhibitors: Promising agents for leukemia treatment. Biochem Biophys Res Commun. 680:61–72. 2023. View Article : Google Scholar : PubMed/NCBI

102 

Wu YW, Chao MW, Tu HJ, Chen LC, Hsu KC, Liou JP, Yang CR, Yen SC, HuangFu WC and Pan SL: A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo. Oncogenesis. 10:392021. View Article : Google Scholar : PubMed/NCBI

103 

Kanna R, Choudhary G, Ramachandra N, Steidl U, Verma A and Shastri A: STAT3 inhibition as a therapeutic strategy for leukemia. Leuk Lymphoma. 59:2068–2074. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Tan N, Luo H, Li W, Ling G, Wei Y, Wang W and Wang Y: The dual function of autophagy in doxorubicin-induced cardiotoxicity: Mechanism and natural products. Semin Cancer Biol. 109:83–90. 2025. View Article : Google Scholar : PubMed/NCBI

105 

Zhang J, Sun Z, Lin N, Lu W, Huang X, Weng J, Sun S, Zhang C, Yang Q, Zhou G, et al: Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy. Biomed Pharmacother. 130:1105342020. View Article : Google Scholar : PubMed/NCBI

106 

Kato T, Shimono Y, Hasegawa M, Jijiwa M, Enomoto A, Asai N, Murakumo Y and Takahashi M: Characterization of the HDAC1 complex that regulates the sensitivity of cancer cells to oxidative stress. Cancer Res. 69:3597–3604. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Yan H and Bu P: Non-coding RNA in cancer. Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S, et al: Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer. 19:572020. View Article : Google Scholar : PubMed/NCBI

109 

Peschansky VJ and Wahlestedt C: Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 9:3–12. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Farooqi AA, Fayyaz S, Poltronieri P, Calin G and Mallardo M: Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol. 83:197–207. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Chuang YT, Yen CY, Tang JY, Wu KC, Chang FR, Tsai YH, Chien TM and Chang HW: Marine anticancer drugs in modulating miRNAs and antioxidant signaling. Chem Biol Interact. 399:1111422024. View Article : Google Scholar : PubMed/NCBI

112 

Pradhan B, Patra S, Nayak R, Behera C, Dash SR, Nayak S and Sahu BB: Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. Int J Biol Macromol. 164:4263–4278. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Gueven N, Spring KJ, Holmes S, Ahuja K, Eri R, Park AY and Fitton JH: Micro RNA expression after ingestion of Fucoidan; A clinical study. Mar Drugs. 18:1432020. View Article : Google Scholar : PubMed/NCBI

114 

Cui J, Zhou B, Ross SA and Zempleni J: Nutrition, microRNAs, and Human Health. Adv Nutr. 8:105–112. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Zhang W, Park HB, Yadav D, Hwang J, An EK, Eom HY, Kim SJ, Kwak M, Lee PC and Jin JO: Comparison of human peripheral blood dendritic cell activation by four fucoidans. Int J Biol Macromol. 174:477–484. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Riether C, Schürch CM and Ochsenbein AF: Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 22:187–198. 2015. View Article : Google Scholar : PubMed/NCBI

117 

El-Far YM, Khodir AE, Emarah ZA, Ebrahim MA and Al-Gayyar MMH: Fucoidan ameliorates hepatocellular carcinoma induced in rats: Effect on miR143 and inflammation. Nutr Cancer. 73:1498–1510. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Atashrazm F, Lowenthal RM, Woods GM, Holloway AF, Karpiniec SS and Dickinson JL: Fucoidan suppresses the growth of human acute promyelocytic leukemia cells in vitro and in vivo. J Cell Physiol. 231:688–697. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Sanjeewa KKA, Lee JS, Kim WS and Jeon YJ: The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym. 177:451–459. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Zhao Y, Wang Y, Chen L, Bai L and Guan S: Co-immobilization of natural marine polysaccharides and bioactive peptides on ZE21B magnesium alloy to enhance hemocompatibility and cytocompatibility. Int J Biol Macromol. 272:1327472024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • Purchase
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu G, Xu Q and An R: Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review). Mol Med Rep 32: 306, 2025.
APA
Yu, G., Xu, Q., & An, R. (2025). Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review). Molecular Medicine Reports, 32, 306. https://doi.org/10.3892/mmr.2025.13671
MLA
Yu, G., Xu, Q., An, R."Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review)". Molecular Medicine Reports 32.5 (2025): 306.
Chicago
Yu, G., Xu, Q., An, R."Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review)". Molecular Medicine Reports 32, no. 5 (2025): 306. https://doi.org/10.3892/mmr.2025.13671
Copy and paste a formatted citation
x
Spandidos Publications style
Yu G, Xu Q and An R: Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review). Mol Med Rep 32: 306, 2025.
APA
Yu, G., Xu, Q., & An, R. (2025). Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review). Molecular Medicine Reports, 32, 306. https://doi.org/10.3892/mmr.2025.13671
MLA
Yu, G., Xu, Q., An, R."Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review)". Molecular Medicine Reports 32.5 (2025): 306.
Chicago
Yu, G., Xu, Q., An, R."Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review)". Molecular Medicine Reports 32, no. 5 (2025): 306. https://doi.org/10.3892/mmr.2025.13671
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team