Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review)

  • Authors:
    • Yanhua Han
    • Yuchao Jia
    • Lili Chen
    • Mingyao Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China, Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
    Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 21
    |
    Published online on: October 29, 2025
       https://doi.org/10.3892/mmr.2025.13731
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Respiratory tract diseases are among the most common acute infectious diseases, and their incidence is associated with geographic, age and seasonal factors. Although generally self‑limiting in adults, these diseases are a leading cause of death in infants, the elderly and individuals with immune system deficiencies, and represent a major cause of mortality in Chinese children. There is a clear association between abnormalities in the gut microbiota in childhood and the development of immune and metabolic disorders later in life. Some studies have shown that the gut microbiota and its metabolites can effectively prevent and mitigate respiratory tract diseases. However, the composition of the gut microbiota in children differs from that in adults, and research on the interaction between the gut microbiota and respiratory tract diseases in children remains limited. The present review discusses the development of the gut microbiota in early life and its role in pediatric respiratory tract diseases, highlighting its influence on respiratory health and the gut‑lung axis. Probiotic treatments are also discussed. While they are considered a promising approach, their widespread clinical application faces challenges with regard to safety and individual variability.
View Figures

Figure 1

Gut microbiota in infants. (A)
Microbiota diversity is initially low in infancy but gradually
increases, reaching an adult-like composition by 2–3 years of age,
although the overall diversity remains lower than that observed in
adults. (B) In healthy infants, the nasopharyngeal microbiome is
characterized by a high abundance of Corynebacteriaceae,
Moraxellaceae and Staphylococcaceae during the first few months of
life. (C) The microbial community plays a crucial role in infant
health by supporting metabolic processes and modulating the immune
system.

Figure 2

Benefits of probiotic treatment.
View References

1 

GBD 2015 Chronic Respiratory Disease Collaborators, . Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet Respir Med. 5:691–706. 2017. View Article : Google Scholar : PubMed/NCBI

2 

World Health Organization (WHO), . Global Health Estimates 2016: Deaths by cause, age, sex, by country and by region, 2000–2016. WHO; Geneva: 2018

3 

Ogal M, Johnston SL, Klein P and Schoop R: Echinacea reduces antibiotic usage in children through respiratory tract infection prevention: A randomized, blinded, controlled clinical trial. Eur J Med Res. 26:332021. View Article : Google Scholar : PubMed/NCBI

4 

Aitken M and Taylor JA: Prevalence of clinical sinusitis in young children followed up by primary care pediatricians. Arch Pediatr Adolesc Med. 152:244–248. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Tian J, Wang XY, Zhang LL, Liu MJ, Ai JH, Feng GS, Zeng YP, Wang R and Xie ZD: Clinical epidemiology and disease burden of bronchiolitis in hospitalized children in China: A national cross-sectional study. World J Pediatr. 19:851–863. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Chatterjee A, Mavunda K and Krilov LR: Current state of respiratory syncytial virus disease and management. Infect Dis Ther. 10 (Suppl 1):S5–S16. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Keulers L, Dehghani A, Knippels L, Garssen J, Papadopoulos N, Folkerts G, Braber S and van Bergenhenegouwen J: Probiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: The gut-lung axis. Environ Pollut. 302:1190662022. View Article : Google Scholar : PubMed/NCBI

8 

Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N and Khoshnood S: Obesity and gut-microbiota-brain axis: A narrative review. J Clin Lab Anal. 36:e244202022. View Article : Google Scholar : PubMed/NCBI

9 

Mancin L, Wu GD and Paoli A: Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol. 31:254–269. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Ahlawat S and Asha Sharma KK: Gut-organ axis: A microbial outreach and networking. Lett Appl Microbiol. 72:636–668. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Akshay A, Gasim R, Ali TE, Kumar YS and Hassan A: Unlocking the gut-cardiac axis: A paradigm shift in cardiovascular health. Cureus. 15:e510392023.PubMed/NCBI

12 

Wong CC and Yu J: Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 20:429–452. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Yang Z, Wang Q, Liu Y, Wang L, Ge Z, Li Z, Feng S and Wu C: Gut microbiota and hypertension: Association, mechanisms and treatment. Clin Exp Hypertens. 45:21951352023. View Article : Google Scholar : PubMed/NCBI

14 

Wilkins AT and Reimer RA: Obesity, early life gut microbiota, and antibiotics. Microorganisms. 9:4132021. View Article : Google Scholar : PubMed/NCBI

15 

Zhu W, Wu Y, Liu H, Jiang C and Huo L: Gut-lung axis: Microbial crosstalk in pediatric respiratory tract infections. Front Immunol. 12:7412332021. View Article : Google Scholar : PubMed/NCBI

16 

Walker AW and Hoyles L: Human microbiome myths and misconceptions. Nat Microbiol. 8:1392–1396. 2023. View Article : Google Scholar : PubMed/NCBI

17 

Eribo OA, du Plessis N and Chegou NN: The intestinal commensal, bacteroides fragilis, modulates host responses to viral infection and therapy: Lessons for exploration during mycobacterium tuberculosis infection. Infect Immun. 90:e00321212022. View Article : Google Scholar : PubMed/NCBI

18 

Alcazar CG, Paes VM, Shao Y, Oesser C, Miltz A, Lawley TD, Brocklehurst P, Rodger A and Field N: The association between early-life gut microbiota and childhood respiratory diseases: A systematic review. Lancet Microbe. 3:e867–e880. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Zheng D, Liwinski T and Elinav E: Interaction between microbiota and immunity in health and disease. Cell Res. 30:492–506. 2020. View Article : Google Scholar : PubMed/NCBI

20 

van den Elsen LWJ, Garssen J, Burcelin R and Verhasselt V: Shaping the gut microbiota by breastfeeding: The gateway to allergy prevention? Front Pediatr. 7:472019. View Article : Google Scholar : PubMed/NCBI

21 

Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, Kumar N, Stares MD, Rodger A, Brocklehurst P, et al: Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 574:117–121. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Munyaka PM, Khafipour E and Ghia JE: External influence of early childhood establishment of gut microbiota and subsequent health implications. Front Pediatr. 2:1092014. View Article : Google Scholar : PubMed/NCBI

23 

Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N and Knight R: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 107:11971–11975. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, D Lieber A, Wu F, Perez-Perez GI, Chen Y, et al: Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 8:343ra3822016. View Article : Google Scholar : PubMed/NCBI

25 

Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, et al: The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 26:260502015.PubMed/NCBI

26 

Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L and Andersson AF: Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 63:559–566. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD and Aagaard KM: Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 23:314–326. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Fouhy F, Watkins C, Hill CJ, O'Shea CA, Nagle B, Dempsey EM, O'Toole PW, Ross RP, Ryan CA and Stanton C: Perinatal factors affect the gut microbiota up to four years after birth. Nat Commun. 10:15172019. View Article : Google Scholar : PubMed/NCBI

29 

Stupak A and Kwaśniewski W: Evaluating current molecular techniques and evidence in assessing microbiome in placenta-related health and disorders in pregnancy. Biomolecules. 13:9112023. View Article : Google Scholar : PubMed/NCBI

30 

Le Huërou-Luron I, Blat S and Boudry G: Breast- v. formula-feeding: Impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev. 23:23–36. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Korpela K, Blakstad EW, Moltu SJ, Strømmen K, Nakstad B, Rønnestad AE, Brække K, Iversen PO, Drevon CA and de Vos W: Intestinal microbiota development and gestational age in preterm neonates. Sci Rep. 8:24532018. View Article : Google Scholar : PubMed/NCBI

32 

Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, et al: The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 81:e00036–17. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Arboleya S, Sánchez B, Milani C, Duranti S, Solís G, Fernández N, de los Reyes-Gavilán CG, Ventura M, Margolles A and Gueimonde M: Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr. 166:538–544. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Cong X, Xu W, Janton S, Henderson WA, Matson A, McGrath JM, Maas K and Graf J: Gut microbiome developmental patterns in early life of preterm infants: Impacts of feeding and gender. PLoS One. 11:e01527512016. View Article : Google Scholar : PubMed/NCBI

35 

Binns C, Lee M and Low WY: The long-term public health benefits of breastfeeding. Asia Pac J Public Health. 28:7–14. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Perrella S, Gridneva Z, Lai CT, Stinson L, George A, Bilston-John S and Geddes D: Human milk composition promotes optimal infant growth, development and health. Semin Perinatol. 45:1513802021. View Article : Google Scholar : PubMed/NCBI

37 

Berger B, Porta N, Foata F, Grathwohl D, Delley M, Moine D, Charpagne A, Siegwald L, Descombes P, Alliet P, et al: Linking human milk oligosaccharides, infant fecal community types, and later risk to require antibiotics. mBio. 11:e03196–19. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Zuurveld M, van Witzenburg NP, Garssen J, Folkerts G, Stahl B, Van't Land B and Willemsen LEM: Immunomodulation by human milk oligosaccharides: The potential role in prevention of allergic diseases. Front Immunol. 11:8012020. View Article : Google Scholar : PubMed/NCBI

39 

Bogaert D, van Beveren GJ, de Koff EM, Lusarreta Parga P, Balcazar Lopez CE, Koppensteiner L, Clerc M, Hasrat R, Arp K, Chu MLJN, et al: Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe. 31:447–460.e6. 2023. View Article : Google Scholar : PubMed/NCBI

40 

Yagi K, Asai N, Huffnagle GB, Lukacs NW and Fonseca W: Early-life lung and gut microbiota development and respiratory syncytial virus infection. Front Immunol. 13:8777712022. View Article : Google Scholar : PubMed/NCBI

41 

Borewicz K, Suarez-Diez M, Hechler C, Beijers R, de Weerth C, Arts I, Penders J, Thijs C, Nauta A, Lindner C, et al: The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci Rep. 9:24342019. View Article : Google Scholar : PubMed/NCBI

42 

Zhu B, Zheng S, Lin K, Xu X, Lv L, Zhao Z and Shao J: Effects of infant formula supplemented with prebiotics and OPO on infancy fecal microbiota: A pilot Randomized clinical trial. Front Cell Infect Microbiol. 11:6504072021. View Article : Google Scholar : PubMed/NCBI

43 

Ratsika A, Codagnone MC, O'Mahony S, Stanton C and Cryan JF: Priming for Life: Early life nutrition and the microbiota-gut-brain axis. Nutrients. 13:4232021. View Article : Google Scholar : PubMed/NCBI

44 

Ianiro G, Tilg H and Gasbarrini A: Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut. 65:1906–1915. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Dierikx TH, Visser DH, Benninga MA, van Kaam AHLC, de Boer NKH, de Vries R, van Limbergen J and de Meij TGJ: The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: A systematic review. J Infect. 81:190–204. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Panda S, El khader I, Casellas F, López Vivancos J, García Cors M, Santiago A, Cuenca S, Guarner F and Manichanh C: Short-term effect of antibiotics on human gut microbiota. PLoS One. 9:e954762014. View Article : Google Scholar : PubMed/NCBI

47 

Blaser MJ and Dominguez-Bello MG: The human microbiome before birth. Cell Host Microbe. 20:558–560. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, Sears MR, Mandhane PJ, Turvey SE, Subbarao P, et al: Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: A prospective cohort study. BJOG. 123:983–993. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E and Rautava S: Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr. 6:42019. View Article : Google Scholar : PubMed/NCBI

50 

Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD, et al: Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 510:417–421. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Blanton LV, Barratt MJ, Charbonneau MR, Ahmed T and Gordon JI: Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science. 352:15332016. View Article : Google Scholar : PubMed/NCBI

52 

Kane AV, Dinh DM and Ward HD: Childhood malnutrition and the intestinal microbiome. Pediatr Res. 77:256–262. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Moles L, Gómez M, Heilig H, Bustos G, Fuentes S, de Vos W, Fernández L, Rodríguez JM and Jiménez E: Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 8:e669862013. View Article : Google Scholar : PubMed/NCBI

54 

Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R and Rodríguez JM: The human milk microbiota: Origin and potential roles in health and disease. Pharmacol Res. 69:1–10. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Mountzouris KC, McCartney AL and Gibson GR: Intestinal microflora of human infants and current trends for its nutritional modulation. Br J Nutr. 87:405–420. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Barrett E, Kerr C, Murphy K, O'Sullivan O, Ryan CA, Dempsey EM, Murphy BP, O'Toole PW, Cotter PD, Fitzgerald GF, et al: The individual-specific and diverse nature of the preterm infant microbiota. Arch Dis Child Fetal Neonatal Ed. 98:F334–F340. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM, Murphy B, Ross RP, Fitzgerald GF, Stanton C and Cotter PD: High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 56:5811–5820. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, Edwards CA, et al: Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr. 51:77–84. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P and Hansbro PM: Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 15:55–63. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Espírito Santo C, Caseiro C, Martins MJ, Monteiro R and Brandão I: Gut microbiota, in the halfway between nutrition and lung function. Nutrients. 13:17162021. View Article : Google Scholar : PubMed/NCBI

61 

Chistiakov DA, Bobryshev YV, Kozarov E, Sobenin IA and Orekhov AN: Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance. Front Microbiol. 5:7812015. View Article : Google Scholar : PubMed/NCBI

62 

Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O and Laszczyńska M: Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 66:1–12. 2019.PubMed/NCBI

63 

Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G and Henricks PAJ: Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 831:52–59. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Lee SH, Yun Y, Kim SJ, Lee EJ, Chang Y, Ryu S, Shin H, Kim HL, Kim HN and Lee JH: Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study. J Clin Med. 7:2822018. View Article : Google Scholar : PubMed/NCBI

65 

Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood DLA, Gellatly SL, Shukla SD, Wood LG, et al: Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 11:58862020. View Article : Google Scholar : PubMed/NCBI

66 

Gray J, Oehrle K, Worthen G, Alenghat T, Whitsett J and Deshmukh H: Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci Transl Med. 9:eaaf94122017. View Article : Google Scholar : PubMed/NCBI

67 

Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL and Blumberg RS: Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 336:489–493. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Brown RL, Sequeira RP and Clarke TB: The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun. 8:15122017. View Article : Google Scholar : PubMed/NCBI

69 

Luoto R, Ruuskanen O, Waris M, Kalliomäki M, Salminen S and Isolauri E: Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J Allergy Clin Immunol. 133:405–413. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Maldonado J, Cañabate F, Sempere L, Vela F, Sánchez AR, Narbona E, López-Huertas E, Geerlings A, Valero AD, Olivares M and Lara-Villoslada F: Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr. 54:55–61. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Wang Y, Li X, Ge T, Xiao Y, Liao Y, Cui Y, Zhang Y, Ho W, Yu G and Zhang T: Probiotics for prevention and treatment of respiratory tract infections in children: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 95:e45092016. View Article : Google Scholar : PubMed/NCBI

72 

Redd WD, Zhou JC, Hathorn KE, McCarty TR, Bazarbashi AN, Thompson CC, Shen L and Chan WW: Prevalence and characteristics of gastrointestinal symptoms in patients with severe acute respiratory syndrome coronavirus 2 infection in the United States: A multicenter cohort study. Gastroenterology. 159:765–767.e2. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, Wan Y, Chung ACK, Cheung CP, Chen N, et al: Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 159:944–955.e8. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, et al: Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 70:698–706. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Liu Y, Ni F, Huang J, Hu Y, Wang J, Wang X, Du X and Jiang H: PPAR-α inhibits DHEA-induced ferroptosis in granulosa cells through upregulation of FADS2. Biochem Biophys Res Commun. 715:1500052024. View Article : Google Scholar : PubMed/NCBI

76 

Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, Buchholz UJ, Openshaw PJ, McLellan JS, Englund JA, et al: The respiratory syncytial virus vaccine landscape: Lessons from the graveyard and promising candidates. Lancet Infect Dis. 18:e295–e311. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Janet S, Broad J and Snape MD: Respiratory syncytial virus seasonality and its implications on prevention strategies. Hum Vaccin Immunother. 14:234–244. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Russell CD, Unger SA, Walton M and Schwarze J: The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev. 30:481–502. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Bénet T, Sánchez Picot V, Messaoudi M, Chou M, Eap T, Wang J, Shen K, Pape JW, Rouzier V, Awasthi S, et al: Microorganisms associated with pneumonia in children <5 years of age in developing and emerging countries: The GABRIEL pneumonia multicenter, prospective, case-control study. Clin Infect Dis. 65:604–612. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Pneumonia Etiology Research for Child Health (PERCH) Study Group, : Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet. 394:757–779. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380:2095–2128. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Harding JN, Siefker D, Vu L, You D, DeVincenzo J, Pierre JF and Cormier SA: Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity. BMC Microbiol. 20:1402020. View Article : Google Scholar : PubMed/NCBI

83 

Jang MJ, Kim YJ, Hong S, Na J, Hwang JH, Shin SM and Ahn YM: Positive association of breastfeeding on respiratory syncytial virus infection in hospitalized infants: A multicenter retrospective study. Clin Exp Pediatr. 63:135–140. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Hasegawa K, Linnemann RW, Mansbach JM, Ajami NJ, Espinola JA, Petrosino JF, Piedra PA, Stevenson MD, Sullivan AF, Thompson AD and Camargo CA Jr: The fecal microbiota profile and bronchiolitis in infants. Pediatrics. 138:e201602182016. View Article : Google Scholar : PubMed/NCBI

85 

Nishimura T, Suzue J and Kaji H: Breastfeeding reduces the severity of respiratory syncytial virus infection among young infants: A multi-center prospective study. Pediatr Int. 51:812–816. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Kristensen K, Fisker N, Haerskjold A, Ravn H, Simões EA and Stensballe L: Caesarean section and hospitalization for respiratory syncytial virus infection: A population-based study. Pediatr Infect Dis J. 34:145–148. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Lee HC, Headley MB, Loo YM, Berlin A, Gale M Jr, Debley JS, Lukacs NW and Ziegler SF: Thymic stromal lymphopoietin is induced by respiratory syncytial virus-infected airway epithelial cells and promotes a type 2 response to infection. J Allergy Clin Immunol. 130:1187–1196.e1185. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Ptaschinski C, Mukherjee S, Moore ML, Albert M, Helin K, Kunkel SL and Lukacs NW: RSV–Induced H3K4 demethylase KDM5B leads to regulation of dendritic cell-derived innate cytokines and exacerbates pathogenesis in vivo. PLoS Pathog. 11:e10049782015. View Article : Google Scholar : PubMed/NCBI

89 

Lu S, Hartert TV, Everard ML, Giezek H, Nelsen L, Mehta A, Patel H, Knorr B and Reiss TF: Predictors of asthma following severe respiratory syncytial virus (RSV) bronchiolitis in early childhood. Pediatr Pulmonol. 51:1382–1392. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Malinczak CA, Fonseca W, Rasky AJ, Ptaschinski C, Morris S, Ziegler SF and Lukacs NW: Sex-associated TSLP-induced immune alterations following early-life RSV infection leads to enhanced allergic disease. Mucosal Immunol. 12:969–979. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Yagi K, Lukacs NW, Huffnagle GB, Kato H and Asai N: Respiratory and gut microbiome modification during respiratory syncytial virus infection: A systematic review. Viruses. 16:2202024. View Article : Google Scholar : PubMed/NCBI

92 

Fonseca W, Malinczak CA, Fujimura K, Li D, McCauley K, Li J, Best SKK, Zhu D, Rasky AJ, Johnson CC, et al: Maternal gut microbiome regulates immunity to RSV infection in offspring. J Exp Med. 218:e202102352021. View Article : Google Scholar : PubMed/NCBI

93 

Ballarini S, Ardusso L, Ortega Martell JA, Sacco O, Feleszko W and Rossi GA: Can bacterial lysates be useful in prevention of viral respiratory infections in childhood? The results of experimental OM-85 studies. Front Pediatr. 10:10510792022. View Article : Google Scholar : PubMed/NCBI

94 

National Institute for Health and Care Excellence (NICE), . Asthma: Diagnosis, monitoring and chronic asthma management. NICE Guideline, No. 80. NICE; London: 2021

95 

Asher MI, Rutter CE, Bissell K, Chiang CY, El Sony A, Ellwood E, Ellwood P, García-Marcos L, Marks GB, Morales E, et al: Worldwide trends in the burden of asthma symptoms in school-aged children: Global asthma network phase I cross-sectional study. Lancet. 398:1569–1580. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Fainardi V, Esposito S, Chetta A and Pisi G: Asthma phenotypes and endotypes in childhood. Minerva Med. 113:94–105. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Martinez FD and Vercelli D: Asthma. Lancet. 382:1360–1372. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Ntontsi P, Photiades A, Zervas E, Xanthou G and Samitas K: Genetics and epigenetics in asthma. Int J Mol Sci. 22:24122021. View Article : Google Scholar : PubMed/NCBI

99 

Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, Schoos AM, Kunøe A, Fink NR, Chawes BL, et al: Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 9:1412018. View Article : Google Scholar : PubMed/NCBI

100 

Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, et al: Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 22:1187–1191. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Abreo A, Gebretsadik T, Stone CA and Hartert TV: The impact of modifiable risk factor reduction on childhood asthma development. Clin Transl Med. 7:152018. View Article : Google Scholar : PubMed/NCBI

102 

Rosas-Salazar C, Shilts MH, Tang ZZ, Hong Q, Turi KN, Snyder BM, Wiggins DA, Lynch CE, Gebretsadik T, Peebles RS Jr, et al: Exclusive breast-feeding, the early-life microbiome and immune response, and common childhood respiratory illnesses. J Allergy Clin Immunol. 150:612–621. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y and Toema O: Gut microbiota in various childhood disorders: Implication and indications. World J Gastroenterol. 28:1875–1901. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Patrick DM, Sbihi H, Dai DLY, Al Mamun A, Rasali D, Rose C, Marra F, Boutin RCT, Petersen C, Stiemsma LT, et al: Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: Evidence from population-based and prospective cohort studies. Lancet Respir Med. 8:1094–1105. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Kloepfer KM and Kennedy JL: Childhood respiratory viral infections and the microbiome. J Allergy Clin Immunol. 152:827–834. 2023. View Article : Google Scholar : PubMed/NCBI

106 

Gensollen T, Iyer SS, Kasper DL and Blumberg RS: How colonization by microbiota in early life shapes the immune system. Science. 352:539–544. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Renz H and Skevaki C: Early life microbial exposures and allergy risks: Opportunities for prevention. Nat Rev Immunol. 21:177–191. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Fahy JV and Dickey BF: Airway mucus function and dysfunction. N Engl J Med. 363:2233–2247. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Scotet V, L'Hostis C and Férec C: The changing epidemiology of cystic fibrosis: Incidence, Survival and impact of the CFTR gene discovery. Genes (Basel). 11:5892020. View Article : Google Scholar : PubMed/NCBI

110 

Elborn JS: Cystic fibrosis. Lancet. 388:2519–2531. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Rafeeq MM and Murad HAS: Cystic fibrosis: Current therapeutic targets and future approaches. J Transl Med. 15:842017. View Article : Google Scholar : PubMed/NCBI

112 

Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, Beck JM, Curtis JL and Huffnagle GB: Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 6:e000372015. View Article : Google Scholar : PubMed/NCBI

113 

Rogers GB, Carroll MP, Hoffman LR, Walker AW, Fine DA and Bruce KD: Comparing the microbiota of the cystic fibrosis lung and human gut. Gut Microbes. 1:85–93. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Dayama G, Priya S, Niccum DE, Khoruts A and Blekhman R: Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med. 12:122020. View Article : Google Scholar : PubMed/NCBI

115 

Kristensen M, Prevaes SMPJ, Kalkman G, Tramper-Stranders GA, Hasrat R, de Winter-de Groot KM, Janssens HM, Tiddens HA, van Westreenen M, Sanders EAM, et al: Development of the gut microbiota in early life: The impact of cystic fibrosis and antibiotic treatment. J Cyst Fibros. 19:553–561. 2020. View Article : Google Scholar : PubMed/NCBI

116 

Vernocchi P, Del Chierico F, Russo A, Majo F, Rossitto M, Valerio M, Casadei L, La Storia A, De Filippis F, Rizzo C, et al: Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype. PLoS One. 13:e02081712018. View Article : Google Scholar : PubMed/NCBI

117 

Burke DG, Fouhy F, Harrison MJ, Rea MC, Cotter PD, O'Sullivan O, Stanton C, Hill C, Shanahan F, Plant BJ and Ross RP: The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 17:582017. View Article : Google Scholar : PubMed/NCBI

118 

Miragoli F, Federici S, Ferrari S, Minuti A, Rebecchi A, Bruzzese E, Buccigrossi V, Guarino A and Callegari ML: Impact of cystic fibrosis disease on archaea and bacteria composition of gut microbiota. FEMS Microbiol Ecol. 93:fiw2302017. View Article : Google Scholar : PubMed/NCBI

119 

de Freitas MB, Moreira EAM, Tomio C, Moreno YMF, Daltoe FP, Barbosa E, Ludwig Neto N, Buccigrossi V and Guarino A: Altered intestinal microbiota composition, antibiotic therapy and intestinal inflammation in children and adolescents with cystic fibrosis. PLoS One. 13:e01984572018. View Article : Google Scholar : PubMed/NCBI

120 

Matamouros S, Hayden HS, Hager KR, Brittnacher MJ, Lachance K, Weiss EJ, Pope CE, Imhaus AF, McNally CP, Borenstein E, et al: Adaptation of commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis. Proc Natl Acad Sci USA. 115:1605–1610. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Nielsen S, Needham B, Leach ST, Day AS, Jaffe A, Thomas T and Ooi CY: Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis. Sci Rep. 6:248572016. View Article : Google Scholar : PubMed/NCBI

122 

Coffey MJ, Nielsen S, Wemheuer B, Kaakoush NO, Garg M, Needham B, Pickford R, Jaffe A, Thomas T and Ooi CY: Gut microbiota in children with cystic fibrosis: A taxonomic and functional dysbiosis. Sci Rep. 9:185932019. View Article : Google Scholar : PubMed/NCBI

123 

Manor O, Levy R, Pope CE, Hayden HS, Brittnacher MJ, Carr R, Radey MC, Hager KR, Heltshe SL, Ramsey BW, et al: Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis. Sci Rep. 6:224932016. View Article : Google Scholar : PubMed/NCBI

124 

Wang Y, Leong LEX, Keating RL, Kanno T, Abell GCJ, Mobegi FM, Choo JM, Wesselingh SL, Mason AJ, Burr LD and Rogers GB: Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut. Gut Microbes. 10:367–381. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Vaezi A, Healy T, Ebrahimi G, Rezvankhah S, Hashemi Shahraki A and Mirsaeidi M: Phage therapy: breathing new tactics into lower respiratory tract infection treatments. Eur Respir Rev. 33:2400292024. View Article : Google Scholar : PubMed/NCBI

126 

Hong Y and Luo T: The potential protective effects of probiotics, prebiotics, or yogurt on chronic obstructive pulmonary disease: Results from NHANES 2007–2012. Food Sci Nutr. 12:7233–7241. 2024. View Article : Google Scholar : PubMed/NCBI

127 

Depoorter L and Vandenplas Y: Probiotics in pediatrics. A review and practical guide. Nutrients. 13:21762021. View Article : Google Scholar : PubMed/NCBI

128 

Zhang Y, Xu Y, Hu L and Wang X: Advancements related to probiotics for preventing and treating recurrent respiratory tract infections in children. Front Pediatr. 13:15086132025. View Article : Google Scholar : PubMed/NCBI

129 

O'Donnell A, Murray A, Nguyen A, Salmon T, Taylor S, Morton JP and Close GL: Nutrition and golf performance: A systematic scoping review. Sports Med. 54:3081–3095. 2024. View Article : Google Scholar : PubMed/NCBI

130 

Wang Q, Lin X, Xiang X, Liu W, Fang Y, Chen H, Tang F, Guo H, Chen D, Hu X, et al: Oropharyngeal probiotic ENT-K12 prevents respiratory tract infections among frontline medical staff fighting against COVID-19: A pilot study. Front Bioeng Biotechnol. 9:6461842021. View Article : Google Scholar : PubMed/NCBI

131 

Samuelson DR, Charles TP, de la Rua NM, Taylor CM, Blanchard EE, Luo M, Shellito JE and Welsh DA: Analysis of the intestinal microbial community and inferred functional capacities during the host response to Pneumocystis pneumonia. Exp Lung Res. 42:425–439. 2016. View Article : Google Scholar : PubMed/NCBI

132 

Dong Y, Li M and Yue X: Current research on probiotics and fermented products. Foods. 13:14062024. View Article : Google Scholar : PubMed/NCBI

133 

Mazziotta C, Tognon M, Martini F, Torreggiani E and Rotondo JC: Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells. 12:1842023. View Article : Google Scholar : PubMed/NCBI

134 

Suissa R, Oved R, Jankelowitz G, Turjeman S, Koren O and Kolodkin-Gal I: Molecular genetics for probiotic engineering: Dissecting lactic acid bacteria. Trends Microbiol. 30:293–306. 2022. View Article : Google Scholar : PubMed/NCBI

135 

Chiappini E, Santamaria F, Marseglia GL, Marchisio P, Galli L, Cutrera R, de Martino M, Antonini S, Becherucci P, Biasci P, et al: Prevention of recurrent respiratory infections : Inter-society Consensus. Ital J Pediatr. 47:2112021. View Article : Google Scholar : PubMed/NCBI

136 

Yamanishi S and Pawankar R: Current advances on the microbiome and role of probiotics in upper airways disease. Curr Opin Allergy Clin Immunol. 20:30–35. 2020. View Article : Google Scholar : PubMed/NCBI

137 

Lopes SA, Roque-Borda CA, Duarte JL, Di Filippo LD, Borges Cardoso VM, Pavan FR, Chorilli M and Meneguin AB: delivery strategies of probiotics from nano- and microparticles: Trends in the treatment of inflammatory bowel disease-an overview. Pharmaceutics. 15:26002023. View Article : Google Scholar : PubMed/NCBI

138 

Sun W, Zhou T, Ding P, Guo L, Zhou X and Long K: Bibliometric analysis of intestinal microbiota and lung diseases. Front Cell Infect Microbiol. 14:13471102024. View Article : Google Scholar : PubMed/NCBI

139 

Chakradhar S: A curious connection: Teasing apart the link between gut microbes and lung disease. Nat Med. 23:402–404. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Han X, Hu X, Jin W and Liu G: Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. Anim Nutr. 17:188–207. 2024. View Article : Google Scholar : PubMed/NCBI

141 

Zhang T, Wei X, Li Y, Huang S, Wu Y, Cai S, Aipire A and Li J: Dendritic cell-based vaccine prepared with recombinant Lactococcus lactis enhances antigen cross-presentation and antitumor efficacy through ROS production. Front Immunol. 14:12083492023. View Article : Google Scholar : PubMed/NCBI

142 

Ni C, Li X, Wang L, Li X, Zhao J, Zhang H, Wang G and Chen W: Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food Funct. 12:7054–7067. 2021. View Article : Google Scholar : PubMed/NCBI

143 

Zhao H, Chen X, Zhang L, Meng F, Zhou L, Pang X, Lu Z and Lu Y: Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis. Pharmacol Res. 182:1063502022. View Article : Google Scholar : PubMed/NCBI

144 

Ren D, Ding M, Su J, Ye J, He X, Zhang Y and Shang X: Stachyose in combination with L. rhamnosus GG ameliorates acute hypobaric hypoxia-induced intestinal barrier dysfunction through alleviating inflammatory response and oxidative stress. Free Radic Biol Med. 212:505–519. 2024. View Article : Google Scholar : PubMed/NCBI

145 

Hojsak I, Snovak N, Abdović S, Szajewska H, Misak Z and Kolacek S: Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 29:312–316. 2010. View Article : Google Scholar : PubMed/NCBI

146 

Liu S, Hu P, Du X, Zhou T and Pei X: Lactobacillus rhamnosus GG supplementation for preventing respiratory infections in children: A meta-analysis of randomized, placebo-controlled trials. Indian Pediatr. 50:377–381. 2013. View Article : Google Scholar : PubMed/NCBI

147 

Laursen RP and Hojsak I: Probiotics for respiratory tract infections in children attending day care centers-a systematic review. Eur J Pediatr. 177:979–994. 2018. View Article : Google Scholar : PubMed/NCBI

148 

Kumpu M, Lehtoranta L, Roivainen M, Rönkkö E, Ziegler T, Söderlund-Venermo M, Kautiainen H, Järvenpää S, Kekkonen R, Hatakka K, et al: The use of the probiotic Lactobacillus rhamnosus GG and viral findings in the nasopharynx of children attending day care. J Med Virol. 85:1632–1638. 2013. View Article : Google Scholar : PubMed/NCBI

149 

Damholt A, Keller MK, Baranowski K, Brown B, Wichmann A, Melsaether C, Eskesen D, Westphal V, Arltoft D, Habicht A, et al: Lacticaseibacillus rhamnosus GG DSM 33156 effects on pathogen defence in the upper respiratory tract: A randomised, double-blind, placebo-controlled paediatric trial. Benef Microbes. 13:13–23. 2022. View Article : Google Scholar : PubMed/NCBI

150 

Sibanda T, Marole TA, Thomashoff UL, Thantsha MS and Buys EM: Bifidobacterium species viability in dairy-based probiotic foods: Challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front Microbiol. 15:13270102024. View Article : Google Scholar : PubMed/NCBI

151 

Li M, Ding J, Stanton C, Ross RP, Zhao J, Yang B and Chen W: Bifidobacterium longum subsp. infantis FJSYZ1M3 ameliorates DSS-induced colitis by maintaining the intestinal barrier, regulating inflammatory cytokines, and modifying gut microbiota. Food Funct. 14:354–368. 2023. View Article : Google Scholar : PubMed/NCBI

152 

Lau AS, Yanagisawa N, Hor YY, Lew LC, Ong JS, Chuah LO, Lee YY, Choi SB, Rashid F, Wahid N, et al: Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Benef Microbes. 9:61–70. 2018. View Article : Google Scholar : PubMed/NCBI

153 

Taipale TJ, Pienihäkkinen K, Isolauri E, Jokela JT and Söderling EM: Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in early childhood. Pediatr Res. 79:65–69. 2016. View Article : Google Scholar : PubMed/NCBI

154 

Li W, Zhang S, Wang Y, Bian H, Yu S, Huang L and Ma W: Complex probiotics alleviate ampicillin-induced antibiotic-associated diarrhea in mice. Front Microbiol. 14:11560582023. View Article : Google Scholar : PubMed/NCBI

155 

Li KL, Wang BZ, Li ZP, Li YL and Liang JJ: Alterations of intestinal flora and the effects of probiotics in children with recurrent respiratory tract infection. World J Pediatr. 15:255–261. 2019. View Article : Google Scholar : PubMed/NCBI

156 

DI Pierro F, Lo Russo P, Danza ML, Basile I, Soardo S, Capocasale G, Paparone SB, Paletta V, Lanza C, Schiavone E, et al: Use of a probiotic mixture containing Bifidobacterium animalis subsp. lactis BB-12 and Enterococcus faecium L3 as prophylaxis to reduce the incidence of acute gastroenteritis and upper respiratory tract infections in children. Minerva Pediatr (Torino). 73:222–229. 2021.PubMed/NCBI

157 

Manti S, Parisi GF, Papale M, Licari A, Salpietro C, Miraglia Del Giudice M, Marseglia GL and Leonardi S: Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a nasal spray for treatment of upper respiratory tract infections in children: A pilot study on short-term efficacy. Ital J Pediatr. 46:422020. View Article : Google Scholar : PubMed/NCBI

158 

Campanella V, Syed J, Santacroce L, Saini R, Ballini A and Inchingolo F: Oral probiotics influence oral and respiratory tract infections in pediatric population: A randomized double-blinded placebo-controlled pilot study. Eur Rev Med Pharmacol Sci. 22:8034–8041. 2018.PubMed/NCBI

159 

Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M and Gil A: Mechanisms of action of probiotics. Adv Nutr. 10 (Suppl_1):S49–s66. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Liu R and Sun B: Lactic acid bacteria and aging: Unraveling the interplay for healthy longevity. Aging Dis. 15:1487–1498. 2023.PubMed/NCBI

161 

Crits-Christoph A, Hallowell HA, Koutouvalis K and Suez J: Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes. 14:20559442022. View Article : Google Scholar : PubMed/NCBI

162 

Merenstein D, Pot B, Leyer G, Ouwehand AC, Preidis GA, Elkins CA, Hill C, Lewis ZT, Shane AL, Zmora N, et al: Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes. 15:21850342023. View Article : Google Scholar : PubMed/NCBI

163 

Boumis E, Capone A, Galati V, Venditti C and Petrosillo N: Probiotics and infective endocarditis in patients with hereditary hemorrhagic telangiectasia: A clinical case and a review of the literature. BMC Infect Dis. 18:652018. View Article : Google Scholar : PubMed/NCBI

164 

Doern CD, Nguyen ST, Afolabi F and Burnham CA: Probiotic-associated aspiration pneumonia due to Lactobacillus rhamnosus. J Clin Microbiol. 52:3124–3126. 2014. View Article : Google Scholar : PubMed/NCBI

165 

Zbinden A, Zbinden R, Berger C and Arlettaz R: Case series of Bifidobacterium longum bacteremia in three preterm infants on probiotic therapy. Neonatology. 107:56–59. 2015. View Article : Google Scholar : PubMed/NCBI

166 

Rizzatti G, Lopetuso LR, Gibiino G, Binda C and Gasbarrini A: Proteobacteria: A common factor in human diseases. Biomed Res Int. 2017:93515072017. View Article : Google Scholar : PubMed/NCBI

167 

Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L, Chen F and Ling Z: Gut microbiota: A novel therapeutic target for Parkinson's disease. Front Immunol. 13:9375552022. View Article : Google Scholar : PubMed/NCBI

168 

Gentle SJ and Lal CV: Predicting BPD: Lessons learned from the airway microbiome of preterm infants. Front Pediatr. 7:5642020. View Article : Google Scholar : PubMed/NCBI

169 

Carvalho JL, Miranda M, Fialho AK, Castro-Faria-Neto H, Anatriello E, Keller AC and Aimbire F: Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS One. 15:e02255602020. View Article : Google Scholar : PubMed/NCBI

170 

Fangous MS, Alexandre Y, Hymery N, Gouriou S, Arzur D, Blay GL and Berre RL: Lactobacilli intra-tracheal administration protects from Pseudomonas aeruginosa pulmonary infection in mice - a proof of concept. Benef Microbes. 10:893–900. 2019. View Article : Google Scholar : PubMed/NCBI

171 

Zelaya H, Villena J, Lopez AG, Alvarez S and Agüero G: Modulation of the inflammation-coagulation interaction during pneumococcal pneumonia by immunobiotic Lactobacillus rhamnosus CRL1505: Role of Toll-like receptor 2. Microbiol Immunol. 58:416–426. 2014. View Article : Google Scholar : PubMed/NCBI

172 

Fangous MS, Gosset P, Galakhoff N, Gouriou S, Guilloux CA, Payan C, Vallet S, Héry-Arnaud G and Le Berre R: Priming with intranasal lactobacilli prevents Pseudomonas aeruginosa acute pneumonia in mice. BMC Microbiol. 21:1952021. View Article : Google Scholar : PubMed/NCBI

173 

Wallace C, Gordon M, Sinopoulou V and Akobeng AK: Probiotics for management of functional abdominal pain disorders in children. Cochrane Database Syst Rev. 2:Cd0128492023.PubMed/NCBI

174 

Su Z, Ma C, Ru X, Zhang S, Wu C, Huang Y, Cen H, Yin Z and Zhang J: Effects of probiotic treatment on patients and animals with chronic obstructive pulmonary disease: A systematic review and meta-analysis of randomized control trials. Front Cell Infect Microbiol. 14:14112222024. View Article : Google Scholar : PubMed/NCBI

175 

Li P, Uma Mageswary M, Taib F, Koo TH, Yusof A, Hamid IJA, Jiang H, Liong MT, Ali A and Zhang Y: Safety and tolerance of bifidobacterium longum subsp. Infantis YLGB-1496 in toddlers with respiratory symptoms. Nutrients. 17:21272025. View Article : Google Scholar : PubMed/NCBI

176 

Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, et al: Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: A systematic review and meta-analysis of 80 randomized controlled trials. BMC Med. 22:1102024. View Article : Google Scholar : PubMed/NCBI

177 

Bettocchi S, Comotti A, Elli M, De Cosmi V, Berti C, Alberti I, Mazzocchi A, Rosazza C, Agostoni C and Milani GP: Probiotics and fever duration in children with upper respiratory tract infections: A Randomized clinical trial. JAMA Netw Open. 8:e2506692025. View Article : Google Scholar : PubMed/NCBI

178 

Hiraku A, Nakata S, Murata M, Xu C, Mutoh N, Arai S, Odamaki T, Iwabuchi N, Tanaka M, Tsuno T and Nakamura M: Early probiotic supplementation of healthy term infants with bifidobacterium longum subsp. infantis M-63 is safe and leads to the development of bifidobacterium-predominant gut microbiota: A double-blind, placebo-controlled trial. Nutrients. 15:14022023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Han Y, Jia Y, Chen L and Zhang M: Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review). Mol Med Rep 33: 21, 2026.
APA
Han, Y., Jia, Y., Chen, L., & Zhang, M. (2026). Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review). Molecular Medicine Reports, 33, 21. https://doi.org/10.3892/mmr.2025.13731
MLA
Han, Y., Jia, Y., Chen, L., Zhang, M."Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review)". Molecular Medicine Reports 33.1 (2026): 21.
Chicago
Han, Y., Jia, Y., Chen, L., Zhang, M."Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review)". Molecular Medicine Reports 33, no. 1 (2026): 21. https://doi.org/10.3892/mmr.2025.13731
Copy and paste a formatted citation
x
Spandidos Publications style
Han Y, Jia Y, Chen L and Zhang M: Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review). Mol Med Rep 33: 21, 2026.
APA
Han, Y., Jia, Y., Chen, L., & Zhang, M. (2026). Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review). Molecular Medicine Reports, 33, 21. https://doi.org/10.3892/mmr.2025.13731
MLA
Han, Y., Jia, Y., Chen, L., Zhang, M."Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review)". Molecular Medicine Reports 33.1 (2026): 21.
Chicago
Han, Y., Jia, Y., Chen, L., Zhang, M."Hidden connection: Impact of the gut microbiota on respiratory diseases in children (Review)". Molecular Medicine Reports 33, no. 1 (2026): 21. https://doi.org/10.3892/mmr.2025.13731
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team