|
1
|
Wang J, Zhang W and Wu G: Intestinal
ischemic reperfusion injury: Recommended rats model and
comprehensive review for protective strategies. Biomed
Pharmacother. 138:1114822021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Li G, Wang S and Fan Z: Oxidative stress
in intestinal ischemia-reperfusion. Front Med (Lausanne).
8:7507312022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhang J, Liu Z, Liu Y, Shi Y, Chen F and
Leng Y: Role of non-coding RNA in the pathogenesis of intestinal
ischemia-reperfusion injury. Curr Med Chem. 30:4130–4148. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian
D, Liu D, Zhang F, Ning S, Yao J and Tian X: Ischemia-induced ACSL4
activation contributes to ferroptosis-mediated tissue injury in
intestinal ischemia/reperfusion. Cell Death Differ. 26:2284–2299.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Meng Q, Ye C and Lu Y: miR-181c regulates
ischemia/reperfusion injury-induced neuronal cell death by
regulating c-Fos signaling. Pharmazie. 75:90–93. 2020.PubMed/NCBI
|
|
6
|
Zu G, Zhou T, Che N and Zhang X:
Salvianolic acid A protects against oxidative stress and apoptosis
induced by intestinal ischemia-reperfusion injury through
activation of Nrf2/HO-1 pathways. Cell Physiol Biochem.
49:2320–2332. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z
and Gu L: Targeting oxidative stress and inflammation to prevent
ischemia-reperfusion injury. Front Mol Neurosci. 13:282020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hook G, Reinheckel T, Ni J, Wu Z, Kindy M,
Peters C and Hook V: Cathepsin B gene knockout improves behavioral
deficits and reduces pathology in models of neurologic disorders.
Pharmacol Rev. 74:600–629. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
De Pasquale V, Moles A and Pavone LM:
Cathepsins in the pathophysiology of mucopolysaccharidoses: New
perspectives for therapy. Cells. 9:9792020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hu ML, Liao QZ, Liu BT, Sun K, Pan CS,
Wang XY, Yan L, Huo XM, Zheng XQ, Wang Y, et al: Xihuang pill
ameliorates colitis in mice by improving mucosal barrier injury and
inhibiting inflammatory cell filtration through network regulation.
J Ethnopharmacol. 319:1170982024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dong L, Xie J, Wang Y, Jiang H, Chen K, Li
D, Wang J, Liu Y, He J, Zhou J, et al: Mannose ameliorates
experimental colitis by protecting intestinal barrier integrity.
Nat Commun. 13:48042022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu C, Yao Q, Hu T, Cai Z, Xie Q, Zhao J,
Yuan Y, Ni J and Wu QQ: Cathepsin B deteriorates diabetic
cardiomyopathy induced by streptozotocin via promoting
NLRP3-mediated pyroptosis. Mol Ther Nucleic Acids. 30:198–207.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhao S, Gong Z, Zhou J, Tian C, Gao Y, Xu
C, Chen Y, Cai W and Wu J: Deoxycholic acid triggers NLRP3
inflammasome activation and aggravates DSS-induced colitis in mice.
Front Immunol. 7:5362016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu M, Wen H, Zuo L, Song X, Geng Z, Ge S,
Ge Y, Wu R, Chen S, Yu C and Gao Y: Bryostatin-1 attenuates
intestinal ischemia/reperfusion-induced intestinal barrier
dysfunction, inflammation, and oxidative stress via activation of
Nrf2/HO-1 signaling. FASEB J. 37:e229482023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhao Y, Zhuang Y, Shi J, Fan H, Lv Q and
Guo X: Cathepsin B induces kidney diseases through different types
of programmed cell death. Front Immunol. 16:15353132025. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kip AM, Grootjans J, Manca M, Hadfoune MH,
Boonen B, Derikx JPM, Biessen EAL, Olde Damink SWM, Dejong CHC,
Buurman WA and Lenaerts K: Temporal transcript profiling identifies
a role for unfolded protein stress in human gut
ischemia-reperfusion injury. Cell Mol Gastroenterol Hepatol.
13:681–694. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang Z, Li Z, Feng D, Zu G, Li Y, Zhao Y,
Wang G, Ning S, Zhu J, Zhang F, et al: Autophagy induction
ameliorates inflammatory responses in intestinal
Ischemia-reperfusion through inhibiting NLRP3 inflammasome
activation. Shock. 52:387–395. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nadatani Y, Watanabe T, Shimada S, Otani
K, Tanigawa T and Fujiwara Y: Microbiome and intestinal
ischemia/reperfusion injury. J Clin Biochem Nutr. 63:26–32. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhenzhen L, Wenting L, Jianmin Z, Guangru
Z, Disheng L, Zhiyu Z, Feng C, Yajing S, Yingxiang H, Jipeng L, et
al: miR-146a-5p/TXNIP axis attenuates intestinal
ischemia-reperfusion injury by inhibiting autophagy via the
PRKAA/mTOR signaling pathway. Biochem Pharmacol. 197:1148392022.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cong R, Yang J, Zhou J, Shi J, Zhu Y, Zhu
J, Xiao J, Wang P, He Y and He B: The potential role of protein
tyrosine phosphatase, receptor type C (CD45) in the intestinal
ischemia-reperfusion injury. J Comput Biol. 27:1303–1312. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang XY, Liang HS, Hu JJ, Wan YT, Zhao J,
Liang GT, Luo YH, Liang HX, Guo XQ, Li C, et al: Ribonuclease
attenuates acute intestinal injury induced by intestinal ischemia
reperfusion in mice. Int Immunopharmacol. 83:1064302020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yang J, Wu Y, Xu Y, Jia J, Xi W, Deng H
and Tu W: Dexmedetomidine resists intestinal ischemia-reperfusion
injury by inhibiting TLR4/MyD88/NF-κB signaling. J Surg Res.
260:350–358. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu C, Cai Z, Hu T, Yao Q and Zhang L:
Cathepsin B aggravated doxorubicin-induced myocardial injury via
NF-κB signalling. Mol Med Rep. 22:4848–4856. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wu J, Chen S, Wu P, Wang Y, Qi X, Zhang R,
Liu Z, Wang D and Cheng Y: Cathepsin B/HSP70 complex induced by
Ilexsaponin I suppresses NLRP3 inflammasome activation in
myocardial ischemia/reperfusion injury. Phytomedicine.
105:1543582022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sun C, Cao N, Wang Q, Liu N, Yang T, Li S,
Pan L, Yao J, Zhang L, Liu M, et al: Icaritin induces resolution of
inflammation by targeting cathepsin B to prevents mice from
ischemia-reperfusion injury. Int Immunopharmacol. 116:1098502023.
View Article : Google Scholar
|
|
27
|
Morinaga Y, Yanagihara K, Nakamura S,
Hasegawa H, Seki M, Izumikawa K, Kakeya H, Yamamoto Y, Yamada Y,
Kohno S and Kamihira S: Legionella pneumophila induces cathepsin
B-dependent necrotic cell death with releasing high mobility group
box1 in macrophages. Respir Res. 11:1582010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Menzel K, Hausmann M, Obermeier F,
Schreiter K, Dunger N, Bataille F, Falk W, Scholmerich J, Herfarth
H and Rogler G: Cathepsins B, L, and D in inflammatory bowel
disease macrophages and potential therapeutic effects of cathepsin
inhibition in vivo. Clin Exp Immunol. 146:169–180. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu Y, Ji T, Jiang H, Chen M, Liu W, Zhang
Z and He X: Emodin alleviates intestinal ischemia-reperfusion
injury through antioxidant stress, anti-inflammatory responses, and
anti-apoptosis effects via Akt-mediated HO-1 upregulation. J
Inflamm (Lond). 21:252024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li L, Zhou C, Li T, Xiao W, Yu M and Yang
H: Interleukin-28A maintains the intestinal epithelial barrier
function through regulation of claudin-1. Ann Transl Med.
9:3652021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Brooks TA, Hawkins BT, Huber JD, Egleton
RD and Davis TP: Chronic inflammatory pain leads to increased
blood-brain barrier permeability and tight junction protein
alterations. Am J Physiol Heart Circ Physiol. 289:H738–H743. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Adwas AA, Elsayed A, Azab AE and Quwaydir
FA: Oxidative stress and antioxidant mechanisms in human body. J
Appl Biotechnol Bioeng. 6:43–47. 2019.
|
|
33
|
Wang G, Yao J, Li Z, Zu G, Feng D, Shan W,
Li Y, Hu Y, Zhao Y and Tian X: miR-34a-5p inhibition alleviates
intestinal ischemia/reperfusion-induced reactive oxygen species
accumulation and apoptosis via activation of SIRT1 signaling.
Antioxid Redox Signal. 24:961–973. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li F, Wang X, Deng Z, Zhang X, Gao P and
Liu H: Dexmedetomidine reduces oxidative stress and provides
neuroprotection in a model of traumatic brain injury via the PGC-1α
signaling pathway. Neuropeptides. 72:58–64. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hou M, Chen F, He Y, Tan Z, Han X, Shi Y,
Xu Y and Leng Y: Dexmedetomidine against intestinal
ischemia/reperfusion injury: A systematic review and meta-analysis
of preclinical studies. Eur J Pharmacol. 959:1760902023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ustundag B, Kazez A, Demirbag M, Canatan
H, Halifeoglu I and Ozercan IH: Protective effect of melatonin on
antioxidative system in experimental ischemia-reperfusion of rat
small intestine. Cell Physiol Biochem. 10:229–236. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sambuy Y, De Angelis I, Ranaldi G, Scarino
M, Stammati A and Zucco F: The Caco-2 cell line as a model of the
intestinal barrier: Influence of cell and culture-related factors
on Caco-2 cell functional characteristics. Cell Biol Toxicol.
21:1–26. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Meunier V, Bourrie M, Berger Y and Fabre
G: The human intestinal epithelial cell line Caco-2;
pharmacological and pharmacokinetic applications. Cell Biol
Toxicol. 11:187–194. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Deng F, Lin ZB, Sun QS, Min Y, Zhang Y,
Chen Y, Chen WT, Hu JJ and Liu KX: The role of intestinal
microbiota and its metabolites in intestinal and extraintestinal
organ injury induced by intestinal ischemia reperfusion injury. Int
J Biol Sci. 18:39812022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Moretti J and Blander JM: Increasing
complexity of NLRP3 inflammasome regulation. J Leukoc Biol.
109:561–571. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ito H, Kimura H, Karasawa T, Hisata S,
Sadatomo A, Inoue Y, Yamada N, Aizawa E, Hishida E, Kamata R, et
al: NLRP3 inflammasome activation in lung vascular endothelial
cells contributes to intestinal ischemia/reperfusion-induced acute
lung injury. J Immunol. 205:1393–1405. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lyu H, Ni H, Huang J, Yu G, Zhang Z and
Zhang Q: VX-765 prevents intestinal ischemia-reperfusion injury by
inhibiting NLRP3 inflammasome. Tissue Cell. 75:1017182022.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cai Z, Xu S and Liu C: Cathepsin B in
cardiovascular disease: Underlying mechanisms and therapeutic
strategies. J Cell Mol Med. 28:e700642024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li Y, Xia X, Niu Z, Wang K, Liu J and Li
X: hCeO2@ Cu5.4O nanoparticle alleviates inflammatory responses by
regulating the CTSB-NLRP3 signaling pathway. Front Immunol.
15:13440982024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xu W, Huang Y and Zhou R: NLRP3
inflammasome in neuroinflammation and central nervous system
diseases. Cell Mol Immunol. 22:341–355. 2025. View Article : Google Scholar : PubMed/NCBI
|