You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Ren R, Jiang J, Li X and Zhang G: Research progress of autoimmune diseases based on induced pluripotent stem cells. Front Immunology. 15:13491382024. View Article : Google Scholar | |
|
Autoimmune Association, . Disease Information. Autoimmune Association; Clinton Township, MI: 2025, https://autoimmune.org/disease-information/May 18–2025 | |
|
Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, Taylor PN, Mason J, Sattar N, McMurray JJV, McInnes IB, et al: Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet. 401:1878–1890. 2023. View Article : Google Scholar | |
|
Turtinen M, Härkönen T, Ilonen J, Parkkola A and Knip M; Finnish Pediatric Diabetes Register, : Seasonality in the manifestation of type 1 diabetes varies according to age at diagnosis in Finnish children. Acta Paediatr. 111:1061–1069. 2022. View Article : Google Scholar | |
|
Yamanaka S: Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 27:523–531. 2020. View Article : Google Scholar | |
|
Shahjalal HM, Dayem AA, Lim KM, Jeon TI and Cho SG: Generation of pancreatic β cells for treatment of diabetes: Advances and challenges. Stem Cell Res Ther. 9:3552018. View Article : Google Scholar | |
|
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. 1998. View Article : Google Scholar | |
|
Shen Z, Huang W, Liu J, Tian J, Wang S and Rui K: Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol. 12:7491922021. View Article : Google Scholar | |
|
Aldoghachi AF, Loh JK, Wang ML, Yang YP, Chien CS, Teh HX, Omar AH, Cheong SK, Yeap SK, Ho WY and Ong AHK: Current developments and therapeutic potentials of exosomes from induced pluripotent stem cells-derived mesenchymal stem cells. J Chin Med Assoc. 86:356–365. 2023. View Article : Google Scholar | |
|
Li W, Liu D, Zheng F, Zeng Z, Cai W, Luan S, Hong X, Tang D, Yin LH and Dai Y: Generation of systemic lupus erythematosus patient-derived induced pluripotent stem cells from blood. Stem Cells Dev. 30:227–233. 2021. View Article : Google Scholar | |
|
Joshi K, Cameron F, Tiwari S, Mannering SI, Elefanty AG and Stanley EG: Modeling type 1 diabetes using pluripotent stem cell technology. Front Endocrinol (Lausanne). 12:6356622021. View Article : Google Scholar | |
|
Holmqvist S, Lehtonen Š, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, Ruponen M, Oksanen M, Djelloul M, Collin A, et al: Creation of a library of induced pluripotent stem cells from Parkinsonian patients. NPJ Parkinsons Dis. 2:160092016. View Article : Google Scholar | |
|
Hollingsworth EW, Vaughn JE, Orack JC, Skinner C, Khouri J, Lizarraga SB, Hester ME, Watanabe F, Kosik KS and Imitola J: iPhemap: An atlas of phenotype to genotype relationships of human iPSC models of neurological diseases. EMBO Mol Med. 9:1742–1762. 2017. View Article : Google Scholar | |
|
Ullah I, Subbarao RB and Rho GJ: Human mesenchymal stem cells-current trends and future prospective. Biosci Rep. 35:e001912015. View Article : Google Scholar | |
|
Lee J, Kim Y, Yi H, Diecke S, Kim J, Jung H, Rim YA, Jung SM, Kim M, Kim YG, et al: Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 16:R412014. View Article : Google Scholar | |
|
Hew M, O'Connor K, Edel MJ and Lucas M: The possible future roles for iPSC-derived therapy for autoimmune diseases. J Clin Med. 4:1193–1206. 2015. View Article : Google Scholar | |
|
Natsumoto B, Shoda H, Fujio K, Otsu M and Yamamoto K: Investigation of the pathogenesis of autoimmune diseases by iPS cells. Nihon Rinsho Meneki Gakkai Kaishi. 40:48–53. 2017.(In Japanese). View Article : Google Scholar | |
|
Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar | |
|
Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, et al: Epigenetic memory in induced pluripotent stem cells. Nature. 467:285–290. 2010. View Article : Google Scholar | |
|
Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, et al: Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 7:2080–2089. 2012. View Article : Google Scholar | |
|
Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ and Atala A: Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 180:2226–2233. 2008. View Article : Google Scholar | |
|
Bharadwaj S, Liu G, Shi Y, Markert C, Andersson KE, Atala A and Zhang Y: Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng Part A. 17:2123–2132. 2011. View Article : Google Scholar | |
|
Xue Y, Cai X, Wang L, Liao B, Zhang H, Shan Y, Chen Q, Zhou T, Li X, Hou J, et al: Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One. 8:e705732013. View Article : Google Scholar | |
|
Jiang YF, Chen M, Zhang NN, Yang HJ, Rui Q and Zhou YF: In vitro and in vivo differentiation of induced pluripotent stem cells generated from urine-derived cells into cardiomyocytes. Biol Open. 7:bio0291572018. | |
|
Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, Liao B, Wang H, Bao X, Qin D, et al: Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods. 10:84–89. 2013. View Article : Google Scholar | |
|
Kim J, Koo BJ and Knoblich JA: Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. 2020. View Article : Google Scholar | |
|
Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, et al: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 461:402–406. 2009. View Article : Google Scholar | |
|
Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature. 482:216–220. 2012. View Article : Google Scholar | |
|
Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, et al: Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 494:105–110. 2013. View Article : Google Scholar | |
|
Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z and Jang YY: Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 57:2458–2468. 2013. View Article : Google Scholar | |
|
World Health Organization (WHO), . International Clinical Trials Registry Platform. WHO; Geneva: 2025, https://www.who.int/tools/clinical-trials-registry-platform?utm_source=chatgpt.comMay 20–2025 | |
|
Armitage LH, Stimpson SE, Santostefano KE, Sui L, Ogundare S, Newby BN, Castro-Gutierrez R, Huber MK, Taylor JP, Sharma P, et al: Use of induced pluripotent stem cells to build isogenic systems and investigate type 1 diabetes. Front Endocrinol (Lausanne). 12:7372762021. View Article : Google Scholar | |
|
Laterza C, Merlini A, De Feo D, Ruffini F, Menon R, Onorati M, Fredrickx E, Muzio L, Lombardo A, Comi G, et al: iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nat Commun. 4:25972013. View Article : Google Scholar | |
|
Nakanishi A, Toyama S, Onozato D, Watanabe C, Hashita T, Iwao T and Matsunaga T: Effects of human induced pluripotent stem cell-derived intestinal organoids on colitis-model mice. Regen Ther. 21:351–361. 2022. View Article : Google Scholar | |
|
Haque M and Song J, Fino K, Sandhu P, Song X, Lei F, Zheng S, Ni B, Fang D and Song J: Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 6:205882016. View Article : Google Scholar | |
|
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P and Thummer RP: An insight into DNA-free Reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications. Stem Cell Rev Rep. 15:286–313. 2019. View Article : Google Scholar | |
|
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. 2007. View Article : Google Scholar | |
|
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar | |
|
Okita K, Ichisaka T and Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature. 448:313–317. 2007. View Article : Google Scholar | |
|
Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N and Yamanaka S: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 26:101–106. 2008. View Article : Google Scholar | |
|
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka KI, et al: A more efficient method to generate integration-free human iPS cells. Nat Methods. 8:409–412. 2011. View Article : Google Scholar | |
|
Karagonlar ZF, Akbari S, Karabicici M, Sahin E, Avci ST, Ersoy N, Ates KE, Balli T, Karacicek B, Kaplan K, et al: A novel function for KLF4 in modulating the de-differentiation of EpCAM−/CD133− nonStem cells into EpCAM+/CD133+ liver cancer stem cells in HCC cell line HuH7. Cells. 9:11982020. View Article : Google Scholar | |
|
Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, Guerra M, Guo W and Xu X: Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 31:4898–4911. 2012. View Article : Google Scholar | |
|
Stadtfeld M, Nagaya M, Utikal J, Weir G and Hochedlinger K: Induced pluripotent stem cells generated without viral integration. Science. 322:945–949. 2008. View Article : Google Scholar | |
|
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II and Thomson JA: Human induced pluripotent stem cells free of vector and transgene sequences. Science. 324:797–801. 2009. View Article : Google Scholar | |
|
Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S and Nishikawa S: Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA. 108:14234–14239. 2011. View Article : Google Scholar | |
|
Desponts C and Ding S: Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol Biol. 636:207–218. 2010. View Article : Google Scholar | |
|
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P and Woltjen K: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 458:771–775. 2009. View Article : Google Scholar | |
|
Okita K, Nakagawa M, Hyenjong H, Ichisaka T and Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science. 322:949–953. 2008. View Article : Google Scholar | |
|
Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J and Cheng L: Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 21:518–529. 2011. View Article : Google Scholar | |
|
Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C and Mathis D: Organ-specific disease provoked by systemic autoimmunity. Cell. 87:811–822. 1996. View Article : Google Scholar | |
|
Thomas OG, Haigh TA, Croom-Carter D, Leese A, Van Wijck Y, Douglas MR, Rickinson A, Brooks JM and Taylor GS: Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis. PLoS Pathog. 20:e10121772024. View Article : Google Scholar | |
|
Owen TJ, O'Neil JD, Dawson CW, Hu C, Chen X, Yao Y, Wood VH, Mitchell LE, White RJ, Young LS and Arrand JR: Epstein-Barr virus-encoded EBNA1 enhances RNA polymerase III-dependent EBER expression through induction of EBER-associated cellular transcription factors. Mol Cancer. 9:2412010. View Article : Google Scholar | |
|
Malchenko S, Xie J, de Fatima Bonaldo M, Vanin EF, Bhattacharyya BJ, Belmadani A, Xi G, Galat V, Goossens W, Seftor RE, et al: Onset of rosette formation during spontaneous neural differentiation of hESC and hiPSC colonies. Gene. 534:400–407. 2014. View Article : Google Scholar | |
|
Sougawa N, Miyagawa S, Fukushima S, Kawamura A, Yokoyama J, Ito E, Harada A, Okimoto K, Mochizuki-Oda N, Saito A and Sawa Y: Immunologic targeting of CD30 eliminates tumourigenic human pluripotent stem cells, allowing safer clinical application of hiPSC-based cell therapy. Sci Rep. 8:37262018. View Article : Google Scholar | |
|
Hayashi R, Ishikawa Y, Katori R, Sasamoto Y, Taniwaki Y, Takayanagi H, Tsujikawa M, Sekiguchi K, Quantock AJ and Nishida K: Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc. 12:683–696. 2017. View Article : Google Scholar | |
|
Hayashi R, Ishikawa Y, Katayama T, Quantock AJ and Nishida K: CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells. Sci Rep. 8:165502018. View Article : Google Scholar | |
|
Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, et al: Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 8:106–118. 2011. View Article : Google Scholar | |
|
Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, et al: Copy number variation and selection during reprogramming to pluripotency. Nature. 471:58–62. 2011. View Article : Google Scholar | |
|
Rouhani FJ, Nik-Zainal S, Wuster A, Li Y, Conte N, Koike-Yusa H, Kumasaka N, Vallier L, Yusa K and Bradley A: Mutational history of a human cell lineage from somatic to induced pluripotent stem cells. PLoS Genet. 12:e10059322016. View Article : Google Scholar | |
|
Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, Kashin S, Mekhoubad S, Ilic D, Charlton M, et al: Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 545:229–233. 2017. View Article : Google Scholar | |
|
Mueller DL: Mechanisms maintaining peripheral tolerance. Nat Immunol. 11:21–27. 2010. View Article : Google Scholar | |
|
Takaba H and Takayanagi H: The mechanisms of T cell selection in the thymus. Trends Immunol. 38:805–816. 2017. View Article : Google Scholar | |
|
Givony T, Leshkowitz D, Del Castillo D, Nevo S, Kadouri N, Dassa B, Gruper Y, Khalaila R, Ben-Nun O, Gome T, et al: Thymic mimetic cells function beyond self-tolerance. Nature. 622:164–172. 2023. View Article : Google Scholar | |
|
Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, de Bakker PI, Le JM, Lee HS, Batliwalla F, et al: STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 357:977–986. 2007. View Article : Google Scholar | |
|
Festenstein H, Awad J, Hitman GA, Cutbush S, Groves AV, Cassell P, Ollier W and Sachs JA: New HLA DNA polymorphisms associated with autoimmune diseases. Nature. 322:64–67. 1986. View Article : Google Scholar | |
|
Gregersen PK: Gaining insight into PTPN22 and autoimmunity. Nat Genet. 37:1300–1302. 2005. View Article : Google Scholar | |
|
Edner NM, Carlesso G, Rush JS and Walker LSK: Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov. 19:860–883. 2020. View Article : Google Scholar | |
|
Maier LM, Lowe CE, Cooper J, Downes K, Anderson DE, Severson C, Clark PM, Healy B, Walker N, Aubin C, et al: IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet. 5:e10003222009. View Article : Google Scholar | |
|
Soldan SS and Lieberman PM: Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 21:51–64. 2023. View Article : Google Scholar | |
|
Houen G and Trier NH: Epstein-Barr virus and systemic autoimmune diseases. Front Immunol. 11:5873802020. View Article : Google Scholar | |
|
Jog NR and James JA: Epstein barr virus and autoimmune responses in systemic lupus erythematosus. Front Immunol. 11:6239442020. View Article : Google Scholar | |
|
Nagata S, Hanayama R and Kawane K: Autoimmunity and the clearance of dead cells. Cell. 140:619–630. 2010. View Article : Google Scholar | |
|
Kim HJ and Cantor H: Regulatory T cells subdue an autoimmune disease. Nature. 572:443–445. 2019. View Article : Google Scholar | |
|
Jayaprakash B, Savira M, Mahmood AAR and Prasanna M: The role of stem cell therapies in the treatment of neurodegenerative diseases. Curr Stem Cell Res Ther. 20:146–165. 2025. View Article : Google Scholar | |
|
Reich DS, Lucchinetti CF and Calabresi PA: Multiple sclerosis. N Engl J Med. 378:169–180. 2018. View Article : Google Scholar | |
|
Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R, Frau J, Cocco E and Fadda P: An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis. 184:1062302023. View Article : Google Scholar | |
|
Scolding N: Adult stem cells and multiple sclerosis. Cell Prolif. 44:35–38. 2011. View Article : Google Scholar | |
|
Christodoulou MV, Petkou E, Atzemoglou N, Gkorla E, Karamitrou A, Simos YV, Bellos S, Bekiari C, Kouklis P, Konitsiotis S, et al: Cell replacement therapy with stem cells in multiple sclerosis, a systematic review. Human Cell. 37:9–53. 2024. View Article : Google Scholar | |
|
Tahmasebi F, Asl ER, Vahidinia Z and Barati S: Stem cell-derived exosomal MicroRNAs as novel potential approach for multiple sclerosis treatment. Cell Mol Neurobiol. 44:442024. View Article : Google Scholar | |
|
Mohseni SO, Au KM, Issa W, Ruan L, Stuve O and Wang AZ: Multiple sclerosis treatments a review of current biomedical engineering approaches. Biomaterials. 313:1228072025. View Article : Google Scholar | |
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D and Oksenych V: The role of mesenchymal stem cells in modulating adaptive immune responses in multiple sclerosis. Cells. 13:15562024. View Article : Google Scholar | |
|
Zhang Q, Chen Z, Zhang K, Zhu J and Jin T: FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci Ther. 29:1497–1511. 2023. View Article : Google Scholar | |
|
Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I, et al: Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 26:1816–1821. 2020. View Article : Google Scholar | |
|
McGinley MP, Goldschmidt CH and Rae-Grant AD: Diagnosis and treatment of multiple sclerosis: A review. JAMA. 325:765–779. 2021. View Article : Google Scholar | |
|
Rio J, Comabella M and Montalban X: Multiple sclerosis: Current treatment algorithms. Curr Opin Neurol. 24:230–237. 2011. View Article : Google Scholar | |
|
Daniels K, van der Nat PB, Frequin STFM, van der Wees PJ, Biesma DH, Hoogervorst ELJ and van de Garde EMW: Real-World results of ocrelizumab treatment for primary progressive multiple sclerosis. Mult Scler Int. 2020:54634512020. | |
|
Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, et al: Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 357:851–862. 2007. View Article : Google Scholar | |
|
Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, et al: Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 476:214–219. 2011. View Article : Google Scholar | |
|
Owens T and Sriram S: The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis. Neurol Clin. 13:51–73. 1995. View Article : Google Scholar | |
|
Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K and Iwakura Y: IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 177:566–573. 2006. View Article : Google Scholar | |
|
Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N and Mills KH: T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 162:1–11. 2010. View Article : Google Scholar | |
|
Stys PK, Zamponi GW, van Minnen J and Geurts JJ: Will the real multiple sclerosis please stand up? Nat Rev Neurosci. 13:507–514. 2012. View Article : Google Scholar | |
|
Fagiani F, Pedrini E, Taverna S, Brambilla E, Murtaj V, Podini P, Ruffini F, Butti E, Braccia C, Andolfo A, et al: A glia-enriched stem cell 3D model of the human brain mimics the glial-immune neurodegenerative phenotypes of multiple sclerosis. Cell Rep Med. 5:1016802024. View Article : Google Scholar | |
|
Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, Matsuo K, Guimbal S, Mathias A, Palecek SP, et al: Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 145:4334–4348. 2022. View Article : Google Scholar | |
|
Mutukula N, Man Z, Takahashi Y, Martinez FI, Morales M, Carreon-Guarnizo E, Clares RH, Garcia-Bernal D, Martinez LM, Lajara J, et al: Generation of RRMS and PPMS specific iPSCs as a platform for modeling Multiple Sclerosis. Stem Cell Res. 53:1023192021. View Article : Google Scholar | |
|
Tiane A, Schepers M, Reijnders RA, van Veggel L, Chenine S, Rombaut B, Dempster E, Verfaillie C, Wasner K, Grünewald A, et al: From methylation to myelination: Epigenomic and transcriptomic profiling of chronic inactive demyelinated multiple sclerosis lesions. Acta Neuropathol. 146:283–299. 2023. View Article : Google Scholar | |
|
Thiruvalluvan A, Czepiel M, Kap YA, Mantingh-Otter I, Vainchtein I, Kuipers J, Bijlard M, Baron W, Giepmans B, Brück W, et al: Survival and functionality of human induced pluripotent stem cell-derived oligodendrocytes in a nonhuman primate model for multiple sclerosis. Stem Cells Transl Med. 5:1550–1561. 2016. View Article : Google Scholar | |
|
Li P, Li M, Tang X, Wang S, Zhang YA and Chen Z: Accelerated generation of oligodendrocyte progenitor cells from human induced pluripotent stem cells by forced expression of Sox10 and Olig2. Sci China Life Sci. 59:1131–1138. 2016. View Article : Google Scholar | |
|
Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, Hawkins JS, Geissler R, Barres BA and Wernig M: Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 31:434–439. 2013. View Article : Google Scholar | |
|
Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH and Tesar PJ: Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol. 31:426–433. 2013. View Article : Google Scholar | |
|
Pluchino S, Smith JA and Peruzzotti-Jametti L: Promises and limitations of neural stem cell therapies for progressive multiple sclerosis. Trends Mol Med. 26:898–912. 2020. View Article : Google Scholar | |
|
Ottoboni L, von Wunster B and Martino G: Therapeutic plasticity of neural stem cells. Front Neurol. 11:1482020. View Article : Google Scholar | |
|
Yazdi A, Khanghahi AM, Baharvand H and Javan M: Fingolimod enhances oligodendrocyte differentiation of transplanted human induced pluripotent stem cell-derived neural progenitors. Iran J Pharm Res. 17:1444–1457. 2018. | |
|
Windrem MS, Schanz SJ, Zou L, Chandler-Militello D, Kuypers NJ, Nedergaard M, Lu Y, Mariani JN and Goldman SA: Human glial progenitor cells effectively remyelinate the demyelinated adult brain. Cell Rep. 31:1076582020. View Article : Google Scholar | |
|
Safiri S, Kolahi AA, Hoy D, Smith E, Bettampadi D, Mansournia MA, Almasi-Hashiani A, Ashrafi-Asgarabad A, Moradi-Lakeh M, Qorbani M, et al: Global, regional and national burden of rheumatoid arthritis 1990–2017: A systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis. 78:1463–1471. 2019. View Article : Google Scholar | |
|
Kim H and Sung YK: Epidemiology of rheumatoid arthritis in Korea. J Rheum Dis. 28:60–67. 2021. View Article : Google Scholar | |
|
Bernardy C, Dalecky M, Guillaud-Rollin S, Dujardin T, Gastaldi R and Baillet A: Severity and mortality of inflammatory rheumatic diseases: Evolution of approaches. Joint Bone Spine. 92:1059312025. View Article : Google Scholar | |
|
Lau CS: Burden of rheumatoid arthritis and forecasted prevalence to 2050. Lancet Rheumatol. 5:e567–e568. 2023. View Article : Google Scholar | |
|
Liu H, Zhu Y, Gao Y, Qi D, Zhao L, Zhao L, Liu C, Tao T, Zhou C, Sun X, et al: NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis. Cell Death Dis. 11:1292020. View Article : Google Scholar | |
|
Chen S, Guo C, Wang R, Feng Z, Liu Z, Wu L, Zhao D, Zheng S, Chen F, Zhang D, et al: Monocytic MDSCs skew Th17 cells toward a pro-osteoclastogenic phenotype and potentiate bone erosion in rheumatoid arthritis. Rheumatology (Oxford). 60:2409–2420. 2021. View Article : Google Scholar | |
|
Komatsu N and Takayanagi H: Mechanisms of joint destruction in rheumatoid arthritis-immune cell-fibroblast-bone interactions. Nat Rev Rheumatol. 18:415–429. 2022. View Article : Google Scholar | |
|
Kumar LD, Karthik R, Gayathri N and Sivasudha T: Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis. Biomed Pharmacother. 79:52–61. 2016. View Article : Google Scholar | |
|
Rim YA, Park N, Nam Y and Ju JH: Generation of induced-pluripotent stem cells using fibroblast-like synoviocytes isolated from joints of rheumatoid arthritis patients. J Vis Exp. 16:540722016. | |
|
Wolnik J, Kubiak G, Skoczyńska M, Wiland P, Fearon U, Veale D, Dulak J and Biniecka M: Generation of two hiPSC lines, (DMBi003-A and DMBi004-A), by reprogramming peripheral blood mononuclear cells and fibroblast-like synoviocytes from rheumatoid arthritis patients. Stem Cell Res. 64:1028862022. View Article : Google Scholar | |
|
Lee J, Jung SM, Ebert AD, Wu H, Diecke S, Kim Y, Yi H, Park SH and Ju JH: Generation of functional cardiomyocytes from the synoviocytes of patients with rheumatoid arthritis via induced pluripotent stem cells. Sci Rep. 6:326692016. View Article : Google Scholar | |
|
Kim J, Kang SC, Yoon NE, Kim Y, Choi J, Park N, Jung H, Jung BH and Ju JH: Metabolomic profiles of induced pluripotent stem cells derived from patients with rheumatoid arthritis and osteoarthritis. Stem Cell Res Ther. 10:3192019. View Article : Google Scholar | |
|
Collins KH, Pferdehirt L, Saleh LS, Savadipour A, Springer LE, Lenz KL, Thompson DM Jr, Oswald SJ, Pham CTN and Guilak F: Hydrogel encapsulation of genome-engineered stem cells for long-term self-regulating anti-cytokine therapy. Gels. 9:1692023. View Article : Google Scholar | |
|
Eremeev A, Pikina A, Ruchko Y and Bogomazova A: Clinical potential of cellular material sources in the generation of iPSC-based products for the regeneration of articular cartilage. Int J Mol Sci. 24:144082023. View Article : Google Scholar | |
|
Nakamura A, Murata D, Fujimoto R, Tamaki S, Nagata S, Ikeya M, Toguchida J and Nakayama K: Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication. 13:10.1088/1758–5090/ac1c99. 2021. View Article : Google Scholar | |
|
Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, Svenungsson E, Peterson J, Clarke AE and Ramsey-Goldman R: Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 17:515–532. 2021. View Article : Google Scholar | |
|
Hanna N, Silverberg OM, Reaume M, Gladman D, Davis MDP, Piguet V and Alavi A: Incidence, prevalence, and predictors of inflammatory arthritis in patients with hidradenitis suppurativa: A systematic review and meta-analysis. Int J Dermatol. 61:1069–1079. 2022. View Article : Google Scholar | |
|
Kiriakidou M and Ching CL: Systemic lupus erythematosus. Ann Intern Med. 172:ITC81–ITC96. 2020. View Article : Google Scholar | |
|
Fenton K: The effect of cell death in the initiation of lupus nephritis. Clin Exp Immunol. 179:11–16. 2015. View Article : Google Scholar | |
|
Munoz LE, Lauber K, Schiller M, Manfredi AA and Herrmann M: The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 6:280–289. 2010. View Article : Google Scholar | |
|
Kato H and Fujita T: RIG-I-like receptors and autoimmune diseases. Curr Opin Immunol. 37:40–45. 2015. View Article : Google Scholar | |
|
Thanou A, Jupe E, Purushothaman M, Niewold TB and Munroe ME: Clinical disease activity and flare in SLE: Current concepts and novel biomarkers. J Autoimmun. 119:1026152021. View Article : Google Scholar | |
|
Vrinceanu D, Dumitru M, Banica B, Eftime IS, Patrascu O, Costache A, Cherecheanu MP and Georgescu MG: Role of temporal artery resection in Horton's arteritis (Review). Exp Ther Med. 22:10992021. View Article : Google Scholar | |
|
Xiong W and Lahita RG: Pragmatic approaches to therapy for systemic lupus erythematosus. Nat Rev Rheumatol. 10:97–107. 2014. View Article : Google Scholar | |
|
Park N, Rim YA, Jung H, Nam Y and Ju JH: Lupus heart disease modeling with combination of induced pluripotent stem cell-derived cardiomyocytes and lupus patient serum. Int J Stem Cells. 15:233–246. 2022. View Article : Google Scholar | |
|
Shoda H, Natsumoto B and Fujio K: Investigation of immune-related diseases using patient-derived induced pluripotent stem cells. Inflamm Regen. 43:512023. View Article : Google Scholar | |
|
Chen Y, Luo R, Xu Y, Cai X, Li W, Tan K, Huang J and Dai Y: Generation of systemic lupus erythematosus-specific induced pluripotent stem cells from urine. Rheumatol Int. 33:2127–2134. 2013. View Article : Google Scholar | |
|
Son MY, Lee MO, Jeon H, Seol B, Kim JH, Chang JS and Cho YS: Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp Mol Med. 48:e2322016. View Article : Google Scholar | |
|
Tang D, Chen Y, He H, Huang J, Chen W, Peng W, Lu Q and Dai Y: Integrated analysis of mRNA, microRNA and protein in systemic lupus erythematosus-specific induced pluripotent stem cells from urine. BMC Genomics. 17:4882016. View Article : Google Scholar | |
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, et al: ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. Elife. 13:RP960852024. View Article : Google Scholar | |
|
Natsumoto B, Shoda H, Nagafuchi Y, Ota M, Okumura T, Horie Y, Okamura T, Yamamoto K, Tsuji M, Otsu M, et al: Functional evaluation of rare OASL variants by analysis of SLE patient-derived iPSCs. J Autoimmun. 139:1030852023. View Article : Google Scholar | |
|
Ota M, Nagafuchi Y, Hatano H, Ishigaki K, Terao C, Takeshima Y, Yanaoka H, Kobayashi S, Okubo M, Shirai H, et al: Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell. 184:3006–3021.e17. 2021. View Article : Google Scholar | |
|
De Angelis MT, Santamaria G, Parrotta EI, Scalise S, Lo Conte M, Gasparini S, Ferlazzo E, Aguglia U, Ciampi C, Sgura A and Cuda G: Establishment and characterization of induced pluripotent stem cells (iPSCs) from central nervous system lupus erythematosus. J Cell Mol Med. 23:7382–7394. 2019. View Article : Google Scholar | |
|
Graham KL, Sutherland RM, Mannering SI, Zhao Y, Chee J, Krishnamurthy B, Thomas HE, Lew AM and Kay TW: Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud. 9:148–168. 2012. View Article : Google Scholar | |
|
Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, Heller SR, Rodriguez H, Rosenzweig J and Vigersky R; American Diabetes Association; Endocrine Society, : Hypoglycemia and diabetes: A report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care. 36:1384–1395. 2013. View Article : Google Scholar | |
|
Chiang JL, Kirkman MS, Laffel LM and Peters AL; Type 1 Diabetes Sourcebook Authors, : Type 1 diabetes through the life span: A position statement of the American Diabetes Association. Diabetes Care. 37:2034–2054. 2014. View Article : Google Scholar | |
|
Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C, Donaghue KC; International Diabetes Federation Diabetes Atlas Type 1 Diabetes in Adults Special Interest Group, ; Magliano DJ, Maniam J, et al: Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study. Lancet Diabetes Endocrinol. 10:741–760. 2022. View Article : Google Scholar | |
|
Lacy PE and Kostianovsky M: Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 16:35–39. 1967. View Article : Google Scholar | |
|
Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R, Bellin MD, Chaloner K, Czarniecki CW, Goldstein JS, Hunsicker LG, et al: Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 39:1230–1240. 2016. View Article : Google Scholar | |
|
Bennet W, Sundberg B, Lundgren T, Tibell A, Groth CG, Richards A, White DJ, Elgue G, Larsson R, Nilsson B and Korsgren O: Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin. Transplantation. 69:711–719. 2000. View Article : Google Scholar | |
|
Korbutt GS, Elliott JF, Ao Z, Smith DK, Warnock GL and Rajotte RV: Large scale isolation, growth, and function of porcine neonatal islet cells. J Clin Invest. 97:2119–2129. 1996. View Article : Google Scholar | |
|
van der Windt DJ, Bottino R, Kumar G, Wijkstrom M, Hara H, Ezzelarab M, Ekser B, Phelps C, Murase N, Casu A, et al: Clinical islet xenotransplantation: How close are we? Diabetes. 61:3046–3055. 2012. View Article : Google Scholar | |
|
Naqvi RA, Naqvi AR, Singh A, Priyadarshini M, Balamurugan AN and Layden BT: The future treatment for type 1 diabetes: Pig islet- or stem cell-derived β cells? Front Endocrinol (Lausanne). 13:10010412022. View Article : Google Scholar | |
|
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D and Melton DA: Generation of functional human pancreatic beta cells in vitro. Cell. 159:428–439. 2014. View Article : Google Scholar | |
|
Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O'Dwyer S, Quiskamp N, Mojibian M, Albrecht T, et al: Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 32:1121–1133. 2014. View Article : Google Scholar | |
|
Vegas AJ, Veiseh O, Gürtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, et al: Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 22:306–311. 2016. View Article : Google Scholar | |
|
Leite NC, Sintov E, Meissner TB, Brehm MA, Greiner DL, Harlan DM and Melton DA: modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep. 32:1078942020. View Article : Google Scholar | |
|
Cai EP, Ishikawa Y, Zhang W, Leite NC, Li J, Hou S, Kiaf B, Hollister-Lock J, Yilmaz NK, Schiffer CA, et al: Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nat Metab. 2:934–945. 2020. View Article : Google Scholar | |
|
Hosokawa Y, Hanafusa T and Imagawa A: Pathogenesis of fulminant type 1 diabetes: Genes, viruses and the immune mechanism, and usefulness of patient-derived induced pluripotent stem cells for future research. J Diabetes Investig. 10:1158–1164. 2019. View Article : Google Scholar | |
|
El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, et al: Tumor-free transplantation of patient-derived induced pluripotent stem cell progeny for customized islet regeneration. Stem Cells Transl Med. 5:694–702. 2016. View Article : Google Scholar | |
|
Haller C, Piccand J, De Franceschi F, Ohi Y, Bhoumik A, Boss C, De Marchi U, Jacot G, Metairon S, Descombes P, et al: Macroencapsulated human iPSC-derived pancreatic progenitors protect against STZ-induced hyperglycemia in mice. Stem Cell Reports. 12:787–800. 2019. View Article : Google Scholar | |
|
Kasputis T, Clough D, Noto F, Rychel K, Dye B and Shea LD: Microporous polymer scaffolds for the transplantation of embryonic stem cell derived pancreatic progenitors to a clinically translatable site for the treatment of type I diabetes. ACS Biomater Sci Eng. 4:1770–1778. 2018. | |
|
Pope JE, Denton CP, Johnson SR, Fernandez-Codina A, Hudson M and Nevskaya T: State-of-the-art evidence in the treatment of systemic sclerosis. Nat Rev Rheumatol. 19:212–226. 2023. View Article : Google Scholar | |
|
Rodnan GP and Fennell RH Jr: Progressive systemic sclerosis sine scleroderma. JAMA. 180:665–670. 1962. View Article : Google Scholar | |
|
Bairkdar M, Rossides M, Westerlind H, Hesselstrand R, Arkema EV and Holmqvist M: Incidence and prevalence of systemic sclerosis globally: A comprehensive systematic review and meta-analysis. Rheumatology (Oxford). 60:3121–3133. 2021. View Article : Google Scholar | |
|
Calderon LM and Pope JE: Scleroderma epidemiology update. Curr Opin Rheumatol. 33:122–127. 2021. View Article : Google Scholar | |
|
Lescoat A, Huang S, Carreira PE, Siegert E, de Vries-Bouwstra J, Distler JHW, Smith V, Del Galdo F, Anic B, Damjanov N, et al: Cutaneous manifestations, clinical characteristics, and prognosis of patients with systemic sclerosis sine scleroderma: Data from the international EUSTAR database. JAMA Dermatol. 159:837–847. 2023. View Article : Google Scholar | |
|
Tashkin DP, Elashoff R, Clements PJ, Goldin J, Roth MD, Furst DE, Arriola E, Silver R, Strange C, Bolster M, et al: Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med. 354:2655–2666. 2006. View Article : Google Scholar | |
|
Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, Raghu G, Sauter W, Girard M, Alves M, et al: Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med. 380:2518–2528. 2019. View Article : Google Scholar | |
|
Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S and Leconte I: Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 346:896–903. 2002. View Article : Google Scholar | |
|
Jordan S, Distler JH, Maurer B, Huscher D, van Laar JM, Allanore Y and Distler O; EUSTAR Rituximab study group, : Effects and safety of rituximab in systemic sclerosis: An analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis. 74:1188–1194. 2015. View Article : Google Scholar | |
|
Gholami S, Mazidi Z, Pahlavan S, Moslem F, Hosseini M, Taei A, Hesaraki M, Barekat M, Aghdami N and Baharvand H: A novel insight into endothelial and cardiac cells phenotype in systemic sclerosis using patient-derived induced pluripotent stem cell. Cell J. 23:273–287. 2021. | |
|
Vijayaraj P, Minasyan A, Durra A, Karumbayaram S, Mehrabi M, Aros CJ, Ahadome SD, Shia DW, Chung K, Sandlin JM, et al: Modeling progressive fibrosis with pluripotent stem cells identifies an anti-fibrotic small molecule. Cell Rep. 29:3488–3505. 2019. View Article : Google Scholar | |
|
Nathan S, Wang Y, D'ambrosio M, Paul R, Lyu H, Delic D, Bretschneider T, Falana K, Li L and Vijayaraj P: Comparative transcriptomic analysis validates iPSC derived in-vitro progressive fibrosis model as a screening tool for drug discovery and development in systemic sclerosis. Sci Rep. 14:244282024. View Article : Google Scholar | |
|
Kim Y, Nam Y, Rim YA and Ju JH: Anti-fibrotic effect of a selective estrogen receptor modulator in systemic sclerosis. Stem Cell Res Ther. 13:3032022. View Article : Google Scholar | |
|
Sawamoto N, Doi D, Nakanishi E, Sawamura M, Kikuchi T, Yamakado H, Taruno Y, Shima A, Fushimi Y, Okada T, et al: Phase I/II trial of iPS-cell-derived dopaminergic cells for Parkinson's disease. Nature. 641:971–977. 2025. View Article : Google Scholar | |
|
Sugimoto N, Kanda J, Nakamura S, Kitano T, Hishizawa M, Kondo T, Shimizu S, Shigemasa A, Hirai H, Arai Y, et al: iPLAT1: The first-in-human clinical trial of iPSC-derived platelets as a phase 1 autologous transfusion study. Blood. 140:2398–2402. 2022. View Article : Google Scholar | |
|
Hirami Y, Mandai M, Sugita S, Maeda A, Maeda T, Yamamoto M, Uyama H, Yokota S, Fujihara M, Igeta M, et al: Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell. 30:1585–1596.e6. 2023. View Article : Google Scholar | |
|
Jebran AF, Seidler T, Tiburcy M, Daskalaki M, Kutschka I, Fujita B, Ensminger S, Bremmer F, Moussavi A, Yang H, et al: Engineered heart muscle allografts for heart repair in primates and humans. Nature. 639:503–511. 2025. View Article : Google Scholar | |
|
Imamura K, Izumi Y, Nagai M, Nishiyama K, Watanabe Y, Hanajima R, Egawa N, Ayaki T, Oki R, Fujita K, et al: Safety and tolerability of bosutinib in patients with amyotrophic lateral sclerosis (iDReAM study): A multicentre, open-label, dose-escalation phase 1 trial. EClinicalMedicine. 53:1017072022. View Article : Google Scholar |