Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review)

  • Authors:
    • Zizhen Ye
    • Hanwei Zhao
    • Xuanhu Ye
  • View Affiliations / Copyright

    Affiliations: Medical Laboratory, Lucheng District of Wenzhou City Ye Xuanhu Medical Clinic, Wenzhou, Zhejiang 325000, P.R. China, Department of Peripheral Vascular Disease, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
    Copyright: © Ye et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 333
    |
    Published online on: September 26, 2025
       https://doi.org/10.3892/mmr.2025.13698
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Autoimmune diseases are a group of disorders caused by the immune system mistakenly attacking the body's own tissues, including type 1 diabetes, rheumatoid arthritis and multiple sclerosis (MS). These diseases are typically accompanied by chronic inflammation and tissue damage, which markedly impact the quality of life of patients. Induced pluripotent stem cells (iPSCs), owing to their unlimited proliferative capacity and pluripotency, demonstrate unique advantages in the field of regenerative medicine. iPSCs can be induced to differentiate into various functional cells in vitro providing potentially important tools for disease modeling, drug screening and cell therapy. For example, iPSCs can be directed to generate cardiomyocytes, dopaminergic neurons, hepatocyte‑like cells and pancreatic β‑cells, highlighting their broad potential for translational applications. For treating autoimmune diseases, iPSCs can be utilized for tissue repair, replacement therapy and the induction of cells with immunoregulatory functions. The present review summarizes the latest advancements in iPSC technology and its research in various autoimmune diseases, including MS, rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes and systemic sclerosis. The present study also discusses the main challenges in the application of iPSCs, aiming to provide a theoretical basis and practical guidance for developing novel therapeutic strategies. 
View Figures

Figure 1

After obtaining patient cells, such
as epidermal fibroblasts, blood cells and adipocytes from various
sources (such as blood and urine), lentiviral vectors are used to
retrovirally transduce the four transcription factors Myc, Oct4,
Sox2 and KLF4 to induce iPSCs. These iPSCs can
differentiate into various types of cells within the endoderm,
mesoderm and ectoderm in response to specific transcription factors
and compounds. Created in BioRender [Ye, Z. (2025) https://BioRender.com/3cj9ul9]. MSC, mesenchymal
stem cell; HSC, hematopoietic stem cell; KLF4, Kruppel-like
factor 4; iPSC, induced pluripotent stem cell.

Figure 2

After inducing iPSCs from cells
obtained from various sources in the patient, these derived cells
are analyzed to research corresponding diseases. Flow cytometry is
used to detect cell types and differences compared with normal
cells. Transcriptomics and proteomics are used to analyze gene
differences between patient-derived iPSCs and normal cells, aiming
to identify potential pathogenic sites. Techniques such as SPR are
then used to analyze interactions, to find therapeutic targets and
evaluate potential drug efficacy. Created in BioRender [Ye, Z.
(2025) https://BioRender.com/ulu9prm].
iPSC, induced pluripotent stem cell; MS, multiple sclerosis; RA,
rheumatoid arthritis; SLE, systemic lupus erythematosus; T1D, type
1 diabetes; SSc, systemic sclerosis; OL oligodendrocyte; OPC,
oligodendrocyte progenitor cell; NPC, neural precursor cell; FLS,
fibroblast-like synoviocyte; CM, cardiomyocyte; iMAC, macrophages
derived from patients' iPSCs; DC, dendritic cell; RTEC, renal
tubular epithelial cell; EC, endothelial cell; VEC, vascular
endothelial cell; MLC, MSC-like cell; MC, mast cell; SPR, surface
plasmon resonance.
View References

1 

Ren R, Jiang J, Li X and Zhang G: Research progress of autoimmune diseases based on induced pluripotent stem cells. Front Immunology. 15:13491382024. View Article : Google Scholar

2 

Autoimmune Association, . Disease Information. Autoimmune Association; Clinton Township, MI: 2025, https://autoimmune.org/disease-information/May 18–2025

3 

Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, Taylor PN, Mason J, Sattar N, McMurray JJV, McInnes IB, et al: Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet. 401:1878–1890. 2023. View Article : Google Scholar

4 

Turtinen M, Härkönen T, Ilonen J, Parkkola A and Knip M; Finnish Pediatric Diabetes Register, : Seasonality in the manifestation of type 1 diabetes varies according to age at diagnosis in Finnish children. Acta Paediatr. 111:1061–1069. 2022. View Article : Google Scholar

5 

Yamanaka S: Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 27:523–531. 2020. View Article : Google Scholar

6 

Shahjalal HM, Dayem AA, Lim KM, Jeon TI and Cho SG: Generation of pancreatic β cells for treatment of diabetes: Advances and challenges. Stem Cell Res Ther. 9:3552018. View Article : Google Scholar

7 

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. 1998. View Article : Google Scholar

8 

Shen Z, Huang W, Liu J, Tian J, Wang S and Rui K: Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol. 12:7491922021. View Article : Google Scholar

9 

Aldoghachi AF, Loh JK, Wang ML, Yang YP, Chien CS, Teh HX, Omar AH, Cheong SK, Yeap SK, Ho WY and Ong AHK: Current developments and therapeutic potentials of exosomes from induced pluripotent stem cells-derived mesenchymal stem cells. J Chin Med Assoc. 86:356–365. 2023. View Article : Google Scholar

10 

Li W, Liu D, Zheng F, Zeng Z, Cai W, Luan S, Hong X, Tang D, Yin LH and Dai Y: Generation of systemic lupus erythematosus patient-derived induced pluripotent stem cells from blood. Stem Cells Dev. 30:227–233. 2021. View Article : Google Scholar

11 

Joshi K, Cameron F, Tiwari S, Mannering SI, Elefanty AG and Stanley EG: Modeling type 1 diabetes using pluripotent stem cell technology. Front Endocrinol (Lausanne). 12:6356622021. View Article : Google Scholar

12 

Holmqvist S, Lehtonen Š, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, Ruponen M, Oksanen M, Djelloul M, Collin A, et al: Creation of a library of induced pluripotent stem cells from Parkinsonian patients. NPJ Parkinsons Dis. 2:160092016. View Article : Google Scholar

13 

Hollingsworth EW, Vaughn JE, Orack JC, Skinner C, Khouri J, Lizarraga SB, Hester ME, Watanabe F, Kosik KS and Imitola J: iPhemap: An atlas of phenotype to genotype relationships of human iPSC models of neurological diseases. EMBO Mol Med. 9:1742–1762. 2017. View Article : Google Scholar

14 

Ullah I, Subbarao RB and Rho GJ: Human mesenchymal stem cells-current trends and future prospective. Biosci Rep. 35:e001912015. View Article : Google Scholar

15 

Lee J, Kim Y, Yi H, Diecke S, Kim J, Jung H, Rim YA, Jung SM, Kim M, Kim YG, et al: Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 16:R412014. View Article : Google Scholar

16 

Hew M, O'Connor K, Edel MJ and Lucas M: The possible future roles for iPSC-derived therapy for autoimmune diseases. J Clin Med. 4:1193–1206. 2015. View Article : Google Scholar

17 

Natsumoto B, Shoda H, Fujio K, Otsu M and Yamamoto K: Investigation of the pathogenesis of autoimmune diseases by iPS cells. Nihon Rinsho Meneki Gakkai Kaishi. 40:48–53. 2017.(In Japanese). View Article : Google Scholar

18 

Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar

19 

Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, et al: Epigenetic memory in induced pluripotent stem cells. Nature. 467:285–290. 2010. View Article : Google Scholar

20 

Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, et al: Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 7:2080–2089. 2012. View Article : Google Scholar

21 

Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ and Atala A: Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 180:2226–2233. 2008. View Article : Google Scholar

22 

Bharadwaj S, Liu G, Shi Y, Markert C, Andersson KE, Atala A and Zhang Y: Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng Part A. 17:2123–2132. 2011. View Article : Google Scholar

23 

Xue Y, Cai X, Wang L, Liao B, Zhang H, Shan Y, Chen Q, Zhou T, Li X, Hou J, et al: Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One. 8:e705732013. View Article : Google Scholar

24 

Jiang YF, Chen M, Zhang NN, Yang HJ, Rui Q and Zhou YF: In vitro and in vivo differentiation of induced pluripotent stem cells generated from urine-derived cells into cardiomyocytes. Biol Open. 7:bio0291572018.

25 

Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, Liao B, Wang H, Bao X, Qin D, et al: Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods. 10:84–89. 2013. View Article : Google Scholar

26 

Kim J, Koo BJ and Knoblich JA: Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. 2020. View Article : Google Scholar

27 

Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, et al: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 461:402–406. 2009. View Article : Google Scholar

28 

Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature. 482:216–220. 2012. View Article : Google Scholar

29 

Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, et al: Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 494:105–110. 2013. View Article : Google Scholar

30 

Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z and Jang YY: Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 57:2458–2468. 2013. View Article : Google Scholar

31 

World Health Organization (WHO), . International Clinical Trials Registry Platform. WHO; Geneva: 2025, https://www.who.int/tools/clinical-trials-registry-platform?utm_source=chatgpt.comMay 20–2025

32 

Armitage LH, Stimpson SE, Santostefano KE, Sui L, Ogundare S, Newby BN, Castro-Gutierrez R, Huber MK, Taylor JP, Sharma P, et al: Use of induced pluripotent stem cells to build isogenic systems and investigate type 1 diabetes. Front Endocrinol (Lausanne). 12:7372762021. View Article : Google Scholar

33 

Laterza C, Merlini A, De Feo D, Ruffini F, Menon R, Onorati M, Fredrickx E, Muzio L, Lombardo A, Comi G, et al: iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nat Commun. 4:25972013. View Article : Google Scholar

34 

Nakanishi A, Toyama S, Onozato D, Watanabe C, Hashita T, Iwao T and Matsunaga T: Effects of human induced pluripotent stem cell-derived intestinal organoids on colitis-model mice. Regen Ther. 21:351–361. 2022. View Article : Google Scholar

35 

Haque M and Song J, Fino K, Sandhu P, Song X, Lei F, Zheng S, Ni B, Fang D and Song J: Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 6:205882016. View Article : Google Scholar

36 

Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P and Thummer RP: An insight into DNA-free Reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications. Stem Cell Rev Rep. 15:286–313. 2019. View Article : Google Scholar

37 

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. 2007. View Article : Google Scholar

38 

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar

39 

Okita K, Ichisaka T and Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature. 448:313–317. 2007. View Article : Google Scholar

40 

Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N and Yamanaka S: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 26:101–106. 2008. View Article : Google Scholar

41 

Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka KI, et al: A more efficient method to generate integration-free human iPS cells. Nat Methods. 8:409–412. 2011. View Article : Google Scholar

42 

Karagonlar ZF, Akbari S, Karabicici M, Sahin E, Avci ST, Ersoy N, Ates KE, Balli T, Karacicek B, Kaplan K, et al: A novel function for KLF4 in modulating the de-differentiation of EpCAM−/CD133− nonStem cells into EpCAM+/CD133+ liver cancer stem cells in HCC cell line HuH7. Cells. 9:11982020. View Article : Google Scholar

43 

Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, Guerra M, Guo W and Xu X: Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 31:4898–4911. 2012. View Article : Google Scholar

44 

Stadtfeld M, Nagaya M, Utikal J, Weir G and Hochedlinger K: Induced pluripotent stem cells generated without viral integration. Science. 322:945–949. 2008. View Article : Google Scholar

45 

Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II and Thomson JA: Human induced pluripotent stem cells free of vector and transgene sequences. Science. 324:797–801. 2009. View Article : Google Scholar

46 

Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S and Nishikawa S: Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA. 108:14234–14239. 2011. View Article : Google Scholar

47 

Desponts C and Ding S: Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol Biol. 636:207–218. 2010. View Article : Google Scholar

48 

Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P and Woltjen K: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 458:771–775. 2009. View Article : Google Scholar

49 

Okita K, Nakagawa M, Hyenjong H, Ichisaka T and Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science. 322:949–953. 2008. View Article : Google Scholar

50 

Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J and Cheng L: Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 21:518–529. 2011. View Article : Google Scholar

51 

Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C and Mathis D: Organ-specific disease provoked by systemic autoimmunity. Cell. 87:811–822. 1996. View Article : Google Scholar

52 

Thomas OG, Haigh TA, Croom-Carter D, Leese A, Van Wijck Y, Douglas MR, Rickinson A, Brooks JM and Taylor GS: Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis. PLoS Pathog. 20:e10121772024. View Article : Google Scholar

53 

Owen TJ, O'Neil JD, Dawson CW, Hu C, Chen X, Yao Y, Wood VH, Mitchell LE, White RJ, Young LS and Arrand JR: Epstein-Barr virus-encoded EBNA1 enhances RNA polymerase III-dependent EBER expression through induction of EBER-associated cellular transcription factors. Mol Cancer. 9:2412010. View Article : Google Scholar

54 

Malchenko S, Xie J, de Fatima Bonaldo M, Vanin EF, Bhattacharyya BJ, Belmadani A, Xi G, Galat V, Goossens W, Seftor RE, et al: Onset of rosette formation during spontaneous neural differentiation of hESC and hiPSC colonies. Gene. 534:400–407. 2014. View Article : Google Scholar

55 

Sougawa N, Miyagawa S, Fukushima S, Kawamura A, Yokoyama J, Ito E, Harada A, Okimoto K, Mochizuki-Oda N, Saito A and Sawa Y: Immunologic targeting of CD30 eliminates tumourigenic human pluripotent stem cells, allowing safer clinical application of hiPSC-based cell therapy. Sci Rep. 8:37262018. View Article : Google Scholar

56 

Hayashi R, Ishikawa Y, Katori R, Sasamoto Y, Taniwaki Y, Takayanagi H, Tsujikawa M, Sekiguchi K, Quantock AJ and Nishida K: Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc. 12:683–696. 2017. View Article : Google Scholar

57 

Hayashi R, Ishikawa Y, Katayama T, Quantock AJ and Nishida K: CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells. Sci Rep. 8:165502018. View Article : Google Scholar

58 

Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, et al: Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 8:106–118. 2011. View Article : Google Scholar

59 

Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, et al: Copy number variation and selection during reprogramming to pluripotency. Nature. 471:58–62. 2011. View Article : Google Scholar

60 

Rouhani FJ, Nik-Zainal S, Wuster A, Li Y, Conte N, Koike-Yusa H, Kumasaka N, Vallier L, Yusa K and Bradley A: Mutational history of a human cell lineage from somatic to induced pluripotent stem cells. PLoS Genet. 12:e10059322016. View Article : Google Scholar

61 

Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, Kashin S, Mekhoubad S, Ilic D, Charlton M, et al: Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 545:229–233. 2017. View Article : Google Scholar

62 

Mueller DL: Mechanisms maintaining peripheral tolerance. Nat Immunol. 11:21–27. 2010. View Article : Google Scholar

63 

Takaba H and Takayanagi H: The mechanisms of T cell selection in the thymus. Trends Immunol. 38:805–816. 2017. View Article : Google Scholar

64 

Givony T, Leshkowitz D, Del Castillo D, Nevo S, Kadouri N, Dassa B, Gruper Y, Khalaila R, Ben-Nun O, Gome T, et al: Thymic mimetic cells function beyond self-tolerance. Nature. 622:164–172. 2023. View Article : Google Scholar

65 

Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, de Bakker PI, Le JM, Lee HS, Batliwalla F, et al: STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 357:977–986. 2007. View Article : Google Scholar

66 

Festenstein H, Awad J, Hitman GA, Cutbush S, Groves AV, Cassell P, Ollier W and Sachs JA: New HLA DNA polymorphisms associated with autoimmune diseases. Nature. 322:64–67. 1986. View Article : Google Scholar

67 

Gregersen PK: Gaining insight into PTPN22 and autoimmunity. Nat Genet. 37:1300–1302. 2005. View Article : Google Scholar

68 

Edner NM, Carlesso G, Rush JS and Walker LSK: Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov. 19:860–883. 2020. View Article : Google Scholar

69 

Maier LM, Lowe CE, Cooper J, Downes K, Anderson DE, Severson C, Clark PM, Healy B, Walker N, Aubin C, et al: IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet. 5:e10003222009. View Article : Google Scholar

70 

Soldan SS and Lieberman PM: Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 21:51–64. 2023. View Article : Google Scholar

71 

Houen G and Trier NH: Epstein-Barr virus and systemic autoimmune diseases. Front Immunol. 11:5873802020. View Article : Google Scholar

72 

Jog NR and James JA: Epstein barr virus and autoimmune responses in systemic lupus erythematosus. Front Immunol. 11:6239442020. View Article : Google Scholar

73 

Nagata S, Hanayama R and Kawane K: Autoimmunity and the clearance of dead cells. Cell. 140:619–630. 2010. View Article : Google Scholar

74 

Kim HJ and Cantor H: Regulatory T cells subdue an autoimmune disease. Nature. 572:443–445. 2019. View Article : Google Scholar

75 

Jayaprakash B, Savira M, Mahmood AAR and Prasanna M: The role of stem cell therapies in the treatment of neurodegenerative diseases. Curr Stem Cell Res Ther. 20:146–165. 2025. View Article : Google Scholar

76 

Reich DS, Lucchinetti CF and Calabresi PA: Multiple sclerosis. N Engl J Med. 378:169–180. 2018. View Article : Google Scholar

77 

Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R, Frau J, Cocco E and Fadda P: An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis. 184:1062302023. View Article : Google Scholar

78 

Scolding N: Adult stem cells and multiple sclerosis. Cell Prolif. 44:35–38. 2011. View Article : Google Scholar

79 

Christodoulou MV, Petkou E, Atzemoglou N, Gkorla E, Karamitrou A, Simos YV, Bellos S, Bekiari C, Kouklis P, Konitsiotis S, et al: Cell replacement therapy with stem cells in multiple sclerosis, a systematic review. Human Cell. 37:9–53. 2024. View Article : Google Scholar

80 

Tahmasebi F, Asl ER, Vahidinia Z and Barati S: Stem cell-derived exosomal MicroRNAs as novel potential approach for multiple sclerosis treatment. Cell Mol Neurobiol. 44:442024. View Article : Google Scholar

81 

Mohseni SO, Au KM, Issa W, Ruan L, Stuve O and Wang AZ: Multiple sclerosis treatments a review of current biomedical engineering approaches. Biomaterials. 313:1228072025. View Article : Google Scholar

82 

Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D and Oksenych V: The role of mesenchymal stem cells in modulating adaptive immune responses in multiple sclerosis. Cells. 13:15562024. View Article : Google Scholar

83 

Zhang Q, Chen Z, Zhang K, Zhu J and Jin T: FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci Ther. 29:1497–1511. 2023. View Article : Google Scholar

84 

Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I, et al: Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 26:1816–1821. 2020. View Article : Google Scholar

85 

McGinley MP, Goldschmidt CH and Rae-Grant AD: Diagnosis and treatment of multiple sclerosis: A review. JAMA. 325:765–779. 2021. View Article : Google Scholar

86 

Rio J, Comabella M and Montalban X: Multiple sclerosis: Current treatment algorithms. Curr Opin Neurol. 24:230–237. 2011. View Article : Google Scholar

87 

Daniels K, van der Nat PB, Frequin STFM, van der Wees PJ, Biesma DH, Hoogervorst ELJ and van de Garde EMW: Real-World results of ocrelizumab treatment for primary progressive multiple sclerosis. Mult Scler Int. 2020:54634512020.

88 

Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, et al: Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 357:851–862. 2007. View Article : Google Scholar

89 

Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, et al: Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 476:214–219. 2011. View Article : Google Scholar

90 

Owens T and Sriram S: The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis. Neurol Clin. 13:51–73. 1995. View Article : Google Scholar

91 

Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K and Iwakura Y: IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 177:566–573. 2006. View Article : Google Scholar

92 

Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N and Mills KH: T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 162:1–11. 2010. View Article : Google Scholar

93 

Stys PK, Zamponi GW, van Minnen J and Geurts JJ: Will the real multiple sclerosis please stand up? Nat Rev Neurosci. 13:507–514. 2012. View Article : Google Scholar

94 

Fagiani F, Pedrini E, Taverna S, Brambilla E, Murtaj V, Podini P, Ruffini F, Butti E, Braccia C, Andolfo A, et al: A glia-enriched stem cell 3D model of the human brain mimics the glial-immune neurodegenerative phenotypes of multiple sclerosis. Cell Rep Med. 5:1016802024. View Article : Google Scholar

95 

Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, Matsuo K, Guimbal S, Mathias A, Palecek SP, et al: Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 145:4334–4348. 2022. View Article : Google Scholar

96 

Mutukula N, Man Z, Takahashi Y, Martinez FI, Morales M, Carreon-Guarnizo E, Clares RH, Garcia-Bernal D, Martinez LM, Lajara J, et al: Generation of RRMS and PPMS specific iPSCs as a platform for modeling Multiple Sclerosis. Stem Cell Res. 53:1023192021. View Article : Google Scholar

97 

Tiane A, Schepers M, Reijnders RA, van Veggel L, Chenine S, Rombaut B, Dempster E, Verfaillie C, Wasner K, Grünewald A, et al: From methylation to myelination: Epigenomic and transcriptomic profiling of chronic inactive demyelinated multiple sclerosis lesions. Acta Neuropathol. 146:283–299. 2023. View Article : Google Scholar

98 

Thiruvalluvan A, Czepiel M, Kap YA, Mantingh-Otter I, Vainchtein I, Kuipers J, Bijlard M, Baron W, Giepmans B, Brück W, et al: Survival and functionality of human induced pluripotent stem cell-derived oligodendrocytes in a nonhuman primate model for multiple sclerosis. Stem Cells Transl Med. 5:1550–1561. 2016. View Article : Google Scholar

99 

Li P, Li M, Tang X, Wang S, Zhang YA and Chen Z: Accelerated generation of oligodendrocyte progenitor cells from human induced pluripotent stem cells by forced expression of Sox10 and Olig2. Sci China Life Sci. 59:1131–1138. 2016. View Article : Google Scholar

100 

Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, Hawkins JS, Geissler R, Barres BA and Wernig M: Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 31:434–439. 2013. View Article : Google Scholar

101 

Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH and Tesar PJ: Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol. 31:426–433. 2013. View Article : Google Scholar

102 

Pluchino S, Smith JA and Peruzzotti-Jametti L: Promises and limitations of neural stem cell therapies for progressive multiple sclerosis. Trends Mol Med. 26:898–912. 2020. View Article : Google Scholar

103 

Ottoboni L, von Wunster B and Martino G: Therapeutic plasticity of neural stem cells. Front Neurol. 11:1482020. View Article : Google Scholar

104 

Yazdi A, Khanghahi AM, Baharvand H and Javan M: Fingolimod enhances oligodendrocyte differentiation of transplanted human induced pluripotent stem cell-derived neural progenitors. Iran J Pharm Res. 17:1444–1457. 2018.

105 

Windrem MS, Schanz SJ, Zou L, Chandler-Militello D, Kuypers NJ, Nedergaard M, Lu Y, Mariani JN and Goldman SA: Human glial progenitor cells effectively remyelinate the demyelinated adult brain. Cell Rep. 31:1076582020. View Article : Google Scholar

106 

Safiri S, Kolahi AA, Hoy D, Smith E, Bettampadi D, Mansournia MA, Almasi-Hashiani A, Ashrafi-Asgarabad A, Moradi-Lakeh M, Qorbani M, et al: Global, regional and national burden of rheumatoid arthritis 1990–2017: A systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis. 78:1463–1471. 2019. View Article : Google Scholar

107 

Kim H and Sung YK: Epidemiology of rheumatoid arthritis in Korea. J Rheum Dis. 28:60–67. 2021. View Article : Google Scholar

108 

Bernardy C, Dalecky M, Guillaud-Rollin S, Dujardin T, Gastaldi R and Baillet A: Severity and mortality of inflammatory rheumatic diseases: Evolution of approaches. Joint Bone Spine. 92:1059312025. View Article : Google Scholar

109 

Lau CS: Burden of rheumatoid arthritis and forecasted prevalence to 2050. Lancet Rheumatol. 5:e567–e568. 2023. View Article : Google Scholar

110 

Liu H, Zhu Y, Gao Y, Qi D, Zhao L, Zhao L, Liu C, Tao T, Zhou C, Sun X, et al: NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis. Cell Death Dis. 11:1292020. View Article : Google Scholar

111 

Chen S, Guo C, Wang R, Feng Z, Liu Z, Wu L, Zhao D, Zheng S, Chen F, Zhang D, et al: Monocytic MDSCs skew Th17 cells toward a pro-osteoclastogenic phenotype and potentiate bone erosion in rheumatoid arthritis. Rheumatology (Oxford). 60:2409–2420. 2021. View Article : Google Scholar

112 

Komatsu N and Takayanagi H: Mechanisms of joint destruction in rheumatoid arthritis-immune cell-fibroblast-bone interactions. Nat Rev Rheumatol. 18:415–429. 2022. View Article : Google Scholar

113 

Kumar LD, Karthik R, Gayathri N and Sivasudha T: Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis. Biomed Pharmacother. 79:52–61. 2016. View Article : Google Scholar

114 

Rim YA, Park N, Nam Y and Ju JH: Generation of induced-pluripotent stem cells using fibroblast-like synoviocytes isolated from joints of rheumatoid arthritis patients. J Vis Exp. 16:540722016.

115 

Wolnik J, Kubiak G, Skoczyńska M, Wiland P, Fearon U, Veale D, Dulak J and Biniecka M: Generation of two hiPSC lines, (DMBi003-A and DMBi004-A), by reprogramming peripheral blood mononuclear cells and fibroblast-like synoviocytes from rheumatoid arthritis patients. Stem Cell Res. 64:1028862022. View Article : Google Scholar

116 

Lee J, Jung SM, Ebert AD, Wu H, Diecke S, Kim Y, Yi H, Park SH and Ju JH: Generation of functional cardiomyocytes from the synoviocytes of patients with rheumatoid arthritis via induced pluripotent stem cells. Sci Rep. 6:326692016. View Article : Google Scholar

117 

Kim J, Kang SC, Yoon NE, Kim Y, Choi J, Park N, Jung H, Jung BH and Ju JH: Metabolomic profiles of induced pluripotent stem cells derived from patients with rheumatoid arthritis and osteoarthritis. Stem Cell Res Ther. 10:3192019. View Article : Google Scholar

118 

Collins KH, Pferdehirt L, Saleh LS, Savadipour A, Springer LE, Lenz KL, Thompson DM Jr, Oswald SJ, Pham CTN and Guilak F: Hydrogel encapsulation of genome-engineered stem cells for long-term self-regulating anti-cytokine therapy. Gels. 9:1692023. View Article : Google Scholar

119 

Eremeev A, Pikina A, Ruchko Y and Bogomazova A: Clinical potential of cellular material sources in the generation of iPSC-based products for the regeneration of articular cartilage. Int J Mol Sci. 24:144082023. View Article : Google Scholar

120 

Nakamura A, Murata D, Fujimoto R, Tamaki S, Nagata S, Ikeya M, Toguchida J and Nakayama K: Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication. 13:10.1088/1758–5090/ac1c99. 2021. View Article : Google Scholar

121 

Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, Svenungsson E, Peterson J, Clarke AE and Ramsey-Goldman R: Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 17:515–532. 2021. View Article : Google Scholar

122 

Hanna N, Silverberg OM, Reaume M, Gladman D, Davis MDP, Piguet V and Alavi A: Incidence, prevalence, and predictors of inflammatory arthritis in patients with hidradenitis suppurativa: A systematic review and meta-analysis. Int J Dermatol. 61:1069–1079. 2022. View Article : Google Scholar

123 

Kiriakidou M and Ching CL: Systemic lupus erythematosus. Ann Intern Med. 172:ITC81–ITC96. 2020. View Article : Google Scholar

124 

Fenton K: The effect of cell death in the initiation of lupus nephritis. Clin Exp Immunol. 179:11–16. 2015. View Article : Google Scholar

125 

Munoz LE, Lauber K, Schiller M, Manfredi AA and Herrmann M: The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 6:280–289. 2010. View Article : Google Scholar

126 

Kato H and Fujita T: RIG-I-like receptors and autoimmune diseases. Curr Opin Immunol. 37:40–45. 2015. View Article : Google Scholar

127 

Thanou A, Jupe E, Purushothaman M, Niewold TB and Munroe ME: Clinical disease activity and flare in SLE: Current concepts and novel biomarkers. J Autoimmun. 119:1026152021. View Article : Google Scholar

128 

Vrinceanu D, Dumitru M, Banica B, Eftime IS, Patrascu O, Costache A, Cherecheanu MP and Georgescu MG: Role of temporal artery resection in Horton's arteritis (Review). Exp Ther Med. 22:10992021. View Article : Google Scholar

129 

Xiong W and Lahita RG: Pragmatic approaches to therapy for systemic lupus erythematosus. Nat Rev Rheumatol. 10:97–107. 2014. View Article : Google Scholar

130 

Park N, Rim YA, Jung H, Nam Y and Ju JH: Lupus heart disease modeling with combination of induced pluripotent stem cell-derived cardiomyocytes and lupus patient serum. Int J Stem Cells. 15:233–246. 2022. View Article : Google Scholar

131 

Shoda H, Natsumoto B and Fujio K: Investigation of immune-related diseases using patient-derived induced pluripotent stem cells. Inflamm Regen. 43:512023. View Article : Google Scholar

132 

Chen Y, Luo R, Xu Y, Cai X, Li W, Tan K, Huang J and Dai Y: Generation of systemic lupus erythematosus-specific induced pluripotent stem cells from urine. Rheumatol Int. 33:2127–2134. 2013. View Article : Google Scholar

133 

Son MY, Lee MO, Jeon H, Seol B, Kim JH, Chang JS and Cho YS: Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp Mol Med. 48:e2322016. View Article : Google Scholar

134 

Tang D, Chen Y, He H, Huang J, Chen W, Peng W, Lu Q and Dai Y: Integrated analysis of mRNA, microRNA and protein in systemic lupus erythematosus-specific induced pluripotent stem cells from urine. BMC Genomics. 17:4882016. View Article : Google Scholar

135 

Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, et al: ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. Elife. 13:RP960852024. View Article : Google Scholar

136 

Natsumoto B, Shoda H, Nagafuchi Y, Ota M, Okumura T, Horie Y, Okamura T, Yamamoto K, Tsuji M, Otsu M, et al: Functional evaluation of rare OASL variants by analysis of SLE patient-derived iPSCs. J Autoimmun. 139:1030852023. View Article : Google Scholar

137 

Ota M, Nagafuchi Y, Hatano H, Ishigaki K, Terao C, Takeshima Y, Yanaoka H, Kobayashi S, Okubo M, Shirai H, et al: Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell. 184:3006–3021.e17. 2021. View Article : Google Scholar

138 

De Angelis MT, Santamaria G, Parrotta EI, Scalise S, Lo Conte M, Gasparini S, Ferlazzo E, Aguglia U, Ciampi C, Sgura A and Cuda G: Establishment and characterization of induced pluripotent stem cells (iPSCs) from central nervous system lupus erythematosus. J Cell Mol Med. 23:7382–7394. 2019. View Article : Google Scholar

139 

Graham KL, Sutherland RM, Mannering SI, Zhao Y, Chee J, Krishnamurthy B, Thomas HE, Lew AM and Kay TW: Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud. 9:148–168. 2012. View Article : Google Scholar

140 

Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, Heller SR, Rodriguez H, Rosenzweig J and Vigersky R; American Diabetes Association; Endocrine Society, : Hypoglycemia and diabetes: A report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care. 36:1384–1395. 2013. View Article : Google Scholar

141 

Chiang JL, Kirkman MS, Laffel LM and Peters AL; Type 1 Diabetes Sourcebook Authors, : Type 1 diabetes through the life span: A position statement of the American Diabetes Association. Diabetes Care. 37:2034–2054. 2014. View Article : Google Scholar

142 

Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C, Donaghue KC; International Diabetes Federation Diabetes Atlas Type 1 Diabetes in Adults Special Interest Group, ; Magliano DJ, Maniam J, et al: Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study. Lancet Diabetes Endocrinol. 10:741–760. 2022. View Article : Google Scholar

143 

Lacy PE and Kostianovsky M: Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 16:35–39. 1967. View Article : Google Scholar

144 

Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R, Bellin MD, Chaloner K, Czarniecki CW, Goldstein JS, Hunsicker LG, et al: Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 39:1230–1240. 2016. View Article : Google Scholar

145 

Bennet W, Sundberg B, Lundgren T, Tibell A, Groth CG, Richards A, White DJ, Elgue G, Larsson R, Nilsson B and Korsgren O: Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin. Transplantation. 69:711–719. 2000. View Article : Google Scholar

146 

Korbutt GS, Elliott JF, Ao Z, Smith DK, Warnock GL and Rajotte RV: Large scale isolation, growth, and function of porcine neonatal islet cells. J Clin Invest. 97:2119–2129. 1996. View Article : Google Scholar

147 

van der Windt DJ, Bottino R, Kumar G, Wijkstrom M, Hara H, Ezzelarab M, Ekser B, Phelps C, Murase N, Casu A, et al: Clinical islet xenotransplantation: How close are we? Diabetes. 61:3046–3055. 2012. View Article : Google Scholar

148 

Naqvi RA, Naqvi AR, Singh A, Priyadarshini M, Balamurugan AN and Layden BT: The future treatment for type 1 diabetes: Pig islet- or stem cell-derived β cells? Front Endocrinol (Lausanne). 13:10010412022. View Article : Google Scholar

149 

Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D and Melton DA: Generation of functional human pancreatic beta cells in vitro. Cell. 159:428–439. 2014. View Article : Google Scholar

150 

Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O'Dwyer S, Quiskamp N, Mojibian M, Albrecht T, et al: Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 32:1121–1133. 2014. View Article : Google Scholar

151 

Vegas AJ, Veiseh O, Gürtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, et al: Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 22:306–311. 2016. View Article : Google Scholar

152 

Leite NC, Sintov E, Meissner TB, Brehm MA, Greiner DL, Harlan DM and Melton DA: modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep. 32:1078942020. View Article : Google Scholar

153 

Cai EP, Ishikawa Y, Zhang W, Leite NC, Li J, Hou S, Kiaf B, Hollister-Lock J, Yilmaz NK, Schiffer CA, et al: Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nat Metab. 2:934–945. 2020. View Article : Google Scholar

154 

Hosokawa Y, Hanafusa T and Imagawa A: Pathogenesis of fulminant type 1 diabetes: Genes, viruses and the immune mechanism, and usefulness of patient-derived induced pluripotent stem cells for future research. J Diabetes Investig. 10:1158–1164. 2019. View Article : Google Scholar

155 

El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, et al: Tumor-free transplantation of patient-derived induced pluripotent stem cell progeny for customized islet regeneration. Stem Cells Transl Med. 5:694–702. 2016. View Article : Google Scholar

156 

Haller C, Piccand J, De Franceschi F, Ohi Y, Bhoumik A, Boss C, De Marchi U, Jacot G, Metairon S, Descombes P, et al: Macroencapsulated human iPSC-derived pancreatic progenitors protect against STZ-induced hyperglycemia in mice. Stem Cell Reports. 12:787–800. 2019. View Article : Google Scholar

157 

Kasputis T, Clough D, Noto F, Rychel K, Dye B and Shea LD: Microporous polymer scaffolds for the transplantation of embryonic stem cell derived pancreatic progenitors to a clinically translatable site for the treatment of type I diabetes. ACS Biomater Sci Eng. 4:1770–1778. 2018.

158 

Pope JE, Denton CP, Johnson SR, Fernandez-Codina A, Hudson M and Nevskaya T: State-of-the-art evidence in the treatment of systemic sclerosis. Nat Rev Rheumatol. 19:212–226. 2023. View Article : Google Scholar

159 

Rodnan GP and Fennell RH Jr: Progressive systemic sclerosis sine scleroderma. JAMA. 180:665–670. 1962. View Article : Google Scholar

160 

Bairkdar M, Rossides M, Westerlind H, Hesselstrand R, Arkema EV and Holmqvist M: Incidence and prevalence of systemic sclerosis globally: A comprehensive systematic review and meta-analysis. Rheumatology (Oxford). 60:3121–3133. 2021. View Article : Google Scholar

161 

Calderon LM and Pope JE: Scleroderma epidemiology update. Curr Opin Rheumatol. 33:122–127. 2021. View Article : Google Scholar

162 

Lescoat A, Huang S, Carreira PE, Siegert E, de Vries-Bouwstra J, Distler JHW, Smith V, Del Galdo F, Anic B, Damjanov N, et al: Cutaneous manifestations, clinical characteristics, and prognosis of patients with systemic sclerosis sine scleroderma: Data from the international EUSTAR database. JAMA Dermatol. 159:837–847. 2023. View Article : Google Scholar

163 

Tashkin DP, Elashoff R, Clements PJ, Goldin J, Roth MD, Furst DE, Arriola E, Silver R, Strange C, Bolster M, et al: Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med. 354:2655–2666. 2006. View Article : Google Scholar

164 

Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, Raghu G, Sauter W, Girard M, Alves M, et al: Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med. 380:2518–2528. 2019. View Article : Google Scholar

165 

Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S and Leconte I: Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 346:896–903. 2002. View Article : Google Scholar

166 

Jordan S, Distler JH, Maurer B, Huscher D, van Laar JM, Allanore Y and Distler O; EUSTAR Rituximab study group, : Effects and safety of rituximab in systemic sclerosis: An analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis. 74:1188–1194. 2015. View Article : Google Scholar

167 

Gholami S, Mazidi Z, Pahlavan S, Moslem F, Hosseini M, Taei A, Hesaraki M, Barekat M, Aghdami N and Baharvand H: A novel insight into endothelial and cardiac cells phenotype in systemic sclerosis using patient-derived induced pluripotent stem cell. Cell J. 23:273–287. 2021.

168 

Vijayaraj P, Minasyan A, Durra A, Karumbayaram S, Mehrabi M, Aros CJ, Ahadome SD, Shia DW, Chung K, Sandlin JM, et al: Modeling progressive fibrosis with pluripotent stem cells identifies an anti-fibrotic small molecule. Cell Rep. 29:3488–3505. 2019. View Article : Google Scholar

169 

Nathan S, Wang Y, D'ambrosio M, Paul R, Lyu H, Delic D, Bretschneider T, Falana K, Li L and Vijayaraj P: Comparative transcriptomic analysis validates iPSC derived in-vitro progressive fibrosis model as a screening tool for drug discovery and development in systemic sclerosis. Sci Rep. 14:244282024. View Article : Google Scholar

170 

Kim Y, Nam Y, Rim YA and Ju JH: Anti-fibrotic effect of a selective estrogen receptor modulator in systemic sclerosis. Stem Cell Res Ther. 13:3032022. View Article : Google Scholar

171 

Sawamoto N, Doi D, Nakanishi E, Sawamura M, Kikuchi T, Yamakado H, Taruno Y, Shima A, Fushimi Y, Okada T, et al: Phase I/II trial of iPS-cell-derived dopaminergic cells for Parkinson's disease. Nature. 641:971–977. 2025. View Article : Google Scholar

172 

Sugimoto N, Kanda J, Nakamura S, Kitano T, Hishizawa M, Kondo T, Shimizu S, Shigemasa A, Hirai H, Arai Y, et al: iPLAT1: The first-in-human clinical trial of iPSC-derived platelets as a phase 1 autologous transfusion study. Blood. 140:2398–2402. 2022. View Article : Google Scholar

173 

Hirami Y, Mandai M, Sugita S, Maeda A, Maeda T, Yamamoto M, Uyama H, Yokota S, Fujihara M, Igeta M, et al: Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell. 30:1585–1596.e6. 2023. View Article : Google Scholar

174 

Jebran AF, Seidler T, Tiburcy M, Daskalaki M, Kutschka I, Fujita B, Ensminger S, Bremmer F, Moussavi A, Yang H, et al: Engineered heart muscle allografts for heart repair in primates and humans. Nature. 639:503–511. 2025. View Article : Google Scholar

175 

Imamura K, Izumi Y, Nagai M, Nishiyama K, Watanabe Y, Hanajima R, Egawa N, Ayaki T, Oki R, Fujita K, et al: Safety and tolerability of bosutinib in patients with amyotrophic lateral sclerosis (iDReAM study): A multicentre, open-label, dose-escalation phase 1 trial. EClinicalMedicine. 53:1017072022. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ye Z, Zhao H and Ye X: Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review). Mol Med Rep 32: 333, 2025.
APA
Ye, Z., Zhao, H., & Ye, X. (2025). Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review). Molecular Medicine Reports, 32, 333. https://doi.org/10.3892/mmr.2025.13698
MLA
Ye, Z., Zhao, H., Ye, X."Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review)". Molecular Medicine Reports 32.6 (2025): 333.
Chicago
Ye, Z., Zhao, H., Ye, X."Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review)". Molecular Medicine Reports 32, no. 6 (2025): 333. https://doi.org/10.3892/mmr.2025.13698
Copy and paste a formatted citation
x
Spandidos Publications style
Ye Z, Zhao H and Ye X: Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review). Mol Med Rep 32: 333, 2025.
APA
Ye, Z., Zhao, H., & Ye, X. (2025). Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review). Molecular Medicine Reports, 32, 333. https://doi.org/10.3892/mmr.2025.13698
MLA
Ye, Z., Zhao, H., Ye, X."Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review)". Molecular Medicine Reports 32.6 (2025): 333.
Chicago
Ye, Z., Zhao, H., Ye, X."Application potential of induced pluripotent stem cells in the research and treatment of autoimmune diseases (Review)". Molecular Medicine Reports 32, no. 6 (2025): 333. https://doi.org/10.3892/mmr.2025.13698
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team