|
1
|
Shan S, Wu J, Cao J, Feng Y, Zhou J, Luo
Z, Song P and Rudan I; Global Health Epidemiology Research Group
(GHERG), : Global incidence and risk factors for glaucoma: A
systematic review and meta-analysis of prospective studies. J Glob
Health. 14:042522024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen DF, Wang C, Si Y, Lu X, Zhou W, Huang
Q, Zuo J, Cheng G, Leung DYL, Wang N, et al: Natural history and
risk factors for glaucoma progression in Chinese patients with
normal-tension glaucoma. Invest Ophthalmol Vis Sci. 65:282024.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
GBD 2019 Blindness and Vision Impairment
Collaborators and Vision Loss Expert Group of the Global Burden of
Disease Study, . Causes of blindness and vision impairment in 2020
and trends over 30 years, and prevalence of avoidable blindness in
relation to VISION 2020: The Right to Sight: An analysis for the
Global Burden of Disease Study. Lancet Glob Health. 9:e144–e160.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jackson AB, Martin KR, Coote MA, Medeiros
FA, Girkin CA, Fazio MA, Liebmann JM, De Moraes CG, Weinreb RN,
Zangwill LM and Wu Z: Fast progressors in glaucoma: Prevalence
based on global and central visual field loss. Ophthalmology.
130:462–468. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang W and Wang H: Understanding the
complex genetics and molecular mechanisms underlying glaucoma. Mol
Aspects Med. 94:1012202023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bou Ghanem GO, Wareham LK and Calkins DJ:
Addressing neurodegeneration in glaucoma: Mechanisms, challenges,
and treatments. Prog Retin Eye Res. 100:1012612024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang YX, Panda-Jonas S and Jonas JB: Optic
nerve head anatomy in myopia and glaucoma, including parapapillary
zones alpha, beta, gamma and delta: Histology and clinical
features. Prog Retin Eye Res. 83:1009332021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chuangsuwanich T, Birgersson KE, Thiery A,
Thakku SG, Leo HL and Girard MJ: Factors influencing lamina
cribrosa microcapillary hemodynamics and oxygen concentrations.
Invest Ophthalmol Vis Sci. 57:6167–6179. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhou W and Sabel BA: Vascular
dysregulation in glaucoma: Retinal vasoconstriction and normal
neurovascular coupling in altitudinal visual field defects. EPMA J.
14:87–99. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Maddineni P, Kasetti RB, Patel PD, Millar
JC, Kiehlbauch C, Clark AF and Zode GS: CNS axonal degeneration and
transport deficits at the optic nerve head precede structural and
functional loss of retinal ganglion cells in a mouse model of
glaucoma. Mol Neurodegener. 15:482020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Fernández-Albarral JA, Ramírez AI, de Hoz
R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca
I, Sánchez-Puebla L, Salazar JJ and Ramírez JM: Glaucoma: From
pathogenic mechanisms to retinal glial cell response to damage.
Front Cell Neurosci. 18:13545692024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hurley DJ, Normile C, Irnaten M and
O'Brien C: The intertwined roles of oxidative stress and
endoplasmic reticulum stress in glaucoma. Antioxidants (Basel).
11:8862022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tanito M, Kaidzu S, Takai Y and Ohira A:
Association between systemic oxidative stress and visual field
damage in open-angle glaucoma. Sci Rep. 6:257922016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shi R, Wu Y, Chen H, Zhang Z, Bao S, Qu J
and Zhou M: The causal effect of oxidative stress on the risk of
glaucoma. Heliyon. 10:e248522024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Baris ME, Furundaoturan O, Kocamanoğlu M,
Şahin S, Akçay Y and Yılmaz SG: Serum oxidative stress-related
biomarkers in ocular hypertension and glaucoma. J Ophthalmic Vis
Res. 19:433–439. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Huang J, Zhang Y, Wu C, Wu Y, Wang F, Ning
Y and Shi L: Association between oxidative balance score and
glaucoma in the National Health and Nutrition Examination Survey.
Front Nutr. 12:15281142025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang Q, Jiang Y, Deng C and Wang J:
Effects and potential mechanisms of exercise and physical activity
on eye health and ocular diseases. Front Med (Lausanne).
11:13536242024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ju WK, Liu Q, Perkins GA, Kim KY, Bastola
T, Choi WY and Choi SH: Glaucomatous optic neuropathy:
Mitochondrial dynamics, dysfunction and protection in retinal
ganglion cells. Prog Retin Eye Res. 95:1011362023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Reinehr S, Rahim Pamuk M, Fuchshofer R,
Dick HB and Joachim SC: Increased inflammation in older
high-pressure glaucoma mice. Neurobiol Aging. 145:55–64. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Baudouin C, Kolko M, Melik-Parsadaniantz S
and Messmer EM: Inflammation in glaucoma: From the back to the
front of the eye, and beyond. Prog Retin Eye Res. 83:1009162021.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sacca SC, Gandolfi S, Bagnis A, Manni G,
Damonte G, Traverso CE and Izzotti A: From DNA damage to functional
changes of the TM in aging and glaucoma. Ageing Res Rev. 29:26–41.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Al-Namaeh M: A meta-analysis of the
association between high-sensitivity C-reactive protein level and
glaucoma. Eur J Ophthalmol. 35:29–39. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li X, Sun YQ, Zhong XD, Zhang ZJ, Tang JF
and Luo ZY: Association between systemic inflammatory response
index and glaucoma incidence from 2005 to 2008. Front Med
(Lausanne). 12:15420732025. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen D, Miao S, Chen X, Wang Z, Lin P,
Zhang N and Yang N: Regulated necrosis in glaucoma: Focus on
ferroptosis and pyroptosis. Mol Neurobiol. 61:2542–2555. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Morgan JE, Bevan RJ and Cimaglia G:
Retinal ganglion cell subtypes and their vulnerability in glaucoma.
Methods Mol Biol. 2858:191–205. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Qin Q, Yu N, Gu Y, Ke W, Zhang Q, Liu X,
Wang K and Chen M: Inhibiting multiple forms of cell death
optimizes ganglion cells survival after retinal ischemia
reperfusion injury. Cell Death Dis. 13:5072022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Feng Y, Wang X, Li P, Shi X, Prokosch V
and Liu H: Exogenous hydrogen sulfide and NOX2 inhibition mitigate
ferroptosis in Pressure-induced retinal ganglion cell damage.
Biochim Biophys Acta Mol Basis Dis. 1871:1677052025. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yao F, Peng J, Zhang E, Ji D, Gao Z, Tang
Y, Yao X and Xia X: Pathologically high intraocular pressure
disturbs normal iron homeostasis and leads to retinal ganglion cell
ferroptosis in glaucoma. Cell Death Differ. 30:69–81. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Huang S, Liu K, Su Y, Wang F and Feng T:
Research progress of ferroptosis in glaucoma and optic nerve
damage. Mol Cell Biochem. 478:721–727. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yu-Wai-Man P, Griffiths PG, Gorman GS,
Lourenco CM, Wright AF, Auer-Grumbach M, Taylor RW, Turnbull DM and
Chinnery PF: OPA1 mutations cause cytochrome c oxidase deficiency
due to loss of wild-type mtDNA molecules. Hum Mol Genet.
19:3043–3052. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Edwards G, Gnanasekaran A, Jeong YM, Liu
Y, Croft K, Dickey AS, Bernstein SL, Cortopassi GA and Flippo KH:
Loss of AKAP1 triggers Drp1 dephosphorylation-mediated
mitochondrial fission and loss in retinal ganglion cells. Cell
Death Dis. 11:2542020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang H, Ryu D, Wu Y, Gariani K, Wang X,
Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R, et al:
NAD+ repletion improves mitochondrial and stem cell
function and enhances life span in mice. Science. 352:1436–1443.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Petriti B, Fernandez-Albarral JA,
Salobrar-Garcia E, Lopez-Cuenca I, Ramirez AI, de Hoz R, Trivino A
and Ramirez JM: Neuroprotection in Glaucoma: NAD+/NADH redox state
as a potential biomarker and therapeutic target. Cells.
10:14022021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Saccuzzo EG, Youngblood HA and Lieberman
RL: Myocilin misfolding and glaucoma: A 20-year update. Prog Retin
Eye Res. 95:1011882023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fuse N, Kimura M, Shimizu A, Koshiba S,
Hamanaka T, Nakamura M, Ishida N, Sakai H, Ikeda Y, Mori K, et al:
Mutations of CYP1B1 and FOXC1 genes for childhood glaucoma in
Japanese individuals. Jpn J Ophthalmol. 68:688–701. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Faiq MA, Singh HN, Ali M, Dada R, Chan KC,
Dada T and Saluja D: Functional genomics of primary congenital
glaucoma by pathway analysis and functional characterization of
CYP1B1 mutations. Vision Res. 227:1085342025. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Swarup G, Medchalmi S, Ramachandran G and
Sayyad Z: Molecular aspects of cytoprotection by Optineurin during
stress and disease. Biochim Biophys Acta Mol Cell Res.
1872:1198952025. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M,
Feng X, Yang M, Yang H, You IJ, Li L, et al: Optineurin-facilitated
axonal mitochondria delivery promotes neuroprotection and axon
regeneration. Nat Commun. 16:17892025. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Song Rong S, Larson A and Wiggs JL;
NEIGHBORHOOD consortium, : ATXN2 loss of function results in
glaucoma-related features supporting a role for Ataxin-2 in primary
open-angle glaucoma (POAG) pathogenesis. Vision Res.
226:1085082025. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chacon-Camacho OF, Ordaz-Robles T,
Cid-García MA, Yepes-Rodríguez O, Arce-González R, Martínez-Aguilar
A and Zenteno JC: A new ocular phenotype combining juvenile
glaucoma and Doyne honeycomb retinal dystrophy (Malattia
Leventinese) due to a novel EFEMP1 pathogenic variant. Am J Med
Genet A. 197:e638692025. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Csidey M, Csorba A, Kormányos K, Náray A,
Kéki-Kovács K, Németh O, Knézy K, Bausz M, Szigeti A, Szabó D, et
al: Examination of the corneal endothelium in patients with
congenital aniridia with a PAX6 mutation using in vivo confocal
laser scanning microscopy. Cornea. 44:324–331. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Moazzeni H, Khani M and Elahi E: Insights
into the regulatory molecules involved in glaucoma pathogenesis. Am
J Med Genet C Semin Med Genet. 184:782–827. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Rejas-González R, Montero-Calle A, Pastora
Salvador N, Crespo Carballés MJ, Ausín-González E, Sánchez-Naves J,
Pardo Calderón S, Barderas R and Guzman-Aranguez A: Unraveling the
nexus of oxidative stress, ocular diseases, and small extracellular
vesicles to identify novel glaucoma biomarkers through in-depth
proteomics. Redox Biol. 77:1033682024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Botello-Marabotto M, Martínez-Bisbal MC,
Pinazo-Durán MD and Martínez-Máñez R: Tear metabolomics for the
diagnosis of primary open angle glaucoma. Talanta. 273:1258262024.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shin DY, Han JS, Park CK, Lee NY and Jung
KI: Parallel analysis of exosomes and cytokines in aqueous humor
samples to evaluate biomarkers for glaucoma. Cells. 13:10302024.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sulak R, Liu X and Smedowski A: The
concept of gene therapy for glaucoma: The dream that has not come
true yet. Neural Regen Res. 19:92–99. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sundaresan Y, Yacoub S, Kodati B, Amankwa
CE, Raola A and Zode G: Therapeutic applications of CRISPR/Cas9
gene editing technology for the treatment of ocular diseases. FEBS
J. 290:5248–5269. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Jain A, Zode G, Kasetti RB, Ran FA, Yan W,
Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, et al: CRISPR
Cas9 based treatment of myocilin associated glaucoma. Proc Natl
Acad Sci USA. 114:11199–11204. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan
Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby
CC, et al: Lentiviral mediated delivery of CRISPR/Cas9 reduces
intraocular pressure in a mouse model of myocilin glaucoma. Sci
Rep. 14:69582024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wen D, Ji Y, Li Y, Duan W, Wang Y, Li Z,
Tao M and Liu Y: OPTN gene therapy increases autophagy and protects
mitochondria in SOD1 G93A expressing transgenic mice and cells.
FEBS J. 291:795–813. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Khatib TZ, Osborne A, Yang S, Ali Z, Jia
W, Manyakin I, Hall K, Watt R, Widdowson PS and Martin KR: Receptor
ligand supplementation via a self-cleaving 2A peptide-based gene
therapy promotes CNS axonal transport with functional recovery. Sci
Adv. 7:eabd25902021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wu J, Bell OH, Copland DA, Young A, Pooley
JR, Maswood R, Evans RS, Khaw PT, Ali RR, Dick AD and Chu CJ: Gene
therapy for glaucoma by ciliary body aquaporin 1 disruption using
CRISPR-Cas9. Mol Ther. 28:820–829. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang J, Harris A, Prendes MA, Alshawa L,
Gross JC, Wentz SM, Rao AB, Kim NJ, Synder A and Siesky B:
Targeting transforming growth factor-beta signaling in primary
open-angle glaucoma. J Glaucoma. 26:390–395. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Rayana NP, Sugali CK, Dai J, Peng M, Liu
S, Zhang Y, Wan J and Mao W: Using CRISPR Interference as a
Therapeutic Approach to Treat TGFβ2-Induced Ocular Hypertension and
Glaucoma. Invest Ophthalmol Vis Sci. 62:72021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sun F, Park KK, Belin S, Wang D, Lu T,
Chen G, Zhang K, Yeung C, Feng G, Yankner BA and He Z: Sustained
axon regeneration induced by co-deletion of PTEN and SOCS3. Nature.
480:372–375. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lee EJ, Han JC, Park DY, Cho J and Kee C:
Effect of connective tissue growth factor gene editing using
adeno-associated virus-mediated CRISPR-Cas9 on rabbit glaucoma
filtering surgery outcomes. Gene Ther. 28:277–286. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yao M, Zeng Z, Li S, Zou Z, Chen Z, Chen
X, Gao Q, Zhao G, Chen A, Li Z, et al: CRISPR-CasRx-mediated
disruption of Aqp1/Adrb2/Rock1/Rock2 genes reduces intraocular
pressure and retinal ganglion cell damage in mice. Nat Commun.
15:63952024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Osborne A, Khatib TZ, Songra L, Barber AC,
Hall K, Kong GYX, Widdowson PS and Martin KR: Neuroprotection of
retinal ganglion cells by a novel gene therapy construct that
achieves sustained enhancement of brain-derived neurotrophic
factor/tropomyosin-related kinase receptor-B signaling. Cell Death
Dis. 9:10072018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wójcik-Gryciuk A, Gajewska-Woźniak O,
Kordecka K, Boguszewski PM, Waleszczyk W and Skup M:
Neuroprotection of retinal ganglion cells with AAV2-BDNF
pretreatment restoring normal TrkB receptor protein levels in
glaucoma. Int J Mol Sci. 21:62622020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fujita K, Nishiguchi KM, Shiga Y and
Nakazawa T: Spatially and temporally regulated NRF2 gene therapy
using Mcp-1 promoter in retinal ganglion cell injury. Mol Ther
Methods Clin Dev. 5:130–141. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nishijima E, Honda S, Kitamura Y, Namekata
K, Kimura A, Guo X, Azuchi Y, Harada C, Murakami A, Matsuda A, et
al: Vision protection and robust axon regeneration in glaucoma
models by membrane-associated Trk receptors. Mol Ther. 31:810–824.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Phatak NR, Stankowska DL and
Krishnamoorthy RR: Bcl-2, Bcl-xL, and p-AKT are involved in
neuroprotective effects of transcription factor Brn3b in an ocular
hypertension rat model of glaucoma. Mol Vis. 22:1048–1061.
2016.PubMed/NCBI
|
|
63
|
Stankowska DL, Minton AZ, Rutledge MA,
Mueller BH II, Phatak NR, He S, Ma HY, Forster MJ, Yorio T and
Krishnamoorthy RR: Neuroprotective effects of transcription factor
Brn3b in an ocular hypertension rat model of glaucoma. Invest
Ophthalmol Vis Sci. 56:893–907. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Donahue RJ, Fehrman RL, Gustafson JR and
Nickells RW: BCLXL gene therapy moderates neuropathology in the
DBA/2J mouse model of inherited glaucoma. Cell Death Dis.
12:7812021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lani-Louzada R, Marra C, Dias MS, de
Araújo VG, Abreu CA, Ribas VT, Adesse D, Allodi S, Chiodo V,
Hauswirth W, et al: Neuroprotective gene therapy by overexpression
of the transcription factor MAX in rat models of glaucomatous
neurodegeneration. Invest Ophthalmol Vis Sci. 63:52022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jiang W, Tang L, Zeng J and Chen B:
Adeno-associated virus-mediated SOD gene therapy protects the
retinal ganglion cells from chronic intraocular pressure
elevation-induced injury via attenuating oxidative stress and
improving mitochondrial dysfunction in a rat model. Am J Transl
Res. 8:799–810. 2016.PubMed/NCBI
|
|
67
|
Luo J, Wang S, Zhou Z and Zhao Y: Ad- and
AAV8-mediated ABCA1 gene therapy in a murine model with retinal
ischemia/reperfusion injuries. Mol Ther Methods Clin Dev.
20:551–558. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang
D, Wang X, Tian W, Dong X, Zhou L, et al: scAAV2-mediated C3
Transferase gene therapy in a rat model with retinal
ischemia/reperfusion injuries. Mol Ther Methods Clin Dev.
17:894–903. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang Q, Zhuang P, Huang H, Li L, Liu L,
Webber HC, Dalal R, Siew L, Fligor CM, Chang KC, et al: Mouse
gamma-synuclein promoter-mediated gene expression and editing in
mammalian retinal ganglion cells. J Neurosci. 40:3896–3914. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kiyota N, Namekata K, Nishijima E, Guo X,
Kimura A, Harada C, Nakazawa T and Harada T: Effects of
constitutively active K-Ras on axon regeneration after optic nerve
injury. Neurosci Lett. 799:1371242023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
O'Callaghan J, Delaney C, O'Connor M, van
Batenburg-Sherwood J, Schicht M, Lütjen-Drecoll E, Hudson N, Ni
Dhubhghaill S, Humphries P, Stanley C, et al: Matrix
metalloproteinase-3 (MMP-3)-mediated gene therapy for glaucoma. Sci
Adv. 9:eadf65372023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Borras T, Stepankoff M and Danias J: Genes
as drugs for glaucoma: Latest advances. Curr Opin Ophthalmol.
35:131–137. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Millington-Ward S, Palfi A, Shortall C,
Finnegan LK, Bargroff E, Post IJM, Maguire J, Irnaten MO, Brien C,
Kenna PF, et al: AAV-NDI1 therapy provides significant benefit to
murine and cellular models of glaucoma. Int J Mol Sci. 25:88762024.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Abbasi M, Gupta VK, Chitranshi N, Gupta
VB, Mirzaei M, Dheer Y, Garthwaite L, Zaw T, Parton RG, You Y and
Graham SL: Caveolin-1 ablation imparts partial protection against
inner retinal injury in experimental glaucoma and reduces apoptotic
activation. Mol Neurobiol. 57:3759–3784. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huang X and Chau Y: Enhanced delivery of
siRNA to retinal ganglion cells by intravitreal lipid nanoparticles
of positive charge. Mol Pharm. 18:377–385. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jiang J, Zhang X, Tang Y, Li S and Chen J:
Progress on ocular siRNA gene-silencing therapy and drug delivery
systems. Fundam Clin Pharmacol. 35:4–24. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kong AW and Ou Y: The catcher in the eye:
Stem cells as a therapeutic for glaucoma. Ophthalmol Glaucoma.
6:1–3. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Du Y, Yun H, Yang E and Schuman JS: Stem
cells from trabecular meshwork home to TM tissue in vivo. Invest
Ophthalmol Vis Sci. 54:1450–1459. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhu W, Gramlich OW, Laboissonniere L, Jain
A, Sheffield VC, Trimarchi JM, Tucker BA and Kuehn MH:
Transplantation of iPSC-derived TM cells rescues glaucoma
phenotypes in vivo. Proc Natl Acad Sci USA. 113:E3492–E3500. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xiong S, Kumar A, Tian S, Taher EE, Yang
E, Kinchington PR, Xia X and Du Y: Stem cell transplantation
rescued a primary open-angle glaucoma mouse model. Elife.
10:e636772021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Coulon SJ, Schuman JS, Du Y, Bahrani Fard
MR, Ethier CR and Stamer WD: A novel glaucoma approach: Stem cell
regeneration of the trabecular meshwork. Prog Retin Eye Res.
90:1010632022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Xi G, Feng P, Zhang X, Wu S, Zhang J, Wang
X, Xiang A, Xu W, Wang N and Zhu W: iPSC-derived cells stimulate
ABCG2+/NES+ endogenous trabecular meshwork
cell proliferation and tissue regeneration. Cell Prolif.
57:e136112024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hu BY, Xin M, Chen M, Yu P and Zeng LZ:
Mesenchymal stem cells for repairing glaucomatous optic nerve. Int
J Ophthalmol. 17:748–760. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ji S, Peng Y, Liu J, Xu P and Tang S:
Human adipose tissue-derived stem cell extracellular vesicles
attenuate ocular hypertension-induced retinal ganglion cell damage
by inhibiting microglia-TLR4/MAPK/NF-kB proinflammatory cascade
signaling. Acta Neuropathol Commun. 12:442024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yu F, Wang Y, Huang CQ, Lin SJ, Gao RX and
Wu RY: Neuroprotective effect of mesenchymal stem cell-derived
extracellular vesicles on optic nerve injury in chronic ocular
hypertension. Neural Regen Res. 18:2301–2306. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
da Silva-Junior AJ, Mesentier-Louro LA,
Nascimento-Dos-Santos G, Teixeira-Pinheiro LC, Vasques JF,
Chimeli-Ormonde L, Bodart-Santos V, de Carvalho LRP, Santiago MF
and Mendez-Otero R: Human mesenchymal stem cell therapy promotes
retinal ganglion cell survival and target reconnection after optic
nerve crush in adult rats. Stem Cell Res Ther. 12:692021.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ,
Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW,
Wohlschlegel J, et al: Retinal ganglion cell repopulation for
vision restoration in optic neuropathy: A roadmap from the RReSTORe
Consortium. Mol Neurodegener. 18:642023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lei Q, Zhang R, Yuan F and Xiang M:
Integration and differentiation of transplanted Human iPSC-Derived
retinal ganglion cell precursors in murine retinas. Int J Mol Sci.
25:129472024. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chaibakhsh S, Azimi F, Shoae-Hassani A,
Niknam P, Ghamari A, Dehghan S and Nilforushan N: Evaluating the
impact of mesenchymal stem cell therapy on visual acuity and
retinal nerve fiber layer thickness in optic neuropathy patients: A
comprehensive systematic review and meta-analysis. BMC Ophthalmol.
24:3162024. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Niu Y, Ji J, Yao K and Fu Q: Regenerative
treatment of ophthalmic diseases with stem cells: Principles,
progress, and challenges. Adv Ophthalmol Pract Res. 4:52–64. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lee DH, Han JW, Park H, Hong SJ, Kim CS,
Kim YS, Lee IS and Kim GJ: Achyranthis radix extract enhances
antioxidant effect of placenta-derived mesenchymal stem cell on
injured human ocular cells. Cells. 13:12292024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lee DH, Han JW, Park H, Hong SJ, Kim CS,
Kim YS, Lee IS and Kim GJ: Insulin restores retinal ganglion cell
functional connectivity and promotes visual recovery in glaucoma.
Sci Adv. 10:eadl57222024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Patel PD, Kodati B and Clark AF: Role of
glucocorticoids and glucocorticoid receptors in glaucoma
pathogenesis. Cells. 12:24522023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sgambellone S, Khanfar MA, Marri S,
Villano S, Nardini P, Frank A, Reiner-Link D, Stark H and Lucarini
L: Histamine H3 receptor antagonist/nitric oxide donors as novel
promising therapeutic hybrid-tools for glaucoma and retinal
neuroprotection. Biomed Pharmacother. 180:1174542024. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Cimaglia G, Tribble JR, Votruba M,
Williams PA and Morgan JE: Oral nicotinamide provides robust,
dose-dependent structural and metabolic neuroprotection of retinal
ganglion cells in experimental glaucoma. Acta Neuropathol Commun.
12:1372024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kralj T, Kokot A, Zlatar M, Masnec S,
Kasnik Kovac K, Milkovic Perisa M, Batelja Vuletic L, Giljanovic A,
Strbe S, Sikiric S, et al: Stable gastric pentadecapeptide BPC 157
therapy of rat glaucoma. Biomedicines. 10:892021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Geva M, Gershoni-Emek N, Naia L, Ly P,
Mota S, Rego AC, Hayden MR and Levin LA: Neuroprotection of retinal
ganglion cells by the sigma-1 receptor agonist pridopidine in
models of experimental glaucoma. Sci Rep. 11:219752021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R,
Lin F and Liang YL: Nanomedicine in glaucoma treatment: Current
challenges and future perspectives. Mater Today Bio. 28:1012292024.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ciociola EC, Fernandez E, Kaufmann M and
Klifto MR: Future directions of glaucoma treatment: Emerging gene,
neuroprotection, nanomedicine, stem cell, and vascular therapies.
Curr Opin Ophthalmol. 35:89–96. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W
and Cordeiro MF: Review: Neuroprotective nanocarriers in glaucoma.
Pharmaceuticals (Basel). 17:11902024. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Satyanarayana SD, Abu Lila AS, Moin A,
Moglad EH, Khafagy ES, Alotaibi HF, Obaidullah AJ and Charyulu RN:
Ocular delivery of Bimatoprost-loaded solid lipid nanoparticles for
effective management of glaucoma. Pharmaceuticals (Basel).
16:10012023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Esteban-Pérez S, Andrés-Guerrero V,
López-Cano JJ, Molina-Martínez I, Herrero-Vanrell R and Bravo-Osuna
I: Gelatin Nanoparticles-HPMC hybrid system for effective ocular
topical administration of antihypertensive agents. Pharmaceutics.
12:3062020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sánchez-López E, Egea MA, Davis BM, Guo L,
Espina M, Silva AM, Calpena AC, Souto EMB, Ravindran N, Ettcheto M,
et al: Memantine-Loaded PEGylated biodegradable nanoparticles for
the treatment of glaucoma. Small. 14:2018.doi:
10.1002/smll.201701808. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Emad Eldeeb A, Salah S and Ghorab M:
Proniosomal gel-derived niosomes: An approach to sustain and
improve the ocular delivery of brimonidine tartrate; formulation,
in-vitro characterization, and in-vivo pharmacodynamic study. Drug
Deliv. 26:509–521. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
He M, Rong R, Ji D and Xia X: From bench
to bed: The current genome editing therapies for glaucoma. Front
Cell Dev Biol. 10:8799572022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Danford ID, Verkuil LD, Choi DJ, Collins
DW, Gudiseva HV, Uyhazi KE, Lau MK, Kanu LN, Grant GR, Chavali VRM
and O'Brien JM: Characterizing the ‘POAGome’: A
bioinformatics-driven approach to primary open-angle glaucoma. Prog
Retin Eye Res. 58:89–114. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zeppieri M, Visalli F, Musa M, Avitabile
A, Giglio R, Tognetto D, Gagliano C, D'Esposito F and Cappellani F:
Beyond the eye: Glaucoma and the Brain. Brain Sci. 15:9342025.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
MULTI Consortium, . Boquet-Pujadas A,
Anagnostakis F, Duggan MR, Joynes CM, Toga AW, Yang Z, Walker KA,
Davatzikos C and Wen J: Brain-heart-eye axis revealed by
multi-organ imaging genetics and proteomics. Nat Biomed Eng.
September 30–2025.(Epub ahead of print).
|