Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress on molecular therapy for glaucoma (Review)

  • Authors:
    • Weiwei Wang
    • Gangwei Cheng
    • Qi Zhou
    • Sheng Wang
    • Linyi Zhang
  • View Affiliations / Copyright

    Affiliations: Glaucoma Center, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital, Northwest University, Xi'an, Shaanxi 710004, P.R. China, Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China, Department of Ophthalmology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 710061, P.R. China, Department of Ophthalmology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712036, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 47
    |
    Published online on: November 21, 2025
       https://doi.org/10.3892/mmr.2025.13757
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glaucoma is a notable public health concern as it can lead to irreversible vision loss; however, it remains challenging to treat effectively. Current options focus solely on managing intraocular pressure (IOP) to delay the progression of vision loss. The present review describes the multifaceted mechanisms of glaucoma and concludes by describing future promising treatment options that target specific mechanisms. Gene editing therapy is a promising option for patients with mutations known to cause glaucoma. Modulating the expression of genes involved in IOP regulation or neurodegeneration is another potential approach. Additionally, therapies targeting relevant molecular and metabolic pathways are also currently under investigation. The present review aims to highlight the most promising avenues for molecular intervention in glaucoma and guide future research efforts toward effective, long‑term solutions for preserving vision.
View Figures
View References

1 

Shan S, Wu J, Cao J, Feng Y, Zhou J, Luo Z, Song P and Rudan I; Global Health Epidemiology Research Group (GHERG), : Global incidence and risk factors for glaucoma: A systematic review and meta-analysis of prospective studies. J Glob Health. 14:042522024. View Article : Google Scholar : PubMed/NCBI

2 

Chen DF, Wang C, Si Y, Lu X, Zhou W, Huang Q, Zuo J, Cheng G, Leung DYL, Wang N, et al: Natural history and risk factors for glaucoma progression in Chinese patients with normal-tension glaucoma. Invest Ophthalmol Vis Sci. 65:282024. View Article : Google Scholar : PubMed/NCBI

3 

GBD 2019 Blindness and Vision Impairment Collaborators and Vision Loss Expert Group of the Global Burden of Disease Study, . Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob Health. 9:e144–e160. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Jackson AB, Martin KR, Coote MA, Medeiros FA, Girkin CA, Fazio MA, Liebmann JM, De Moraes CG, Weinreb RN, Zangwill LM and Wu Z: Fast progressors in glaucoma: Prevalence based on global and central visual field loss. Ophthalmology. 130:462–468. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Wang W and Wang H: Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med. 94:1012202023. View Article : Google Scholar : PubMed/NCBI

6 

Bou Ghanem GO, Wareham LK and Calkins DJ: Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res. 100:1012612024. View Article : Google Scholar : PubMed/NCBI

7 

Wang YX, Panda-Jonas S and Jonas JB: Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features. Prog Retin Eye Res. 83:1009332021. View Article : Google Scholar : PubMed/NCBI

8 

Chuangsuwanich T, Birgersson KE, Thiery A, Thakku SG, Leo HL and Girard MJ: Factors influencing lamina cribrosa microcapillary hemodynamics and oxygen concentrations. Invest Ophthalmol Vis Sci. 57:6167–6179. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Zhou W and Sabel BA: Vascular dysregulation in glaucoma: Retinal vasoconstriction and normal neurovascular coupling in altitudinal visual field defects. EPMA J. 14:87–99. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Maddineni P, Kasetti RB, Patel PD, Millar JC, Kiehlbauch C, Clark AF and Zode GS: CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma. Mol Neurodegener. 15:482020. View Article : Google Scholar : PubMed/NCBI

11 

Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ and Ramírez JM: Glaucoma: From pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci. 18:13545692024. View Article : Google Scholar : PubMed/NCBI

12 

Hurley DJ, Normile C, Irnaten M and O'Brien C: The intertwined roles of oxidative stress and endoplasmic reticulum stress in glaucoma. Antioxidants (Basel). 11:8862022. View Article : Google Scholar : PubMed/NCBI

13 

Tanito M, Kaidzu S, Takai Y and Ohira A: Association between systemic oxidative stress and visual field damage in open-angle glaucoma. Sci Rep. 6:257922016. View Article : Google Scholar : PubMed/NCBI

14 

Shi R, Wu Y, Chen H, Zhang Z, Bao S, Qu J and Zhou M: The causal effect of oxidative stress on the risk of glaucoma. Heliyon. 10:e248522024. View Article : Google Scholar : PubMed/NCBI

15 

Baris ME, Furundaoturan O, Kocamanoğlu M, Şahin S, Akçay Y and Yılmaz SG: Serum oxidative stress-related biomarkers in ocular hypertension and glaucoma. J Ophthalmic Vis Res. 19:433–439. 2024. View Article : Google Scholar : PubMed/NCBI

16 

Huang J, Zhang Y, Wu C, Wu Y, Wang F, Ning Y and Shi L: Association between oxidative balance score and glaucoma in the National Health and Nutrition Examination Survey. Front Nutr. 12:15281142025. View Article : Google Scholar : PubMed/NCBI

17 

Zhang Q, Jiang Y, Deng C and Wang J: Effects and potential mechanisms of exercise and physical activity on eye health and ocular diseases. Front Med (Lausanne). 11:13536242024. View Article : Google Scholar : PubMed/NCBI

18 

Ju WK, Liu Q, Perkins GA, Kim KY, Bastola T, Choi WY and Choi SH: Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res. 95:1011362023. View Article : Google Scholar : PubMed/NCBI

19 

Reinehr S, Rahim Pamuk M, Fuchshofer R, Dick HB and Joachim SC: Increased inflammation in older high-pressure glaucoma mice. Neurobiol Aging. 145:55–64. 2025. View Article : Google Scholar : PubMed/NCBI

20 

Baudouin C, Kolko M, Melik-Parsadaniantz S and Messmer EM: Inflammation in glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res. 83:1009162021. View Article : Google Scholar : PubMed/NCBI

21 

Sacca SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE and Izzotti A: From DNA damage to functional changes of the TM in aging and glaucoma. Ageing Res Rev. 29:26–41. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Al-Namaeh M: A meta-analysis of the association between high-sensitivity C-reactive protein level and glaucoma. Eur J Ophthalmol. 35:29–39. 2025. View Article : Google Scholar : PubMed/NCBI

23 

Li X, Sun YQ, Zhong XD, Zhang ZJ, Tang JF and Luo ZY: Association between systemic inflammatory response index and glaucoma incidence from 2005 to 2008. Front Med (Lausanne). 12:15420732025. View Article : Google Scholar : PubMed/NCBI

24 

Chen D, Miao S, Chen X, Wang Z, Lin P, Zhang N and Yang N: Regulated necrosis in glaucoma: Focus on ferroptosis and pyroptosis. Mol Neurobiol. 61:2542–2555. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Morgan JE, Bevan RJ and Cimaglia G: Retinal ganglion cell subtypes and their vulnerability in glaucoma. Methods Mol Biol. 2858:191–205. 2025. View Article : Google Scholar : PubMed/NCBI

26 

Qin Q, Yu N, Gu Y, Ke W, Zhang Q, Liu X, Wang K and Chen M: Inhibiting multiple forms of cell death optimizes ganglion cells survival after retinal ischemia reperfusion injury. Cell Death Dis. 13:5072022. View Article : Google Scholar : PubMed/NCBI

27 

Feng Y, Wang X, Li P, Shi X, Prokosch V and Liu H: Exogenous hydrogen sulfide and NOX2 inhibition mitigate ferroptosis in Pressure-induced retinal ganglion cell damage. Biochim Biophys Acta Mol Basis Dis. 1871:1677052025. View Article : Google Scholar : PubMed/NCBI

28 

Yao F, Peng J, Zhang E, Ji D, Gao Z, Tang Y, Yao X and Xia X: Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ. 30:69–81. 2023. View Article : Google Scholar : PubMed/NCBI

29 

Huang S, Liu K, Su Y, Wang F and Feng T: Research progress of ferroptosis in glaucoma and optic nerve damage. Mol Cell Biochem. 478:721–727. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M, Taylor RW, Turnbull DM and Chinnery PF: OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum Mol Genet. 19:3043–3052. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Edwards G, Gnanasekaran A, Jeong YM, Liu Y, Croft K, Dickey AS, Bernstein SL, Cortopassi GA and Flippo KH: Loss of AKAP1 triggers Drp1 dephosphorylation-mediated mitochondrial fission and loss in retinal ganglion cells. Cell Death Dis. 11:2542020. View Article : Google Scholar : PubMed/NCBI

32 

Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R, et al: NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 352:1436–1443. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Petriti B, Fernandez-Albarral JA, Salobrar-Garcia E, Lopez-Cuenca I, Ramirez AI, de Hoz R, Trivino A and Ramirez JM: Neuroprotection in Glaucoma: NAD+/NADH redox state as a potential biomarker and therapeutic target. Cells. 10:14022021. View Article : Google Scholar : PubMed/NCBI

34 

Saccuzzo EG, Youngblood HA and Lieberman RL: Myocilin misfolding and glaucoma: A 20-year update. Prog Retin Eye Res. 95:1011882023. View Article : Google Scholar : PubMed/NCBI

35 

Fuse N, Kimura M, Shimizu A, Koshiba S, Hamanaka T, Nakamura M, Ishida N, Sakai H, Ikeda Y, Mori K, et al: Mutations of CYP1B1 and FOXC1 genes for childhood glaucoma in Japanese individuals. Jpn J Ophthalmol. 68:688–701. 2024. View Article : Google Scholar : PubMed/NCBI

36 

Faiq MA, Singh HN, Ali M, Dada R, Chan KC, Dada T and Saluja D: Functional genomics of primary congenital glaucoma by pathway analysis and functional characterization of CYP1B1 mutations. Vision Res. 227:1085342025. View Article : Google Scholar : PubMed/NCBI

37 

Swarup G, Medchalmi S, Ramachandran G and Sayyad Z: Molecular aspects of cytoprotection by Optineurin during stress and disease. Biochim Biophys Acta Mol Cell Res. 1872:1198952025. View Article : Google Scholar : PubMed/NCBI

38 

Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, et al: Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. Nat Commun. 16:17892025. View Article : Google Scholar : PubMed/NCBI

39 

Song Rong S, Larson A and Wiggs JL; NEIGHBORHOOD consortium, : ATXN2 loss of function results in glaucoma-related features supporting a role for Ataxin-2 in primary open-angle glaucoma (POAG) pathogenesis. Vision Res. 226:1085082025. View Article : Google Scholar : PubMed/NCBI

40 

Chacon-Camacho OF, Ordaz-Robles T, Cid-García MA, Yepes-Rodríguez O, Arce-González R, Martínez-Aguilar A and Zenteno JC: A new ocular phenotype combining juvenile glaucoma and Doyne honeycomb retinal dystrophy (Malattia Leventinese) due to a novel EFEMP1 pathogenic variant. Am J Med Genet A. 197:e638692025. View Article : Google Scholar : PubMed/NCBI

41 

Csidey M, Csorba A, Kormányos K, Náray A, Kéki-Kovács K, Németh O, Knézy K, Bausz M, Szigeti A, Szabó D, et al: Examination of the corneal endothelium in patients with congenital aniridia with a PAX6 mutation using in vivo confocal laser scanning microscopy. Cornea. 44:324–331. 2025. View Article : Google Scholar : PubMed/NCBI

42 

Moazzeni H, Khani M and Elahi E: Insights into the regulatory molecules involved in glaucoma pathogenesis. Am J Med Genet C Semin Med Genet. 184:782–827. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Rejas-González R, Montero-Calle A, Pastora Salvador N, Crespo Carballés MJ, Ausín-González E, Sánchez-Naves J, Pardo Calderón S, Barderas R and Guzman-Aranguez A: Unraveling the nexus of oxidative stress, ocular diseases, and small extracellular vesicles to identify novel glaucoma biomarkers through in-depth proteomics. Redox Biol. 77:1033682024. View Article : Google Scholar : PubMed/NCBI

44 

Botello-Marabotto M, Martínez-Bisbal MC, Pinazo-Durán MD and Martínez-Máñez R: Tear metabolomics for the diagnosis of primary open angle glaucoma. Talanta. 273:1258262024. View Article : Google Scholar : PubMed/NCBI

45 

Shin DY, Han JS, Park CK, Lee NY and Jung KI: Parallel analysis of exosomes and cytokines in aqueous humor samples to evaluate biomarkers for glaucoma. Cells. 13:10302024. View Article : Google Scholar : PubMed/NCBI

46 

Sulak R, Liu X and Smedowski A: The concept of gene therapy for glaucoma: The dream that has not come true yet. Neural Regen Res. 19:92–99. 2024. View Article : Google Scholar : PubMed/NCBI

47 

Sundaresan Y, Yacoub S, Kodati B, Amankwa CE, Raola A and Zode G: Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases. FEBS J. 290:5248–5269. 2023. View Article : Google Scholar : PubMed/NCBI

48 

Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, et al: CRISPR Cas9 based treatment of myocilin associated glaucoma. Proc Natl Acad Sci USA. 114:11199–11204. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, et al: Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. Sci Rep. 14:69582024. View Article : Google Scholar : PubMed/NCBI

50 

Wen D, Ji Y, Li Y, Duan W, Wang Y, Li Z, Tao M and Liu Y: OPTN gene therapy increases autophagy and protects mitochondria in SOD1 G93A expressing transgenic mice and cells. FEBS J. 291:795–813. 2024. View Article : Google Scholar : PubMed/NCBI

51 

Khatib TZ, Osborne A, Yang S, Ali Z, Jia W, Manyakin I, Hall K, Watt R, Widdowson PS and Martin KR: Receptor ligand supplementation via a self-cleaving 2A peptide-based gene therapy promotes CNS axonal transport with functional recovery. Sci Adv. 7:eabd25902021. View Article : Google Scholar : PubMed/NCBI

52 

Wu J, Bell OH, Copland DA, Young A, Pooley JR, Maswood R, Evans RS, Khaw PT, Ali RR, Dick AD and Chu CJ: Gene therapy for glaucoma by ciliary body aquaporin 1 disruption using CRISPR-Cas9. Mol Ther. 28:820–829. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Wang J, Harris A, Prendes MA, Alshawa L, Gross JC, Wentz SM, Rao AB, Kim NJ, Synder A and Siesky B: Targeting transforming growth factor-beta signaling in primary open-angle glaucoma. J Glaucoma. 26:390–395. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Rayana NP, Sugali CK, Dai J, Peng M, Liu S, Zhang Y, Wan J and Mao W: Using CRISPR Interference as a Therapeutic Approach to Treat TGFβ2-Induced Ocular Hypertension and Glaucoma. Invest Ophthalmol Vis Sci. 62:72021. View Article : Google Scholar : PubMed/NCBI

55 

Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA and He Z: Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature. 480:372–375. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Lee EJ, Han JC, Park DY, Cho J and Kee C: Effect of connective tissue growth factor gene editing using adeno-associated virus-mediated CRISPR-Cas9 on rabbit glaucoma filtering surgery outcomes. Gene Ther. 28:277–286. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Yao M, Zeng Z, Li S, Zou Z, Chen Z, Chen X, Gao Q, Zhao G, Chen A, Li Z, et al: CRISPR-CasRx-mediated disruption of Aqp1/Adrb2/Rock1/Rock2 genes reduces intraocular pressure and retinal ganglion cell damage in mice. Nat Commun. 15:63952024. View Article : Google Scholar : PubMed/NCBI

58 

Osborne A, Khatib TZ, Songra L, Barber AC, Hall K, Kong GYX, Widdowson PS and Martin KR: Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 9:10072018. View Article : Google Scholar : PubMed/NCBI

59 

Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, Boguszewski PM, Waleszczyk W and Skup M: Neuroprotection of retinal ganglion cells with AAV2-BDNF pretreatment restoring normal TrkB receptor protein levels in glaucoma. Int J Mol Sci. 21:62622020. View Article : Google Scholar : PubMed/NCBI

60 

Fujita K, Nishiguchi KM, Shiga Y and Nakazawa T: Spatially and temporally regulated NRF2 gene therapy using Mcp-1 promoter in retinal ganglion cell injury. Mol Ther Methods Clin Dev. 5:130–141. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Nishijima E, Honda S, Kitamura Y, Namekata K, Kimura A, Guo X, Azuchi Y, Harada C, Murakami A, Matsuda A, et al: Vision protection and robust axon regeneration in glaucoma models by membrane-associated Trk receptors. Mol Ther. 31:810–824. 2023. View Article : Google Scholar : PubMed/NCBI

62 

Phatak NR, Stankowska DL and Krishnamoorthy RR: Bcl-2, Bcl-xL, and p-AKT are involved in neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Mol Vis. 22:1048–1061. 2016.PubMed/NCBI

63 

Stankowska DL, Minton AZ, Rutledge MA, Mueller BH II, Phatak NR, He S, Ma HY, Forster MJ, Yorio T and Krishnamoorthy RR: Neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Invest Ophthalmol Vis Sci. 56:893–907. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Donahue RJ, Fehrman RL, Gustafson JR and Nickells RW: BCLXL gene therapy moderates neuropathology in the DBA/2J mouse model of inherited glaucoma. Cell Death Dis. 12:7812021. View Article : Google Scholar : PubMed/NCBI

65 

Lani-Louzada R, Marra C, Dias MS, de Araújo VG, Abreu CA, Ribas VT, Adesse D, Allodi S, Chiodo V, Hauswirth W, et al: Neuroprotective gene therapy by overexpression of the transcription factor MAX in rat models of glaucomatous neurodegeneration. Invest Ophthalmol Vis Sci. 63:52022. View Article : Google Scholar : PubMed/NCBI

66 

Jiang W, Tang L, Zeng J and Chen B: Adeno-associated virus-mediated SOD gene therapy protects the retinal ganglion cells from chronic intraocular pressure elevation-induced injury via attenuating oxidative stress and improving mitochondrial dysfunction in a rat model. Am J Transl Res. 8:799–810. 2016.PubMed/NCBI

67 

Luo J, Wang S, Zhou Z and Zhao Y: Ad- and AAV8-mediated ABCA1 gene therapy in a murine model with retinal ischemia/reperfusion injuries. Mol Ther Methods Clin Dev. 20:551–558. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, Wang X, Tian W, Dong X, Zhou L, et al: scAAV2-mediated C3 Transferase gene therapy in a rat model with retinal ischemia/reperfusion injuries. Mol Ther Methods Clin Dev. 17:894–903. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Wang Q, Zhuang P, Huang H, Li L, Liu L, Webber HC, Dalal R, Siew L, Fligor CM, Chang KC, et al: Mouse gamma-synuclein promoter-mediated gene expression and editing in mammalian retinal ganglion cells. J Neurosci. 40:3896–3914. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Kiyota N, Namekata K, Nishijima E, Guo X, Kimura A, Harada C, Nakazawa T and Harada T: Effects of constitutively active K-Ras on axon regeneration after optic nerve injury. Neurosci Lett. 799:1371242023. View Article : Google Scholar : PubMed/NCBI

71 

O'Callaghan J, Delaney C, O'Connor M, van Batenburg-Sherwood J, Schicht M, Lütjen-Drecoll E, Hudson N, Ni Dhubhghaill S, Humphries P, Stanley C, et al: Matrix metalloproteinase-3 (MMP-3)-mediated gene therapy for glaucoma. Sci Adv. 9:eadf65372023. View Article : Google Scholar : PubMed/NCBI

72 

Borras T, Stepankoff M and Danias J: Genes as drugs for glaucoma: Latest advances. Curr Opin Ophthalmol. 35:131–137. 2024. View Article : Google Scholar : PubMed/NCBI

73 

Millington-Ward S, Palfi A, Shortall C, Finnegan LK, Bargroff E, Post IJM, Maguire J, Irnaten MO, Brien C, Kenna PF, et al: AAV-NDI1 therapy provides significant benefit to murine and cellular models of glaucoma. Int J Mol Sci. 25:88762024. View Article : Google Scholar : PubMed/NCBI

74 

Abbasi M, Gupta VK, Chitranshi N, Gupta VB, Mirzaei M, Dheer Y, Garthwaite L, Zaw T, Parton RG, You Y and Graham SL: Caveolin-1 ablation imparts partial protection against inner retinal injury in experimental glaucoma and reduces apoptotic activation. Mol Neurobiol. 57:3759–3784. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Huang X and Chau Y: Enhanced delivery of siRNA to retinal ganglion cells by intravitreal lipid nanoparticles of positive charge. Mol Pharm. 18:377–385. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Jiang J, Zhang X, Tang Y, Li S and Chen J: Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol. 35:4–24. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Kong AW and Ou Y: The catcher in the eye: Stem cells as a therapeutic for glaucoma. Ophthalmol Glaucoma. 6:1–3. 2023. View Article : Google Scholar : PubMed/NCBI

78 

Du Y, Yun H, Yang E and Schuman JS: Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci. 54:1450–1459. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Zhu W, Gramlich OW, Laboissonniere L, Jain A, Sheffield VC, Trimarchi JM, Tucker BA and Kuehn MH: Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci USA. 113:E3492–E3500. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Xiong S, Kumar A, Tian S, Taher EE, Yang E, Kinchington PR, Xia X and Du Y: Stem cell transplantation rescued a primary open-angle glaucoma mouse model. Elife. 10:e636772021. View Article : Google Scholar : PubMed/NCBI

81 

Coulon SJ, Schuman JS, Du Y, Bahrani Fard MR, Ethier CR and Stamer WD: A novel glaucoma approach: Stem cell regeneration of the trabecular meshwork. Prog Retin Eye Res. 90:1010632022. View Article : Google Scholar : PubMed/NCBI

82 

Xi G, Feng P, Zhang X, Wu S, Zhang J, Wang X, Xiang A, Xu W, Wang N and Zhu W: iPSC-derived cells stimulate ABCG2+/NES+ endogenous trabecular meshwork cell proliferation and tissue regeneration. Cell Prolif. 57:e136112024. View Article : Google Scholar : PubMed/NCBI

83 

Hu BY, Xin M, Chen M, Yu P and Zeng LZ: Mesenchymal stem cells for repairing glaucomatous optic nerve. Int J Ophthalmol. 17:748–760. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Ji S, Peng Y, Liu J, Xu P and Tang S: Human adipose tissue-derived stem cell extracellular vesicles attenuate ocular hypertension-induced retinal ganglion cell damage by inhibiting microglia-TLR4/MAPK/NF-kB proinflammatory cascade signaling. Acta Neuropathol Commun. 12:442024. View Article : Google Scholar : PubMed/NCBI

85 

Yu F, Wang Y, Huang CQ, Lin SJ, Gao RX and Wu RY: Neuroprotective effect of mesenchymal stem cell-derived extracellular vesicles on optic nerve injury in chronic ocular hypertension. Neural Regen Res. 18:2301–2306. 2023. View Article : Google Scholar : PubMed/NCBI

86 

da Silva-Junior AJ, Mesentier-Louro LA, Nascimento-Dos-Santos G, Teixeira-Pinheiro LC, Vasques JF, Chimeli-Ormonde L, Bodart-Santos V, de Carvalho LRP, Santiago MF and Mendez-Otero R: Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats. Stem Cell Res Ther. 12:692021. View Article : Google Scholar : PubMed/NCBI

87 

Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, et al: Retinal ganglion cell repopulation for vision restoration in optic neuropathy: A roadmap from the RReSTORe Consortium. Mol Neurodegener. 18:642023. View Article : Google Scholar : PubMed/NCBI

88 

Lei Q, Zhang R, Yuan F and Xiang M: Integration and differentiation of transplanted Human iPSC-Derived retinal ganglion cell precursors in murine retinas. Int J Mol Sci. 25:129472024. View Article : Google Scholar : PubMed/NCBI

89 

Chaibakhsh S, Azimi F, Shoae-Hassani A, Niknam P, Ghamari A, Dehghan S and Nilforushan N: Evaluating the impact of mesenchymal stem cell therapy on visual acuity and retinal nerve fiber layer thickness in optic neuropathy patients: A comprehensive systematic review and meta-analysis. BMC Ophthalmol. 24:3162024. View Article : Google Scholar : PubMed/NCBI

90 

Niu Y, Ji J, Yao K and Fu Q: Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. Adv Ophthalmol Pract Res. 4:52–64. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Lee DH, Han JW, Park H, Hong SJ, Kim CS, Kim YS, Lee IS and Kim GJ: Achyranthis radix extract enhances antioxidant effect of placenta-derived mesenchymal stem cell on injured human ocular cells. Cells. 13:12292024. View Article : Google Scholar : PubMed/NCBI

92 

Lee DH, Han JW, Park H, Hong SJ, Kim CS, Kim YS, Lee IS and Kim GJ: Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. Sci Adv. 10:eadl57222024. View Article : Google Scholar : PubMed/NCBI

93 

Patel PD, Kodati B and Clark AF: Role of glucocorticoids and glucocorticoid receptors in glaucoma pathogenesis. Cells. 12:24522023. View Article : Google Scholar : PubMed/NCBI

94 

Sgambellone S, Khanfar MA, Marri S, Villano S, Nardini P, Frank A, Reiner-Link D, Stark H and Lucarini L: Histamine H3 receptor antagonist/nitric oxide donors as novel promising therapeutic hybrid-tools for glaucoma and retinal neuroprotection. Biomed Pharmacother. 180:1174542024. View Article : Google Scholar : PubMed/NCBI

95 

Cimaglia G, Tribble JR, Votruba M, Williams PA and Morgan JE: Oral nicotinamide provides robust, dose-dependent structural and metabolic neuroprotection of retinal ganglion cells in experimental glaucoma. Acta Neuropathol Commun. 12:1372024. View Article : Google Scholar : PubMed/NCBI

96 

Kralj T, Kokot A, Zlatar M, Masnec S, Kasnik Kovac K, Milkovic Perisa M, Batelja Vuletic L, Giljanovic A, Strbe S, Sikiric S, et al: Stable gastric pentadecapeptide BPC 157 therapy of rat glaucoma. Biomedicines. 10:892021. View Article : Google Scholar : PubMed/NCBI

97 

Geva M, Gershoni-Emek N, Naia L, Ly P, Mota S, Rego AC, Hayden MR and Levin LA: Neuroprotection of retinal ganglion cells by the sigma-1 receptor agonist pridopidine in models of experimental glaucoma. Sci Rep. 11:219752021. View Article : Google Scholar : PubMed/NCBI

98 

Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F and Liang YL: Nanomedicine in glaucoma treatment: Current challenges and future perspectives. Mater Today Bio. 28:1012292024. View Article : Google Scholar : PubMed/NCBI

99 

Ciociola EC, Fernandez E, Kaufmann M and Klifto MR: Future directions of glaucoma treatment: Emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies. Curr Opin Ophthalmol. 35:89–96. 2024. View Article : Google Scholar : PubMed/NCBI

100 

Pei K, Georgi M, Hill D, Lam CFJ, Wei W and Cordeiro MF: Review: Neuroprotective nanocarriers in glaucoma. Pharmaceuticals (Basel). 17:11902024. View Article : Google Scholar : PubMed/NCBI

101 

Satyanarayana SD, Abu Lila AS, Moin A, Moglad EH, Khafagy ES, Alotaibi HF, Obaidullah AJ and Charyulu RN: Ocular delivery of Bimatoprost-loaded solid lipid nanoparticles for effective management of glaucoma. Pharmaceuticals (Basel). 16:10012023. View Article : Google Scholar : PubMed/NCBI

102 

Esteban-Pérez S, Andrés-Guerrero V, López-Cano JJ, Molina-Martínez I, Herrero-Vanrell R and Bravo-Osuna I: Gelatin Nanoparticles-HPMC hybrid system for effective ocular topical administration of antihypertensive agents. Pharmaceutics. 12:3062020. View Article : Google Scholar : PubMed/NCBI

103 

Sánchez-López E, Egea MA, Davis BM, Guo L, Espina M, Silva AM, Calpena AC, Souto EMB, Ravindran N, Ettcheto M, et al: Memantine-Loaded PEGylated biodegradable nanoparticles for the treatment of glaucoma. Small. 14:2018.doi: 10.1002/smll.201701808. View Article : Google Scholar : PubMed/NCBI

104 

Emad Eldeeb A, Salah S and Ghorab M: Proniosomal gel-derived niosomes: An approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in-vivo pharmacodynamic study. Drug Deliv. 26:509–521. 2019. View Article : Google Scholar : PubMed/NCBI

105 

He M, Rong R, Ji D and Xia X: From bench to bed: The current genome editing therapies for glaucoma. Front Cell Dev Biol. 10:8799572022. View Article : Google Scholar : PubMed/NCBI

106 

Danford ID, Verkuil LD, Choi DJ, Collins DW, Gudiseva HV, Uyhazi KE, Lau MK, Kanu LN, Grant GR, Chavali VRM and O'Brien JM: Characterizing the ‘POAGome’: A bioinformatics-driven approach to primary open-angle glaucoma. Prog Retin Eye Res. 58:89–114. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Zeppieri M, Visalli F, Musa M, Avitabile A, Giglio R, Tognetto D, Gagliano C, D'Esposito F and Cappellani F: Beyond the eye: Glaucoma and the Brain. Brain Sci. 15:9342025. View Article : Google Scholar : PubMed/NCBI

108 

MULTI Consortium, . Boquet-Pujadas A, Anagnostakis F, Duggan MR, Joynes CM, Toga AW, Yang Z, Walker KA, Davatzikos C and Wen J: Brain-heart-eye axis revealed by multi-organ imaging genetics and proteomics. Nat Biomed Eng. September 30–2025.(Epub ahead of print).

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang W, Cheng G, Zhou Q, Wang S and Zhang L: Research progress on molecular therapy for glaucoma (Review). Mol Med Rep 33: 47, 2026.
APA
Wang, W., Cheng, G., Zhou, Q., Wang, S., & Zhang, L. (2026). Research progress on molecular therapy for glaucoma (Review). Molecular Medicine Reports, 33, 47. https://doi.org/10.3892/mmr.2025.13757
MLA
Wang, W., Cheng, G., Zhou, Q., Wang, S., Zhang, L."Research progress on molecular therapy for glaucoma (Review)". Molecular Medicine Reports 33.1 (2026): 47.
Chicago
Wang, W., Cheng, G., Zhou, Q., Wang, S., Zhang, L."Research progress on molecular therapy for glaucoma (Review)". Molecular Medicine Reports 33, no. 1 (2026): 47. https://doi.org/10.3892/mmr.2025.13757
Copy and paste a formatted citation
x
Spandidos Publications style
Wang W, Cheng G, Zhou Q, Wang S and Zhang L: Research progress on molecular therapy for glaucoma (Review). Mol Med Rep 33: 47, 2026.
APA
Wang, W., Cheng, G., Zhou, Q., Wang, S., & Zhang, L. (2026). Research progress on molecular therapy for glaucoma (Review). Molecular Medicine Reports, 33, 47. https://doi.org/10.3892/mmr.2025.13757
MLA
Wang, W., Cheng, G., Zhou, Q., Wang, S., Zhang, L."Research progress on molecular therapy for glaucoma (Review)". Molecular Medicine Reports 33.1 (2026): 47.
Chicago
Wang, W., Cheng, G., Zhou, Q., Wang, S., Zhang, L."Research progress on molecular therapy for glaucoma (Review)". Molecular Medicine Reports 33, no. 1 (2026): 47. https://doi.org/10.3892/mmr.2025.13757
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team