|
1
|
Yang Q, Zhao J, Chen D and Wang Y: E3
ubiquitin ligases: Styles, structures and functions. Mol Biomed.
2:232021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Salas-Lloret D and González-Prieto R:
Insights in Post-translational modifications: Ubiquitin and SUMO.
Int J Mol Sci. 23:32812022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ciechanover A: The unravelling of the
ubiquitin system. Nat Rev Mol Cell Biol. 16:322–324. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Khago D, Fucci IJ and Byrd RA: The role of
conformational dynamics in the recognition and regulation of
ubiquitination. Molecules. 25:59332020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Behera A and Reddy ABM: WWP1 E3 ligase at
the crossroads of health and disease. Cell Death Dis. 14:8532023.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bui QT, Hong JH, Kwak M, Lee JY and Lee
PC: Ubiquitin-conjugating enzymes in cancer. Cells. 10:13832021.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Stewart MD, Ritterhoff T, Klevit RE and
Brzovic PS: E2 enzymes: More than just middle men. Cell Res.
26:423–440. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Toma-Fukai S and Shimizu T: Structural
diversity of ubiquitin E3 ligase. Molecules. 26:66822021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cai C, Tang YD, Zhai J and Zheng C: The
RING finger protein family in health and disease. Signal Transduct
Target Ther. 7:3002022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Toma-Fukai S, Hibi R, Naganuma T, Sakai M,
Saijo S, Shimizu N, Matsumoto M and himizu T: Crystal structure of
GCN5 PCAF N-terminal domain reveals atypical ubiquitin ligase
structure. J Biol Chem. 295:14630–14639. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang Y, Li LF, Munir M and Qiu HJ:
RING-Domain E3 Ligase-mediated Host-virus interactions:
Orchestrating immune responses by the host and antagonizing immune
defense by viruses. Front Immunol. 9:10832018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Medvar B, Raghuram V, Pisitkun T, Sarkar A
and Knepper MA: Comprehensive database of human E3 ubiquitin
ligases: Application to aquaporin-2 regulation. Physiol Genomics.
48:502–512. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang E, Kawaoka S, Yu M, Shi J, Ni T, Yang
W, Zhu J, Roeder RG and Vakoc CR: Histone H2B ubiquitin ligase
RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci
USA. 110:3901–3906. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pan Y, An N, Deng X, Zhang Q and Du X:
RNF220 promotes the proliferation of leukaemic cells and reduces
the degradation of the Cyclin D1 protein through USP22. Blood Cells
Mol Dis. 86:1024902021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yan H, Wang Z, Sun Y, Hu L and Bu P:
Cytoplasmic NEAT1 Suppresses AML stem cell Self-renewal and
leukemogenesis through inactivation of wnt signaling. Adv Sci
(Weinh). 8:e21009142021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
van Gent M, Sparrer KMJ and Gack MU: TRIM
proteins and their roles in antiviral host defenses. Annu Rev
Virol. 5:385–405. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mohammadi A, Pour Abbasi MS, Khorrami S,
Khodamoradi S, Mohammadi Goldar Z and Ebrahimzadeh F: The TRIM
proteins in cancer: From expression to emerging regulatory
mechanisms. Clin Transl Oncol. 24:460–470. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tin W, Xiao C, Sun K, Zhao Y, Xie M, Zheng
J, Wang Y, Liu S and Yu U: TRIM8 as a predictor for prognosis in
childhood acute lymphoblastic leukemia based on a signature of
neutrophil extracellular traps. Front Oncol. 14:14277762024.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang E, Kawaoka S, Roe JS, Shi J, Hohmann
AF, Xu Y, Bhagwat AS, Suzuki Y, Kinney JB and Vakoc CR: The
transcriptional cofactor TRIM33 prevents apoptosis in B
lymphoblastic leukemia by deactivating a single enhancer. Elife.
4:e063772015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Qu H, Gao-Wa H, Hou Y, Ren M, Li J, Jing B
and Du Y: TRIM37 interacts with PTEN to promote the growth of human
T-cell acute lymphocytic leukemia cells through regulating PI3K/AKT
pathway. Front Oncol. 12:10167252022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li L, Li Q, Zou Z, Huang Z and Chen Y:
TRIM10 is downregulated in acute myeloid leukemia and plays a tumor
suppressive role via regulating NF-κB pathway. Cancers (Basel).
15:4172023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Dean ST, Ishikawa C, Zhu X, Walulik S,
Nixon T, Jordan JK, Henderson S, Wyder M, Salomonis N, Wunderlich
M, et al: Repression of TRIM13 by chromatin assembly factor CHAF1B
is critical for AML development. Blood Adv. 7:4822–4837. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Quintás-Cardama A, Zhang N, Qiu YH, Post
S, Creighton CJ, Cortes J, Coombes KR and Kornblau SM: Loss of
TRIM62 expression is an independent adverse prognostic factor in
acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 15:115–27.e15.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cheng H, Ding J, Tang G, Huang A, Gao L,
Yang J and Chen L: Human mesenchymal stem cells derived exosomes
inhibit the growth of acute myeloid leukemia cells via regulating
miR-23b-5p/TRIM14 pathway. Mol Med. 27:1282021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li C, Xin H, Shi Y and Mu J: Knockdown of
TRIM24 suppresses growth and induces apoptosis in acute myeloid
leukemia through downregulation of Wnt/GSK-3β/β-catenin signaling.
Hum Exp Toxicol. 39:1725–1736. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang S, Zhang BS, Yang Y, Li Y, Lv JL and
Cheng Y: TRIM25 contributes to the malignancy of acute myeloid
leukemia and is negatively regulated by microRNA-137. Open Med
(Wars). 16:95–103. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xiao Y, Deng T, Ming X and Xu J: TRIM31
promotes acute myeloid leukemia progression and sensitivity to
daunorubicin through the Wnt/β-catenin signaling. Biosci Rep.
40:BSR201943342020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang K, Liu D, Li Y, Shi Z, Guo J, Gao C,
Wang H, Ju Z and Diao D: The E3 ligase TRIM31 regulates
hematopoietic stem cell homeostasis and MLL-AF9 leukemia.
Haematologica. 108:2116–2129. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xu X, Qi J, Yang J, Pan T, Han H, Yang M
and Han Y: Up-regulation of TRIM32 associated with the poor
prognosis of acute myeloid leukemia by integrated bioinformatics
analysis with external validation. Front Oncol. 12:8483952022.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tan Y, Wang X, Song H, Zhang Y, Zhang R,
Li S, Jin W, Chen S, Fang H, Chen Z and Wang K: A PML/RARα direct
target atlas redefines transcriptional deregulation in acute
promyelocytic leukemia. Blood. 137:1503–1516. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sato T, Okumura F, Iguchi A, Ariga T and
Hatakeyama S: TRIM32 promotes retinoic acid receptor α-mediated
differentiation in human promyelogenous leukemic cell line HL60.
Biochem Biophys Res Commun. 417:594–600. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li L, Qi Y, Ma X, Xiong G, Wang L and Bao
C: TRIM22 knockdown suppresses chronic myeloid leukemia via
inhibiting PI3K/Akt/mTOR signaling pathway. Cell Biol Int.
42:1192–1199. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cotton TR and Lechtenberg BC: Chain
reactions: Molecular mechanisms of RBR ubiquitin ligases. Biochem
Soc Trans. 48:1737–1750. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang P, Dai X, Jiang W, Li Y and Wei W:
RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol.
67:131–144. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Struyf S, Schutyser E, Gouwy M, Gijsbers
K, Proost P, Benoit Y, Opdenakker G, Van Damme J and Laureys G:
PARC/CCL18 is a plasma CC chemokine with increased levels in
childhood acute lymphoblastic leukemia. Am J Pathol. 163:2065–2075.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Seipel K, Marques MT, Bozzini MA, Meinken
C, Mueller BU and Pabst T: Inactivation of the p53-KLF4-CEBPA axis
in acute myeloid leukemia. Clin Cancer Res. 22:746–756. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Agirre X, Román-Gómez J, Vázquez I,
Jiménez-Velasco A, Garate L, Montiel-Duarte C, Artieda P, Cordeu L,
Lahortiga I, Calasanz MJ, et al: Abnormal methylation of the common
PARK2 and PACRG promoter is associated with downregulation of gene
expression in acute lymphoblastic leukemia and chronic myeloid
leukemia. Int J Cancer. 118:1945–1953. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mendivil-Perez M, Jimenez-Del-Rio M and
Velez-Pardo C: Response to rotenone is glucose-sensitive in a model
of human acute lymphoblastic leukemia: Involvement of oxidative
stress mechanism, DJ-1, Parkin and PINK-1 proteins. Oxid Med Cell
Longev. 2014:4571542014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fontanari Krause LM, Japp AS, Krause A,
Mooster J, Chopra M, Müschen M and Bohlander SK: Identification and
characterization of OSTL (RNF217) encoding a RING-IBR-RING protein
adjacent to a translocation breakpoint involving ETV6 in childhood
ALL. Sci Rep. 4:65652014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Marteijn JA, van der Meer LT, Smit JJ,
Noordermeer SM, Wissink W, Jansen P, Swarts HG, Hibbert RG, de
Witte T, Sixma TK, et al: The ubiquitin ligase Triad1 inhibits
myelopoiesis through UbcH7 and Ubc13 interacting domains. Leukemia.
23:1480–1489. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang H, Bei L, Shah CA, Huang W, Platanias
LC and Eklund EA: The E3 ubiquitin ligase Triad1 influences
development of Mll-Ell-induced acute myeloid leukemia. Oncogene.
37:2532–2544. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang H, Shah CA, Hu L, Huang W, Platanias
LC and Eklund EA: An aberrantly sustained emergency granulopoiesis
response accelerates postchemotherapy relapse in MLL1-rearranged
acute myeloid leukemia in mice. J Biol Chem. 295:9663–9675. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang H, Bei L, Shah CA, Horvath E and
Eklund EA: HoxA10 influences protein ubiquitination by activating
transcription of ARIH2, the gene encoding Triad1. J Biol Chem.
286:16832–16845. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jimbo K, Hattori A, Koide S, Ito T, Sasaki
K, Iwai K, Nannya Y, Iwama A, Tojo A and Konuma T: Genetic deletion
and pharmacologic inhibition of E3 ubiquitin ligase HOIP impairs
the propagation of myeloid leukemia. Leukemia. 37:122–133. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Du W, Li J, Sipple J, Chen J and Pang Q:
Cytoplasmic FANCA-FANCC complex interacts and stabilizes the
cytoplasm-dislocalized leukemic nucleophosmin protein (NPMc). J
Biol Chem. 285:37436–37444. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang X and Yu W: RBCK1-TRIB3 decelerated
the progression of acute promyelocytic leukemia. Hematol Oncol.
39:567–569. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Mason CC, Khorashad JS, Tantravahi SK,
Kelley TW, Zabriskie MS, Yan D, Pomicter AD, Reynolds KR, Eiring
AM, Kronenberg Z, et al: Age-related mutations and chronic
myelomonocytic leukemia. Leukemia. 30:906–913. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zheng C: The emerging roles of the MARCH
ligases in antiviral innate immunity. Int J Biol Macromol.
171:423–427. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bauer J, Bakke O and Morth JP: Overview of
the membrane-associated RING-CH (MARCH) E3 ligase family. N
Biotechnol. 38:7–15. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Behera A, Sachan D, Barik GK and Reddy
ABM: Role of MARCH E3 ubiquitin ligases in cancer development.
Cancer Metastasis Rev. 43:1257–1277. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ablack JN, Ortiz J, Bajaj J, Trinh K,
Lagarrigue F, Cantor JM, Reya T and Ginsberg MH: MARCH proteins
mediate responses to antitumor antibodies. J Immunol.
205:2883–2892. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ablack JN, Metz PJ, Chang JT, Cantor JM
and Ginsberg MH: Ubiquitylation of CD98 limits cell proliferation
and clonal expansion. J Cell Sci. 128:4273–4278. 2015.PubMed/NCBI
|
|
53
|
Babon JJ, Stockwell D, DiRago L, Zhang JG,
Laktyushin A, Villadangos J, Ching A, Ishido S, Hilton DJ,
Alexander WS, et al: Membrane-associated RING-CH (MARCH) proteins
down-regulate cell surface expression of the interleukin-6 receptor
alpha chain (IL6Rα). Biochem J. 476:2869–2882. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lin S, Larrue C, Scheidegger NK, Seong
BKA, Dharia NV, Kuljanin M, Wechsler CS, Kugener G, Robichaud AL,
Conway AS, et al: An in vivo CRISPR screening platform for
prioritizing therapeutic targets in AML. Cancer Discov. 12:432–449.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nakao F, Setoguchi K, Semba Y, Yamauchi T,
Nogami J, Sasaki K, Imanaga H, Terasaki T, Miyazaki M, Hirabayashi
S, et al: Targeting a mitochondrial E3 ubiquitin ligase complex to
overcome AML cell-intrinsic Venetoclax resistance. Leukemia.
37:1028–1038. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lin S, Schneider C, Su AH, Alexe G, Root
DE and Stegmaier K: The UBE2J2/UBE2K-MARCH5 ubiquitination
machinery regulates apoptosis in response to venetoclax in acute
myeloid leukemia. Leukemia. 38:652–656. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kang H, Valerio M, Feng J, Gu L, Hoang DH,
Blackmon A, Sharkas S, Pathak K, Jossart J, Li Z, et al: AOH1996
targets mitochondrial dynamics and metabolism in leukemic stem
cells via mitochondrial PCNA inhibition. Exp Hematol Oncol.
13:1232024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Larrue C, Mouche S and Tamburini J: The E3
ubiquitin ligase MARCH5 promotes mitochondrial fusion and
Cell-cycle progression in acute myeloid leukemia. Blood Adv.
9:337–342. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
van Dijk JR, Yamazaki Y and Palmer RH:
Tumour-associated mutations of PA-TM-RING ubiquitin ligases
RNF167/RNF13 identify the PA domain as a determinant for endosomal
localization. Biochem J. 459:27–36. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Siepe DH, Picton LK and Garcia KC:
Receptor elimination by E3 ubiquitin ligase recruitment (REULR): A
targeted protein degradation toolbox. ACS Synth Biol. 12:1081–1093.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wu X, Wu Z, Deng W, Xu R, Ban C, Sun X and
Zhao Q: Spatiotemporal evolution of AML immune microenvironment
remodeling and RNF149-driven drug resistance through single-cell
multidimensional analysis. J Transl Med. 21:7602023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Watanabe T, Yamashita S, Ureshino H,
Kamachi K, Kurahashi Y, Fukuda-Kurahashi Y, Yoshida N, Hattori N,
Nakamura H, Sato A, et al: Targeting aberrant DNA hypermethylation
as a driver of ATL leukemogenesis by using the new oral
demethylating agent OR-2100. Blood. 136:871–884. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang Y, Wang H, Guo J, Gao J, Wang M, Xia
M, Wen Y, Su P, Yang M, Liu M, et al: LGR4, Not LGR5, enhances hPSC
hematopoiesis by facilitating mesoderm induction via TGF-beta
signaling activation. Cell Rep. 31:1076002020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
MacKenzie DA and Seroogy CM: Sustained
expression of GRAIL during hematopoiesis results in dysregulated
differentiation. Acta Haematol. 122:230–237. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Haymaker C, Yang Y, Wang J, Zou Q, Sahoo
A, Alekseev A, Singh D, Ritthipichai K, Hailemichael Y, Hoang ON,
et al: Absence of grail promotes CD8+ T cell anti-tumour activity.
Nat Commun. 8:2392017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Giannini AL, Gao Y and Bijlmakers MJ:
T-cell regulator RNF125/TRAC-1 belongs to a novel family of
ubiquitin ligases with zinc fingers and a Ubiquitin-binding domain.
Biochem J. 410:101–111. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bijlmakers MJ, Teixeira JM, Boer R, Mayzel
M, Puig-Sàrries P, Karlsson G, Coll M, Pons M and Crosas B: A C2HC
zinc finger is essential for the RING-E2 interaction of the
ubiquitin ligase RNF125. Sci Rep. 6:292322016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li Y, Zhang X, Liu N, Liu R, Zhang W, Chen
L and Chen Y: RNF166 promotes colorectal cancer progression by
recognizing and destabilizing poly-ADP-ribosylated angiomotins.
Cell Death Dis. 15:2112024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tong B, Spradlin JN, Novaes LFT, Zhang E,
Hu X, Moeller M, Brittain SM, McGregor LM, McKenna JM, Tallarico
JA, et al: A Nimbolide-based kinase degrader preferentially
degrades oncogenic BCR-ABL. ACS Chem Biol. 15:1788–1794. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xiao YP, Cheng YC, Chen C, Xue HM, Yang M
and Lin C: Identification of the Shared gene signatures of HCK,
NOG, RNF125 and biological mechanism in pediatric acute
lymphoblastic leukaemia and pediatric sepsis. Mol Biotechnol.
67:80–90. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Singh AK, Upadhyay V, Sethi A, Chowdhury
S, Mishra S, Verma SP, Bhatt MLB and Trivedi AK: Ring finger
protein 138 inhibits transcription factor C/EBPα protein turnover
leading to differentiation arrest in acute myeloid leukemia.
Biochem J. 481:653–666. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Marcellino BK, Yang X, Ümit Kaniskan H,
Brady C, Chen H, Chen K, Qiu X, Clementelli C, Herschbein L, Li Z,
et al: An MDM2 degrader for treatment of acute leukemias. Leukemia.
37:370–378. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hansen JD, Correa M, Nagy MA, Alexander M,
Plantevin V, Grant V, Whitefield B, Huang D, Kercher T, Harris R,
et al: Discovery of CRBN E3 ligase modulator CC-92480 for the
treatment of relapsed and refractory multiple myeloma. J Med Chem.
63:6648–6676. 2020. View Article : Google Scholar : PubMed/NCBI
|