You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
GBD 2015 Chronic Respiratory Disease Collaborators, . Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet Respir Med. 5:691–706. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
World Health Organization (WHO), . Global Health Estimates 2016: Deaths by cause, age, sex, by country and by region, 2000–2016. WHO; Geneva: 2018 | |
|
Ogal M, Johnston SL, Klein P and Schoop R: Echinacea reduces antibiotic usage in children through respiratory tract infection prevention: A randomized, blinded, controlled clinical trial. Eur J Med Res. 26:332021. View Article : Google Scholar : PubMed/NCBI | |
|
Aitken M and Taylor JA: Prevalence of clinical sinusitis in young children followed up by primary care pediatricians. Arch Pediatr Adolesc Med. 152:244–248. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Tian J, Wang XY, Zhang LL, Liu MJ, Ai JH, Feng GS, Zeng YP, Wang R and Xie ZD: Clinical epidemiology and disease burden of bronchiolitis in hospitalized children in China: A national cross-sectional study. World J Pediatr. 19:851–863. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chatterjee A, Mavunda K and Krilov LR: Current state of respiratory syncytial virus disease and management. Infect Dis Ther. 10 (Suppl 1):S5–S16. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Keulers L, Dehghani A, Knippels L, Garssen J, Papadopoulos N, Folkerts G, Braber S and van Bergenhenegouwen J: Probiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: The gut-lung axis. Environ Pollut. 302:1190662022. View Article : Google Scholar : PubMed/NCBI | |
|
Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N and Khoshnood S: Obesity and gut-microbiota-brain axis: A narrative review. J Clin Lab Anal. 36:e244202022. View Article : Google Scholar : PubMed/NCBI | |
|
Mancin L, Wu GD and Paoli A: Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol. 31:254–269. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ahlawat S and Asha Sharma KK: Gut-organ axis: A microbial outreach and networking. Lett Appl Microbiol. 72:636–668. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Akshay A, Gasim R, Ali TE, Kumar YS and Hassan A: Unlocking the gut-cardiac axis: A paradigm shift in cardiovascular health. Cureus. 15:e510392023.PubMed/NCBI | |
|
Wong CC and Yu J: Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 20:429–452. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Wang Q, Liu Y, Wang L, Ge Z, Li Z, Feng S and Wu C: Gut microbiota and hypertension: Association, mechanisms and treatment. Clin Exp Hypertens. 45:21951352023. View Article : Google Scholar : PubMed/NCBI | |
|
Wilkins AT and Reimer RA: Obesity, early life gut microbiota, and antibiotics. Microorganisms. 9:4132021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu W, Wu Y, Liu H, Jiang C and Huo L: Gut-lung axis: Microbial crosstalk in pediatric respiratory tract infections. Front Immunol. 12:7412332021. View Article : Google Scholar : PubMed/NCBI | |
|
Walker AW and Hoyles L: Human microbiome myths and misconceptions. Nat Microbiol. 8:1392–1396. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Eribo OA, du Plessis N and Chegou NN: The intestinal commensal, bacteroides fragilis, modulates host responses to viral infection and therapy: Lessons for exploration during mycobacterium tuberculosis infection. Infect Immun. 90:e00321212022. View Article : Google Scholar : PubMed/NCBI | |
|
Alcazar CG, Paes VM, Shao Y, Oesser C, Miltz A, Lawley TD, Brocklehurst P, Rodger A and Field N: The association between early-life gut microbiota and childhood respiratory diseases: A systematic review. Lancet Microbe. 3:e867–e880. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng D, Liwinski T and Elinav E: Interaction between microbiota and immunity in health and disease. Cell Res. 30:492–506. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
van den Elsen LWJ, Garssen J, Burcelin R and Verhasselt V: Shaping the gut microbiota by breastfeeding: The gateway to allergy prevention? Front Pediatr. 7:472019. View Article : Google Scholar : PubMed/NCBI | |
|
Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, Kumar N, Stares MD, Rodger A, Brocklehurst P, et al: Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 574:117–121. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Munyaka PM, Khafipour E and Ghia JE: External influence of early childhood establishment of gut microbiota and subsequent health implications. Front Pediatr. 2:1092014. View Article : Google Scholar : PubMed/NCBI | |
|
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N and Knight R: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 107:11971–11975. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, D Lieber A, Wu F, Perez-Perez GI, Chen Y, et al: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 8:343ra3822016. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, et al: The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 26:260502015.PubMed/NCBI | |
|
Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L and Andersson AF: Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 63:559–566. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD and Aagaard KM: Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 23:314–326. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fouhy F, Watkins C, Hill CJ, O'Shea CA, Nagle B, Dempsey EM, O'Toole PW, Ross RP, Ryan CA and Stanton C: Perinatal factors affect the gut microbiota up to four years after birth. Nat Commun. 10:15172019. View Article : Google Scholar : PubMed/NCBI | |
|
Stupak A and Kwaśniewski W: Evaluating current molecular techniques and evidence in assessing microbiome in placenta-related health and disorders in pregnancy. Biomolecules. 13:9112023. View Article : Google Scholar : PubMed/NCBI | |
|
Le Huërou-Luron I, Blat S and Boudry G: Breast- v. formula-feeding: Impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev. 23:23–36. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Korpela K, Blakstad EW, Moltu SJ, Strømmen K, Nakstad B, Rønnestad AE, Brække K, Iversen PO, Drevon CA and de Vos W: Intestinal microbiota development and gestational age in preterm neonates. Sci Rep. 8:24532018. View Article : Google Scholar : PubMed/NCBI | |
|
Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, et al: The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 81:e00036–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Arboleya S, Sánchez B, Milani C, Duranti S, Solís G, Fernández N, de los Reyes-Gavilán CG, Ventura M, Margolles A and Gueimonde M: Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr. 166:538–544. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cong X, Xu W, Janton S, Henderson WA, Matson A, McGrath JM, Maas K and Graf J: Gut microbiome developmental patterns in early life of preterm infants: Impacts of feeding and gender. PLoS One. 11:e01527512016. View Article : Google Scholar : PubMed/NCBI | |
|
Binns C, Lee M and Low WY: The long-term public health benefits of breastfeeding. Asia Pac J Public Health. 28:7–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Perrella S, Gridneva Z, Lai CT, Stinson L, George A, Bilston-John S and Geddes D: Human milk composition promotes optimal infant growth, development and health. Semin Perinatol. 45:1513802021. View Article : Google Scholar : PubMed/NCBI | |
|
Berger B, Porta N, Foata F, Grathwohl D, Delley M, Moine D, Charpagne A, Siegwald L, Descombes P, Alliet P, et al: Linking human milk oligosaccharides, infant fecal community types, and later risk to require antibiotics. mBio. 11:e03196–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zuurveld M, van Witzenburg NP, Garssen J, Folkerts G, Stahl B, Van't Land B and Willemsen LEM: Immunomodulation by human milk oligosaccharides: The potential role in prevention of allergic diseases. Front Immunol. 11:8012020. View Article : Google Scholar : PubMed/NCBI | |
|
Bogaert D, van Beveren GJ, de Koff EM, Lusarreta Parga P, Balcazar Lopez CE, Koppensteiner L, Clerc M, Hasrat R, Arp K, Chu MLJN, et al: Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe. 31:447–460.e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yagi K, Asai N, Huffnagle GB, Lukacs NW and Fonseca W: Early-life lung and gut microbiota development and respiratory syncytial virus infection. Front Immunol. 13:8777712022. View Article : Google Scholar : PubMed/NCBI | |
|
Borewicz K, Suarez-Diez M, Hechler C, Beijers R, de Weerth C, Arts I, Penders J, Thijs C, Nauta A, Lindner C, et al: The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci Rep. 9:24342019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu B, Zheng S, Lin K, Xu X, Lv L, Zhao Z and Shao J: Effects of infant formula supplemented with prebiotics and OPO on infancy fecal microbiota: A pilot Randomized clinical trial. Front Cell Infect Microbiol. 11:6504072021. View Article : Google Scholar : PubMed/NCBI | |
|
Ratsika A, Codagnone MC, O'Mahony S, Stanton C and Cryan JF: Priming for Life: Early life nutrition and the microbiota-gut-brain axis. Nutrients. 13:4232021. View Article : Google Scholar : PubMed/NCBI | |
|
Ianiro G, Tilg H and Gasbarrini A: Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut. 65:1906–1915. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dierikx TH, Visser DH, Benninga MA, van Kaam AHLC, de Boer NKH, de Vries R, van Limbergen J and de Meij TGJ: The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: A systematic review. J Infect. 81:190–204. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Panda S, El khader I, Casellas F, López Vivancos J, García Cors M, Santiago A, Cuenca S, Guarner F and Manichanh C: Short-term effect of antibiotics on human gut microbiota. PLoS One. 9:e954762014. View Article : Google Scholar : PubMed/NCBI | |
|
Blaser MJ and Dominguez-Bello MG: The human microbiome before birth. Cell Host Microbe. 20:558–560. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, Sears MR, Mandhane PJ, Turvey SE, Subbarao P, et al: Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: A prospective cohort study. BJOG. 123:983–993. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E and Rautava S: Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr. 6:42019. View Article : Google Scholar : PubMed/NCBI | |
|
Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD, et al: Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 510:417–421. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Blanton LV, Barratt MJ, Charbonneau MR, Ahmed T and Gordon JI: Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science. 352:15332016. View Article : Google Scholar : PubMed/NCBI | |
|
Kane AV, Dinh DM and Ward HD: Childhood malnutrition and the intestinal microbiome. Pediatr Res. 77:256–262. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Moles L, Gómez M, Heilig H, Bustos G, Fuentes S, de Vos W, Fernández L, Rodríguez JM and Jiménez E: Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 8:e669862013. View Article : Google Scholar : PubMed/NCBI | |
|
Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R and Rodríguez JM: The human milk microbiota: Origin and potential roles in health and disease. Pharmacol Res. 69:1–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mountzouris KC, McCartney AL and Gibson GR: Intestinal microflora of human infants and current trends for its nutritional modulation. Br J Nutr. 87:405–420. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Barrett E, Kerr C, Murphy K, O'Sullivan O, Ryan CA, Dempsey EM, Murphy BP, O'Toole PW, Cotter PD, Fitzgerald GF, et al: The individual-specific and diverse nature of the preterm infant microbiota. Arch Dis Child Fetal Neonatal Ed. 98:F334–F340. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM, Murphy B, Ross RP, Fitzgerald GF, Stanton C and Cotter PD: High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 56:5811–5820. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, Edwards CA, et al: Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr. 51:77–84. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P and Hansbro PM: Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 15:55–63. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Espírito Santo C, Caseiro C, Martins MJ, Monteiro R and Brandão I: Gut microbiota, in the halfway between nutrition and lung function. Nutrients. 13:17162021. View Article : Google Scholar : PubMed/NCBI | |
|
Chistiakov DA, Bobryshev YV, Kozarov E, Sobenin IA and Orekhov AN: Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance. Front Microbiol. 5:7812015. View Article : Google Scholar : PubMed/NCBI | |
|
Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O and Laszczyńska M: Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 66:1–12. 2019.PubMed/NCBI | |
|
Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G and Henricks PAJ: Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 831:52–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SH, Yun Y, Kim SJ, Lee EJ, Chang Y, Ryu S, Shin H, Kim HL, Kim HN and Lee JH: Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study. J Clin Med. 7:2822018. View Article : Google Scholar : PubMed/NCBI | |
|
Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood DLA, Gellatly SL, Shukla SD, Wood LG, et al: Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 11:58862020. View Article : Google Scholar : PubMed/NCBI | |
|
Gray J, Oehrle K, Worthen G, Alenghat T, Whitsett J and Deshmukh H: Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci Transl Med. 9:eaaf94122017. View Article : Google Scholar : PubMed/NCBI | |
|
Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL and Blumberg RS: Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 336:489–493. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Brown RL, Sequeira RP and Clarke TB: The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun. 8:15122017. View Article : Google Scholar : PubMed/NCBI | |
|
Luoto R, Ruuskanen O, Waris M, Kalliomäki M, Salminen S and Isolauri E: Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J Allergy Clin Immunol. 133:405–413. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Maldonado J, Cañabate F, Sempere L, Vela F, Sánchez AR, Narbona E, López-Huertas E, Geerlings A, Valero AD, Olivares M and Lara-Villoslada F: Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr. 54:55–61. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Li X, Ge T, Xiao Y, Liao Y, Cui Y, Zhang Y, Ho W, Yu G and Zhang T: Probiotics for prevention and treatment of respiratory tract infections in children: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 95:e45092016. View Article : Google Scholar : PubMed/NCBI | |
|
Redd WD, Zhou JC, Hathorn KE, McCarty TR, Bazarbashi AN, Thompson CC, Shen L and Chan WW: Prevalence and characteristics of gastrointestinal symptoms in patients with severe acute respiratory syndrome coronavirus 2 infection in the United States: A multicenter cohort study. Gastroenterology. 159:765–767.e2. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, Wan Y, Chung ACK, Cheung CP, Chen N, et al: Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 159:944–955.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, et al: Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 70:698–706. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Ni F, Huang J, Hu Y, Wang J, Wang X, Du X and Jiang H: PPAR-α inhibits DHEA-induced ferroptosis in granulosa cells through upregulation of FADS2. Biochem Biophys Res Commun. 715:1500052024. View Article : Google Scholar : PubMed/NCBI | |
|
Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, Buchholz UJ, Openshaw PJ, McLellan JS, Englund JA, et al: The respiratory syncytial virus vaccine landscape: Lessons from the graveyard and promising candidates. Lancet Infect Dis. 18:e295–e311. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Janet S, Broad J and Snape MD: Respiratory syncytial virus seasonality and its implications on prevention strategies. Hum Vaccin Immunother. 14:234–244. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Russell CD, Unger SA, Walton M and Schwarze J: The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev. 30:481–502. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bénet T, Sánchez Picot V, Messaoudi M, Chou M, Eap T, Wang J, Shen K, Pape JW, Rouzier V, Awasthi S, et al: Microorganisms associated with pneumonia in children <5 years of age in developing and emerging countries: The GABRIEL pneumonia multicenter, prospective, case-control study. Clin Infect Dis. 65:604–612. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pneumonia Etiology Research for Child Health (PERCH) Study Group, : Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet. 394:757–779. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380:2095–2128. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Harding JN, Siefker D, Vu L, You D, DeVincenzo J, Pierre JF and Cormier SA: Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity. BMC Microbiol. 20:1402020. View Article : Google Scholar : PubMed/NCBI | |
|
Jang MJ, Kim YJ, Hong S, Na J, Hwang JH, Shin SM and Ahn YM: Positive association of breastfeeding on respiratory syncytial virus infection in hospitalized infants: A multicenter retrospective study. Clin Exp Pediatr. 63:135–140. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hasegawa K, Linnemann RW, Mansbach JM, Ajami NJ, Espinola JA, Petrosino JF, Piedra PA, Stevenson MD, Sullivan AF, Thompson AD and Camargo CA Jr: The fecal microbiota profile and bronchiolitis in infants. Pediatrics. 138:e201602182016. View Article : Google Scholar : PubMed/NCBI | |
|
Nishimura T, Suzue J and Kaji H: Breastfeeding reduces the severity of respiratory syncytial virus infection among young infants: A multi-center prospective study. Pediatr Int. 51:812–816. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kristensen K, Fisker N, Haerskjold A, Ravn H, Simões EA and Stensballe L: Caesarean section and hospitalization for respiratory syncytial virus infection: A population-based study. Pediatr Infect Dis J. 34:145–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HC, Headley MB, Loo YM, Berlin A, Gale M Jr, Debley JS, Lukacs NW and Ziegler SF: Thymic stromal lymphopoietin is induced by respiratory syncytial virus-infected airway epithelial cells and promotes a type 2 response to infection. J Allergy Clin Immunol. 130:1187–1196.e1185. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ptaschinski C, Mukherjee S, Moore ML, Albert M, Helin K, Kunkel SL and Lukacs NW: RSV–Induced H3K4 demethylase KDM5B leads to regulation of dendritic cell-derived innate cytokines and exacerbates pathogenesis in vivo. PLoS Pathog. 11:e10049782015. View Article : Google Scholar : PubMed/NCBI | |
|
Lu S, Hartert TV, Everard ML, Giezek H, Nelsen L, Mehta A, Patel H, Knorr B and Reiss TF: Predictors of asthma following severe respiratory syncytial virus (RSV) bronchiolitis in early childhood. Pediatr Pulmonol. 51:1382–1392. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Malinczak CA, Fonseca W, Rasky AJ, Ptaschinski C, Morris S, Ziegler SF and Lukacs NW: Sex-associated TSLP-induced immune alterations following early-life RSV infection leads to enhanced allergic disease. Mucosal Immunol. 12:969–979. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yagi K, Lukacs NW, Huffnagle GB, Kato H and Asai N: Respiratory and gut microbiome modification during respiratory syncytial virus infection: A systematic review. Viruses. 16:2202024. View Article : Google Scholar : PubMed/NCBI | |
|
Fonseca W, Malinczak CA, Fujimura K, Li D, McCauley K, Li J, Best SKK, Zhu D, Rasky AJ, Johnson CC, et al: Maternal gut microbiome regulates immunity to RSV infection in offspring. J Exp Med. 218:e202102352021. View Article : Google Scholar : PubMed/NCBI | |
|
Ballarini S, Ardusso L, Ortega Martell JA, Sacco O, Feleszko W and Rossi GA: Can bacterial lysates be useful in prevention of viral respiratory infections in childhood? The results of experimental OM-85 studies. Front Pediatr. 10:10510792022. View Article : Google Scholar : PubMed/NCBI | |
|
National Institute for Health and Care Excellence (NICE), . Asthma: Diagnosis, monitoring and chronic asthma management. NICE Guideline, No. 80. NICE; London: 2021 | |
|
Asher MI, Rutter CE, Bissell K, Chiang CY, El Sony A, Ellwood E, Ellwood P, García-Marcos L, Marks GB, Morales E, et al: Worldwide trends in the burden of asthma symptoms in school-aged children: Global asthma network phase I cross-sectional study. Lancet. 398:1569–1580. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fainardi V, Esposito S, Chetta A and Pisi G: Asthma phenotypes and endotypes in childhood. Minerva Med. 113:94–105. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez FD and Vercelli D: Asthma. Lancet. 382:1360–1372. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ntontsi P, Photiades A, Zervas E, Xanthou G and Samitas K: Genetics and epigenetics in asthma. Int J Mol Sci. 22:24122021. View Article : Google Scholar : PubMed/NCBI | |
|
Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, Schoos AM, Kunøe A, Fink NR, Chawes BL, et al: Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 9:1412018. View Article : Google Scholar : PubMed/NCBI | |
|
Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, et al: Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 22:1187–1191. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Abreo A, Gebretsadik T, Stone CA and Hartert TV: The impact of modifiable risk factor reduction on childhood asthma development. Clin Transl Med. 7:152018. View Article : Google Scholar : PubMed/NCBI | |
|
Rosas-Salazar C, Shilts MH, Tang ZZ, Hong Q, Turi KN, Snyder BM, Wiggins DA, Lynch CE, Gebretsadik T, Peebles RS Jr, et al: Exclusive breast-feeding, the early-life microbiome and immune response, and common childhood respiratory illnesses. J Allergy Clin Immunol. 150:612–621. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y and Toema O: Gut microbiota in various childhood disorders: Implication and indications. World J Gastroenterol. 28:1875–1901. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Patrick DM, Sbihi H, Dai DLY, Al Mamun A, Rasali D, Rose C, Marra F, Boutin RCT, Petersen C, Stiemsma LT, et al: Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: Evidence from population-based and prospective cohort studies. Lancet Respir Med. 8:1094–1105. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kloepfer KM and Kennedy JL: Childhood respiratory viral infections and the microbiome. J Allergy Clin Immunol. 152:827–834. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gensollen T, Iyer SS, Kasper DL and Blumberg RS: How colonization by microbiota in early life shapes the immune system. Science. 352:539–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Renz H and Skevaki C: Early life microbial exposures and allergy risks: Opportunities for prevention. Nat Rev Immunol. 21:177–191. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fahy JV and Dickey BF: Airway mucus function and dysfunction. N Engl J Med. 363:2233–2247. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Scotet V, L'Hostis C and Férec C: The changing epidemiology of cystic fibrosis: Incidence, Survival and impact of the CFTR gene discovery. Genes (Basel). 11:5892020. View Article : Google Scholar : PubMed/NCBI | |
|
Elborn JS: Cystic fibrosis. Lancet. 388:2519–2531. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rafeeq MM and Murad HAS: Cystic fibrosis: Current therapeutic targets and future approaches. J Transl Med. 15:842017. View Article : Google Scholar : PubMed/NCBI | |
|
Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, Beck JM, Curtis JL and Huffnagle GB: Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 6:e000372015. View Article : Google Scholar : PubMed/NCBI | |
|
Rogers GB, Carroll MP, Hoffman LR, Walker AW, Fine DA and Bruce KD: Comparing the microbiota of the cystic fibrosis lung and human gut. Gut Microbes. 1:85–93. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dayama G, Priya S, Niccum DE, Khoruts A and Blekhman R: Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med. 12:122020. View Article : Google Scholar : PubMed/NCBI | |
|
Kristensen M, Prevaes SMPJ, Kalkman G, Tramper-Stranders GA, Hasrat R, de Winter-de Groot KM, Janssens HM, Tiddens HA, van Westreenen M, Sanders EAM, et al: Development of the gut microbiota in early life: The impact of cystic fibrosis and antibiotic treatment. J Cyst Fibros. 19:553–561. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Vernocchi P, Del Chierico F, Russo A, Majo F, Rossitto M, Valerio M, Casadei L, La Storia A, De Filippis F, Rizzo C, et al: Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype. PLoS One. 13:e02081712018. View Article : Google Scholar : PubMed/NCBI | |
|
Burke DG, Fouhy F, Harrison MJ, Rea MC, Cotter PD, O'Sullivan O, Stanton C, Hill C, Shanahan F, Plant BJ and Ross RP: The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 17:582017. View Article : Google Scholar : PubMed/NCBI | |
|
Miragoli F, Federici S, Ferrari S, Minuti A, Rebecchi A, Bruzzese E, Buccigrossi V, Guarino A and Callegari ML: Impact of cystic fibrosis disease on archaea and bacteria composition of gut microbiota. FEMS Microbiol Ecol. 93:fiw2302017. View Article : Google Scholar : PubMed/NCBI | |
|
de Freitas MB, Moreira EAM, Tomio C, Moreno YMF, Daltoe FP, Barbosa E, Ludwig Neto N, Buccigrossi V and Guarino A: Altered intestinal microbiota composition, antibiotic therapy and intestinal inflammation in children and adolescents with cystic fibrosis. PLoS One. 13:e01984572018. View Article : Google Scholar : PubMed/NCBI | |
|
Matamouros S, Hayden HS, Hager KR, Brittnacher MJ, Lachance K, Weiss EJ, Pope CE, Imhaus AF, McNally CP, Borenstein E, et al: Adaptation of commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis. Proc Natl Acad Sci USA. 115:1605–1610. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nielsen S, Needham B, Leach ST, Day AS, Jaffe A, Thomas T and Ooi CY: Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis. Sci Rep. 6:248572016. View Article : Google Scholar : PubMed/NCBI | |
|
Coffey MJ, Nielsen S, Wemheuer B, Kaakoush NO, Garg M, Needham B, Pickford R, Jaffe A, Thomas T and Ooi CY: Gut microbiota in children with cystic fibrosis: A taxonomic and functional dysbiosis. Sci Rep. 9:185932019. View Article : Google Scholar : PubMed/NCBI | |
|
Manor O, Levy R, Pope CE, Hayden HS, Brittnacher MJ, Carr R, Radey MC, Hager KR, Heltshe SL, Ramsey BW, et al: Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis. Sci Rep. 6:224932016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Leong LEX, Keating RL, Kanno T, Abell GCJ, Mobegi FM, Choo JM, Wesselingh SL, Mason AJ, Burr LD and Rogers GB: Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut. Gut Microbes. 10:367–381. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Vaezi A, Healy T, Ebrahimi G, Rezvankhah S, Hashemi Shahraki A and Mirsaeidi M: Phage therapy: breathing new tactics into lower respiratory tract infection treatments. Eur Respir Rev. 33:2400292024. View Article : Google Scholar : PubMed/NCBI | |
|
Hong Y and Luo T: The potential protective effects of probiotics, prebiotics, or yogurt on chronic obstructive pulmonary disease: Results from NHANES 2007–2012. Food Sci Nutr. 12:7233–7241. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Depoorter L and Vandenplas Y: Probiotics in pediatrics. A review and practical guide. Nutrients. 13:21762021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Xu Y, Hu L and Wang X: Advancements related to probiotics for preventing and treating recurrent respiratory tract infections in children. Front Pediatr. 13:15086132025. View Article : Google Scholar : PubMed/NCBI | |
|
O'Donnell A, Murray A, Nguyen A, Salmon T, Taylor S, Morton JP and Close GL: Nutrition and golf performance: A systematic scoping review. Sports Med. 54:3081–3095. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Lin X, Xiang X, Liu W, Fang Y, Chen H, Tang F, Guo H, Chen D, Hu X, et al: Oropharyngeal probiotic ENT-K12 prevents respiratory tract infections among frontline medical staff fighting against COVID-19: A pilot study. Front Bioeng Biotechnol. 9:6461842021. View Article : Google Scholar : PubMed/NCBI | |
|
Samuelson DR, Charles TP, de la Rua NM, Taylor CM, Blanchard EE, Luo M, Shellito JE and Welsh DA: Analysis of the intestinal microbial community and inferred functional capacities during the host response to Pneumocystis pneumonia. Exp Lung Res. 42:425–439. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Li M and Yue X: Current research on probiotics and fermented products. Foods. 13:14062024. View Article : Google Scholar : PubMed/NCBI | |
|
Mazziotta C, Tognon M, Martini F, Torreggiani E and Rotondo JC: Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells. 12:1842023. View Article : Google Scholar : PubMed/NCBI | |
|
Suissa R, Oved R, Jankelowitz G, Turjeman S, Koren O and Kolodkin-Gal I: Molecular genetics for probiotic engineering: Dissecting lactic acid bacteria. Trends Microbiol. 30:293–306. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chiappini E, Santamaria F, Marseglia GL, Marchisio P, Galli L, Cutrera R, de Martino M, Antonini S, Becherucci P, Biasci P, et al: Prevention of recurrent respiratory infections : Inter-society Consensus. Ital J Pediatr. 47:2112021. View Article : Google Scholar : PubMed/NCBI | |
|
Yamanishi S and Pawankar R: Current advances on the microbiome and role of probiotics in upper airways disease. Curr Opin Allergy Clin Immunol. 20:30–35. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lopes SA, Roque-Borda CA, Duarte JL, Di Filippo LD, Borges Cardoso VM, Pavan FR, Chorilli M and Meneguin AB: delivery strategies of probiotics from nano- and microparticles: Trends in the treatment of inflammatory bowel disease-an overview. Pharmaceutics. 15:26002023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Zhou T, Ding P, Guo L, Zhou X and Long K: Bibliometric analysis of intestinal microbiota and lung diseases. Front Cell Infect Microbiol. 14:13471102024. View Article : Google Scholar : PubMed/NCBI | |
|
Chakradhar S: A curious connection: Teasing apart the link between gut microbes and lung disease. Nat Med. 23:402–404. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Han X, Hu X, Jin W and Liu G: Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. Anim Nutr. 17:188–207. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Wei X, Li Y, Huang S, Wu Y, Cai S, Aipire A and Li J: Dendritic cell-based vaccine prepared with recombinant Lactococcus lactis enhances antigen cross-presentation and antitumor efficacy through ROS production. Front Immunol. 14:12083492023. View Article : Google Scholar : PubMed/NCBI | |
|
Ni C, Li X, Wang L, Li X, Zhao J, Zhang H, Wang G and Chen W: Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food Funct. 12:7054–7067. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Chen X, Zhang L, Meng F, Zhou L, Pang X, Lu Z and Lu Y: Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis. Pharmacol Res. 182:1063502022. View Article : Google Scholar : PubMed/NCBI | |
|
Ren D, Ding M, Su J, Ye J, He X, Zhang Y and Shang X: Stachyose in combination with L. rhamnosus GG ameliorates acute hypobaric hypoxia-induced intestinal barrier dysfunction through alleviating inflammatory response and oxidative stress. Free Radic Biol Med. 212:505–519. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hojsak I, Snovak N, Abdović S, Szajewska H, Misak Z and Kolacek S: Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 29:312–316. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Hu P, Du X, Zhou T and Pei X: Lactobacillus rhamnosus GG supplementation for preventing respiratory infections in children: A meta-analysis of randomized, placebo-controlled trials. Indian Pediatr. 50:377–381. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Laursen RP and Hojsak I: Probiotics for respiratory tract infections in children attending day care centers-a systematic review. Eur J Pediatr. 177:979–994. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kumpu M, Lehtoranta L, Roivainen M, Rönkkö E, Ziegler T, Söderlund-Venermo M, Kautiainen H, Järvenpää S, Kekkonen R, Hatakka K, et al: The use of the probiotic Lactobacillus rhamnosus GG and viral findings in the nasopharynx of children attending day care. J Med Virol. 85:1632–1638. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Damholt A, Keller MK, Baranowski K, Brown B, Wichmann A, Melsaether C, Eskesen D, Westphal V, Arltoft D, Habicht A, et al: Lacticaseibacillus rhamnosus GG DSM 33156 effects on pathogen defence in the upper respiratory tract: A randomised, double-blind, placebo-controlled paediatric trial. Benef Microbes. 13:13–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sibanda T, Marole TA, Thomashoff UL, Thantsha MS and Buys EM: Bifidobacterium species viability in dairy-based probiotic foods: Challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front Microbiol. 15:13270102024. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Ding J, Stanton C, Ross RP, Zhao J, Yang B and Chen W: Bifidobacterium longum subsp. infantis FJSYZ1M3 ameliorates DSS-induced colitis by maintaining the intestinal barrier, regulating inflammatory cytokines, and modifying gut microbiota. Food Funct. 14:354–368. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lau AS, Yanagisawa N, Hor YY, Lew LC, Ong JS, Chuah LO, Lee YY, Choi SB, Rashid F, Wahid N, et al: Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Benef Microbes. 9:61–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Taipale TJ, Pienihäkkinen K, Isolauri E, Jokela JT and Söderling EM: Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in early childhood. Pediatr Res. 79:65–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Zhang S, Wang Y, Bian H, Yu S, Huang L and Ma W: Complex probiotics alleviate ampicillin-induced antibiotic-associated diarrhea in mice. Front Microbiol. 14:11560582023. View Article : Google Scholar : PubMed/NCBI | |
|
Li KL, Wang BZ, Li ZP, Li YL and Liang JJ: Alterations of intestinal flora and the effects of probiotics in children with recurrent respiratory tract infection. World J Pediatr. 15:255–261. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
DI Pierro F, Lo Russo P, Danza ML, Basile I, Soardo S, Capocasale G, Paparone SB, Paletta V, Lanza C, Schiavone E, et al: Use of a probiotic mixture containing Bifidobacterium animalis subsp. lactis BB-12 and Enterococcus faecium L3 as prophylaxis to reduce the incidence of acute gastroenteritis and upper respiratory tract infections in children. Minerva Pediatr (Torino). 73:222–229. 2021.PubMed/NCBI | |
|
Manti S, Parisi GF, Papale M, Licari A, Salpietro C, Miraglia Del Giudice M, Marseglia GL and Leonardi S: Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a nasal spray for treatment of upper respiratory tract infections in children: A pilot study on short-term efficacy. Ital J Pediatr. 46:422020. View Article : Google Scholar : PubMed/NCBI | |
|
Campanella V, Syed J, Santacroce L, Saini R, Ballini A and Inchingolo F: Oral probiotics influence oral and respiratory tract infections in pediatric population: A randomized double-blinded placebo-controlled pilot study. Eur Rev Med Pharmacol Sci. 22:8034–8041. 2018.PubMed/NCBI | |
|
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M and Gil A: Mechanisms of action of probiotics. Adv Nutr. 10 (Suppl_1):S49–s66. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R and Sun B: Lactic acid bacteria and aging: Unraveling the interplay for healthy longevity. Aging Dis. 15:1487–1498. 2023.PubMed/NCBI | |
|
Crits-Christoph A, Hallowell HA, Koutouvalis K and Suez J: Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes. 14:20559442022. View Article : Google Scholar : PubMed/NCBI | |
|
Merenstein D, Pot B, Leyer G, Ouwehand AC, Preidis GA, Elkins CA, Hill C, Lewis ZT, Shane AL, Zmora N, et al: Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes. 15:21850342023. View Article : Google Scholar : PubMed/NCBI | |
|
Boumis E, Capone A, Galati V, Venditti C and Petrosillo N: Probiotics and infective endocarditis in patients with hereditary hemorrhagic telangiectasia: A clinical case and a review of the literature. BMC Infect Dis. 18:652018. View Article : Google Scholar : PubMed/NCBI | |
|
Doern CD, Nguyen ST, Afolabi F and Burnham CA: Probiotic-associated aspiration pneumonia due to Lactobacillus rhamnosus. J Clin Microbiol. 52:3124–3126. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zbinden A, Zbinden R, Berger C and Arlettaz R: Case series of Bifidobacterium longum bacteremia in three preterm infants on probiotic therapy. Neonatology. 107:56–59. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzatti G, Lopetuso LR, Gibiino G, Binda C and Gasbarrini A: Proteobacteria: A common factor in human diseases. Biomed Res Int. 2017:93515072017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L, Chen F and Ling Z: Gut microbiota: A novel therapeutic target for Parkinson's disease. Front Immunol. 13:9375552022. View Article : Google Scholar : PubMed/NCBI | |
|
Gentle SJ and Lal CV: Predicting BPD: Lessons learned from the airway microbiome of preterm infants. Front Pediatr. 7:5642020. View Article : Google Scholar : PubMed/NCBI | |
|
Carvalho JL, Miranda M, Fialho AK, Castro-Faria-Neto H, Anatriello E, Keller AC and Aimbire F: Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS One. 15:e02255602020. View Article : Google Scholar : PubMed/NCBI | |
|
Fangous MS, Alexandre Y, Hymery N, Gouriou S, Arzur D, Blay GL and Berre RL: Lactobacilli intra-tracheal administration protects from Pseudomonas aeruginosa pulmonary infection in mice - a proof of concept. Benef Microbes. 10:893–900. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zelaya H, Villena J, Lopez AG, Alvarez S and Agüero G: Modulation of the inflammation-coagulation interaction during pneumococcal pneumonia by immunobiotic Lactobacillus rhamnosus CRL1505: Role of Toll-like receptor 2. Microbiol Immunol. 58:416–426. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fangous MS, Gosset P, Galakhoff N, Gouriou S, Guilloux CA, Payan C, Vallet S, Héry-Arnaud G and Le Berre R: Priming with intranasal lactobacilli prevents Pseudomonas aeruginosa acute pneumonia in mice. BMC Microbiol. 21:1952021. View Article : Google Scholar : PubMed/NCBI | |
|
Wallace C, Gordon M, Sinopoulou V and Akobeng AK: Probiotics for management of functional abdominal pain disorders in children. Cochrane Database Syst Rev. 2:Cd0128492023.PubMed/NCBI | |
|
Su Z, Ma C, Ru X, Zhang S, Wu C, Huang Y, Cen H, Yin Z and Zhang J: Effects of probiotic treatment on patients and animals with chronic obstructive pulmonary disease: A systematic review and meta-analysis of randomized control trials. Front Cell Infect Microbiol. 14:14112222024. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Uma Mageswary M, Taib F, Koo TH, Yusof A, Hamid IJA, Jiang H, Liong MT, Ali A and Zhang Y: Safety and tolerance of bifidobacterium longum subsp. Infantis YLGB-1496 in toddlers with respiratory symptoms. Nutrients. 17:21272025. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, et al: Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: A systematic review and meta-analysis of 80 randomized controlled trials. BMC Med. 22:1102024. View Article : Google Scholar : PubMed/NCBI | |
|
Bettocchi S, Comotti A, Elli M, De Cosmi V, Berti C, Alberti I, Mazzocchi A, Rosazza C, Agostoni C and Milani GP: Probiotics and fever duration in children with upper respiratory tract infections: A Randomized clinical trial. JAMA Netw Open. 8:e2506692025. View Article : Google Scholar : PubMed/NCBI | |
|
Hiraku A, Nakata S, Murata M, Xu C, Mutoh N, Arai S, Odamaki T, Iwabuchi N, Tanaka M, Tsuno T and Nakamura M: Early probiotic supplementation of healthy term infants with bifidobacterium longum subsp. infantis M-63 is safe and leads to the development of bifidobacterium-predominant gut microbiota: A double-blind, placebo-controlled trial. Nutrients. 15:14022023. View Article : Google Scholar : PubMed/NCBI |