|
1
|
Klein AP: Pancreatic cancer epidemiology:
Understanding the role of lifestyle and inherited risk factors. Nat
Rev Gastroenterol Hepatol. 18:493–502. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Huang RQ, Zhou Y, Zheng HX, Wang D, Zheng
XY, Li ZS and Hu LH: Transparency of clinical trials in pancreatic
cancer: An analysis of availability of trial results from the
ClinicalTrials.gov database. Front Oncol. 12:10262682022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Stoffel EM, Brand RE and Goggins M:
Pancreatic cancer: Changing epidemiology and new approaches to risk
assessment, early detection, and prevention. Gastroenterology.
164:752–765. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gong J, Li X, Feng Z, Lou J, Pu K, Sun Y,
Hu S, Zhou Y, Song T, Shangguan M, et al: Sorcin can trigger
pancreatic cancer-associated new-onset diabetes through the
secretion of inflammatory cytokines such as serpin E1 and CCL5. Exp
Mol Med. 56:2535–2547. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang B, Zhou F, Hong J, Ng DM, Yang T,
Zhou X, Jin J, Zhou F, Chen P and Xu Y: The role of FOLFIRINOX in
metastatic pancreatic cancer: A meta-analysis. World J Surg Oncol.
19:1822021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Eshmuminov D, Aminjonov B, Palm RF, Malleo
G, Schmocker RK, Abdallah R, Yoo C, Shaib WL, Schneider MA,
Rangelova E, et al: FOLFIRINOX or gemcitabine-based chemotherapy
for borderline resectable and locally advanced pancreatic cancer: A
multi-institutional, patient-level, meta-analysis and systematic
review. Ann Surg Oncol. 30:4417–4428. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gao J, Logan KA, Nesbitt H, Callan B,
McKaig T, Taylor M, Love M, McHale AP, Griffith DM and Callan JF: A
single microbubble formulation carrying 5-fluorouridine, Irinotecan
and oxaliplatin to enable FOLFIRINOX treatment of pancreatic and
colon cancer using ultrasound targeted microbubble destruction. J
Control Release. 338:358–366. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nichetti F, Rota S, Ambrosini P, Pircher
C, Gusmaroli E, Droz Dit Busset M, Pusceddu S, Sposito C, Coppa J,
Morano F, et al: NALIRIFOX, FOLFIRINOX, and gemcitabine with
nab-paclitaxel as first-line chemotherapy for metastatic pancreatic
cancer: A systematic review and meta-analysis. JAMA Netw Open.
7:e23507562024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liang Y, Chen B, Liang D, Quan X, Gu R,
Meng Z, Gan H, Wu Z, Sun Y, Liu S and Dou G: Pharmacological
effects of astragaloside IV: A review. Molecules. 28:61182023.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang L, Liu C, Wang L and Tang B:
Astragaloside IV mitigates cerebral ischaemia-reperfusion injury
via inhibition of P62/Keap1/Nrf2 pathway-mediated ferroptosis. Eur
J Pharmacol. 944:1755162023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yao M, Zhang L and Wang L: Astragaloside
IV: A promising natural neuroprotective agent for neurological
disorders. Biomed Pharmacother. 159:1142292023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li XX, Li D, Cui XY, Zhou K, Liu J, Lu JJ,
Wu Y, Lin Q and Li Y: Astragaloside IV for heart failure:
Preclinical evidence and possible mechanisms, A systematic review
and meta-analysis. Chin J Integr Med. 29:626–633. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang M, Wang W, Liu K, Jia C, Hou Y and
Bai G: Astragaloside IV protects against lung injury and pulmonary
fibrosis in COPD by targeting GTP-GDP domain of RAS and
downregulating the RAS/RAF/FoxO signaling pathway. Phytomedicine.
120:1550662023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tan YQ, Chen HW and Li J: Astragaloside
IV: An effective drug for the treatment of cardiovascular diseases.
Drug Des Devel Ther. 14:3731–3746. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xu F, Cui WQ, Wei Y, Cui J, Qiu J, Hu LL,
Gong WY, Dong JC and Liu BJ: Astragaloside IV inhibits lung cancer
progression and metastasis by modulating macrophage polarization
through AMPK signaling. J Exp Clin Cancer Res. 37:2072018.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tang Z, Hu X, An C and Li T: The potential
molecular pathways of Astragaloside-IV in colorectal cancer: A
systematic review. Biomed Pharmacother. 167:1156252023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zheng L, Fang S, Hui J, Rajamanickam V,
Chen M, Weng Q, Wu X, Zhao Z and Ji J: Triptonide modulates MAPK
signaling pathways and exerts anticancer effects via ER
stress-mediated apoptosis induction in human osteosarcoma cells.
Cancer Manag Res. 12:5919–5929. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lee YS, Lee DH, Choudry HA, Bartlett DL
and Lee YJ: Ferroptosis-induced endoplasmic reticulum stress:
Cross-talk between ferroptosis and apoptosis. Mol Cancer Res.
16:1073–1076. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kim C and Kim B: Anti-cancer natural
products and their bioactive compounds inducing ER stress-mediated
apoptosis: A review. Nutrients. 10:10212018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li Y, Guo Y, Tang J, Jiang J and Chen Z:
New insights into the roles of CHOP-induced apoptosis in ER stress.
Acta Biochim Biophys Sin (Shanghai). 46:629–640. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ashkenazi A, Fairbrother WJ, Leverson JD
and Souers AJ: From basic apoptosis discoveries to advanced
selective BCL-2 family inhibitors. Nat Rev Drug Discov. 16:273–284.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
He R, Jiang W, Wang C, Li X and Zhou W:
Global burden of pancreatic cancer attributable to metabolic risks
from 1990 to 2019, with projections of mortality to 2030. BMC
Public Health. 24:4562024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhu H, Li T, Du Y and Li M: Pancreatic
cancer: Challenges and opportunities. BMC Med. 16:2142018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Carpenter ES, Vendramini-Costa DB,
Hasselluhn MC, Maitra A, Olive KP, Cukierman E, Pasca di Magliano M
and Sherman MH: Pancreatic cancer-associated fibroblasts: Where do
we go from here? Cancer Res. 84:3505–3508. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen H, Zhuo Q, Ye Z, Xu X and Ji S:
Organoid model: A new hope for pancreatic cancer treatment? Biochim
Biophys Acta Rev Cancer. 1875:1884662021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Brozos-Vázquez E, Toledano-Fonseca M,
Costa-Fraga N, García-Ortiz MV, Díaz-Lagares Á, Rodríguez-Ariza A,
Aranda E and López-López R: Pancreatic cancer biomarkers: A pathway
to advance in personalized treatment selection. Cancer Treat Rev.
125:1027192024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xia D, Li W, Tang C and Jiang J:
Astragaloside IV, as a potential anticancer agent. Front Pharmacol.
14:10655052023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhou L, Li M, Chai Z, Zhang J, Cao K, Deng
L, Liu Y, Jiao C, Zou GM, Wu J and Han F: Anticancer effects and
mechanisms of astragaloside-IV (Review). Oncol Rep. 49:52023.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zheng Y, Dai Y, Liu W, Wang N, Cai Y, Wang
S, Zhang F, Liu P, Chen Q and Wang Z: Astragaloside IV enhances
taxol chemosensitivity of breast cancer via caveolin-1-targeting
oxidant damage. J Cell Physiol. 234:4277–4290. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jia L, Lv D, Zhang S, Wang Z and Zhou B:
Astragaloside IV inhibits the progression of non-small cell lung
cancer through the Akt/GSK-3β/β-catenin pathway. Oncol Res.
27:503–508. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhao Y, Wang L, Wang Y, Dong S, Yang S,
Guan Y and Wu X: Astragaloside IV inhibits cell proliferation in
vulvar squamous cell carcinoma through the TGF-β/Smad signaling
pathway. Dermatol Ther. 32:e128022019.PubMed/NCBI
|
|
32
|
Xia C, He Z and Cai Y: Quantitative
proteomics analysis of differentially expressed proteins induced by
astragaloside IV in cervical cancer cell invasion. Cell Mol Biol
Lett. 25:252020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Qi H, Wei L, Han Y, Zhang Q, Lau AS and
Rong J: Proteomic characterization of the cellular response to
chemopreventive triterpenoid astragaloside IV in human
hepatocellular carcinoma cell line HepG2. Int J Oncol. 36:725–735.
2010.PubMed/NCBI
|
|
34
|
Hashemi Goradel N, Najafi M, Salehi E,
Farhoo B and Mortezaee K: Cyclooxygenase-2 in cancer: A review. J
Cell Physiol. 234:5683–5699. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Merighi A and Lossi L: Endoplasmic
reticulum stress signaling and neuronal cell death. Int J Mol Sci.
23:151862022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Reggiori F and Molinari M: ER-phagy:
mechanisms, regulation, and diseases connected to the lysosomal
clearance of the endoplasmic reticulum. Physiol Rev. 102:1393–1448.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen Z and Zhang SL: Endoplasmic reticulum
stress: A key regulator of cardiovascular disease. DNA Cell Biol.
42:322–335. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang Z, Sun B, Lu J, Bai P, Su Y and Li
Y: Norcantharidin inhibits the malignant progression of cervical
cancer by inducing endoplasmic reticulum stress. Mol Med Rep.
29:712024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen X and Cubillos-Ruiz JR: Endoplasmic
reticulum stress signals in the tumour and its microenvironment.
Nat Rev Cancer. 21:71–88. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen Y, Shen H, Wang Z, Huang C, Zhang H,
Shao Y, Tong Y, Xu L, Lu Y and Fu Z: Recruitment of USP10 by GCS1
to deubiquitinate GRP78 promotes the progression of colorectal
cancer via alleviating endoplasmic reticulum stress. J Exp Clin
Cancer Res. 43:2612024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ji X, Chen Z, Lin W, Wu Q, Wu Y, Hong Y,
Tong H, Wang C and Zhang Y: Esculin induces endoplasmic reticulum
stress and drives apoptosis and ferroptosis in colorectal cancer
via PERK regulating eIF2α/CHOP and Nrf2/HO-1 cascades. J
Ethnopharmacol. 328:1181392024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hicks D, Giresh K, Wrischnik LA and Weiser
DC: The PPP1R15 family of eIF2-alpha phosphatase targeting subunits
(GADD34 and CReP). Int J Mol Sci. 24:173212023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Krzyzosiak A, Pitera AP and Bertolotti A:
An overview of methods for detecting eIF2α phosphorylation and the
integrated stress response. Methods Mol Biol. 2428:3–18. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rozpedek W, Pytel D, Mucha B, Leszczynska
H, Diehl JA and Majsterek I: The role of the PERK/eIF2α/ATF4/CHOP
signaling pathway in tumor progression during endoplasmic reticulum
stress. Curr Mol Med. 16:533–544. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pan X, Liu Y, Liu L, Pang B, Sun Z, Guan
S, Yan Q, Mo T, Chen R, Xu M, et al: Bushen Jieyu Tiaochong Formula
reduces apoptosis of granulosa cells via the PERK-ATF4-CHOP
signaling pathway in a rat model of polycystic ovary syndrome with
chronic stress. J Ethnopharmacol. 292:1149232022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Alam M, Alam S, Shamsi A, Adnan M,
Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A,
Pasupuleti VR and Hassan MI: Bax/Bcl-2 cascade is regulated by the
EGFR pathway: Therapeutic targeting of non-small cell lung cancer.
Front Oncol. 12:8696722022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Azimian H, Dayyani M, Toossi MTB and
Mahmoudi M: Bax/Bcl-2 expression ratio in prediction of response to
breast cancer radiotherapy. Iran J Basic Med Sci. 21:325–332.
2018.PubMed/NCBI
|