|
1
|
Han H, Yu JG and Yan H: Research progress
on signaling pathways related to drug research in proliferative
vitreoretinopathy. Zhonghua Yan Ke Za Zhi. 59:225–230. 2023.(In
Chinese). PubMed/NCBI
|
|
2
|
Li X, Zhao M and He S: RPE
epithelial-mesenchymal transition plays a critical role in the
pathogenesis of proliferative vitreoretinopathy. Ann Transl Med.
8:2632020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yang S, Li H, Yao H, Zhang Y, Bao H, Wu L,
Zhang C, Li M, Feng L, Zhang J, et al: Long noncoding RNA ERLR
mediates epithelial-mesenchymal transition of retinal pigment
epithelial cells and promotes experimental proliferative
vitreoretinopathy. Cell Death Differ. 28:2351–2366. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Pastor JC, Rojas J, Pastor-Idoate S, Di
Lauro S, Gonzalez-Buendia L and Delgado-Tirado S: Proliferative
vitreoretinopathy: A new concept of disease pathogenesis and
practical consequences. Prog Retin Eye Res. 51:125–155. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yang SF, Chen YS, Chien HW, Wang K, Lin
CL, Chiou HL, Lee CY, Chen PN and Hsieh YH: Melatonin attenuates
epidermal growth factor-induced cathepsin S expression in ARPE-19
cells: Implications for proliferative vitreoretinopathy. J Pineal
Res. 68:e126152020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Duan Y, Wu W, Cui J, Matsubara JA,
Kazlauskas A, Ma G, Li X and Lei H: Ligand-independent activation
of platelet-derived growth factor receptor β promotes
vitreous-induced contraction of retinal pigment epithelial cells.
BMC Ophthalmol. 23:3442023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xu Y and Li X: Association between MeCP2
and proliferative vitreoretinopathy under the regulation of tumor
necrosis factor. Chin J Exp Ophthalmol. 548–552. 2020.
|
|
8
|
Battistelli C, Sabarese G, Santangelo L,
Montaldo C, Gonzalez FJ, Tripodi M and Cicchini C: The lncRNA
HOTAIR transcription is controlled by HNF4α-induced chromatin
topology modulation. Cell Death Differ. 26:890–901. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mudhar HS: A brief review of the
histopathology of proliferative vitreoretinopathy (PVR). Eye
(Lond). 34:246–250. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang S, Li H, Li M and Wang F: Mechanisms
of epithelial-mesenchymal transition in proliferative
vitreoretinopathy. Discov Med. 20:207–217. 2015.PubMed/NCBI
|
|
11
|
Gonzalez DM and Medici D: Signaling
mechanisms of the epithelial-mesenchymal transition. Sci Signal.
7:re82014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jiang W, Liang Yl, Liu Y, Chen YY, Yang
ST, Li BR, Yu YX, Lyu Y and Wang R: MeCP2 inhibits proliferation
and migration of breast cancer via suppression of
epithelial-mesenchymal transition. J Cell Mol Med. 24:7959–7967.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang H, Li J, He J, Liu Y, Feng W, Zhou H,
Zhou M, Wei H, Lu Y, Peng W, et al: Methyl-CpG-binding protein 2
drives the Furin/TGF-β1/Smad axis to promote epithelial-mesenchymal
transition in pancreatic cancer cells. Oncogenesis. 9:762020.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Moran-Salvador E, Garcia-Macia M,
Sivaharan A, Sabater L, Zaki MYW, Oakley F, Knox A, Page A, Luli S,
Mann J and Mann DA: Fibrogenic activity of MECP2 is regulated by
phosphorylation in hepatic stellate cells. Gastroenterology.
157:1398–1412.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bian E, Chen X, Xu Y, Ji X, Cheng M, Wang
H, Fang Z and Zhao B: A central role for MeCP2 in the epigenetic
repression of miR-200c during epithelial-to-mesenchymal transition
of glioma. J Exp Clin Cancer Res. 38:3662019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhao X, Zhang Y, Wu F and Li X, Guo S and
Li X: MeCP2-Induced alternations of transcript levels and m6A
methylation in human retinal pigment epithelium cells. ACS Omega.
8:47964–47973. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
He S, Barron E, Ishikawa K, Nazari
Khanamiri H, Spee C, Zhou P, Kase S, Wang Z, Dustin LD and Hinton
DR: Inhibition of DNA methylation and Methyl-CpG-Binding protein 2
suppresses RPE transdifferentiation: Relevance to proliferative
vitreoretinopathy. Invest Ophthalmol Vis Sci. 56:5579–5589. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li X, Li X, He S and Zhao M:
MeCP2-421-mediated RPE epithelial-mesenchymal transition and its
relevance to the pathogenesis of proliferative vitreoretinopathy. J
Cell Mol Med. 24:9420–9427. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang Y, Wu F, Guo S, Yin R, Yuan M and Li
X, Zhao X and Li X: Critical role of apoptosis in MeCP2-mediated
epithelial-mesenchymal transition of ARPE-19 cells. J Cell Physiol.
239:e314292024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu K, Li H, Wang F and Su Y: Ferroptosis:
Mechanisms and advances in ocular diseases. Mol Cell Biochem.
478:2081–2095. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wolters PJ, Blackwell TS, Eickelberg O,
Loyd JE, Kaminski N, Jenkins G, Maher TM, Molina-Molina M, Noble
PW, Raghu G, et al: Time for a change: Is idiopathic pulmonary
fibrosis still idiopathic and only fibrotic? Lancet Respir Med.
6:154–160. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen L, Hambright WS, Na R and Ran Q:
Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in
neurons results in rapid motor neuron degeneration and paralysis. J
Biol Chem. 290:28097–28106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yang WS, SriRamaratnam R, Welsch ME,
Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji
AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by
GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Qiu Y, Cao Y, Cao W, Jia Y and Lu N: The
application of ferroptosis in diseases. Pharmacol Res.
159:1049192020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tong Y, Wu Y, Ma J, Ikeda M, Ide T,
Griffin CT, Ding XQ and Wang S: Comparative mechanistic study of
RPE cell death induced by different oxidative stresses. Redox Biol.
65:1028402023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wei X, Ge Y, Zheng Y, Zhao S, Zhou Y,
Chang Y, Wang N, Wang X, Zhang J, Zhang X, et al: Hybrid EMT
phenotype and cell membrane tension promote colorectal cancer
resistance to ferroptosis. Adv Sci (Weinh). 12:e24138822025.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh
ST and Lee HB: Role of reactive oxygen species in TGF-beta1-induced
mitogen-activated protein kinase activation and
epithelial-mesenchymal transition in renal tubular epithelial
cells. J Am Soc Nephrol. 16:667–675. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lu Q, Wang WW, Zhang MZ, Ma ZX, Qiu XR,
Shen M and Yin XX: ROS induces epithelial-mesenchymal transition
via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy. Exp
Ther Med. 17:835–846. 2019.PubMed/NCBI
|
|
30
|
Cai H, Su S, Li Y, Zeng H, Zhu Z, Guo J,
Zhu Y, Guo S, Yu L, Qian D, et al: Protective effects of Salvia
miltiorrhiza on adenine-induced chronic renal failure by regulating
the metabolic profiling and modulating the NADPH oxidase/ROS/ERK
and TGF-β/Smad signaling pathways. J Ethnopharmacol. 212:153–165.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chang YW and Singh KP: Nicotine-induced
oxidative stress contributes to EMT and stemness during neoplastic
transformation through epigenetic modifications in human kidney
epithelial cells. Toxicol Appl Pharmacol. 374:65–76. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Su LJ, Zhang JH, Gomez H, Murugan R, Hong
X, Xu D, Jiang F and Peng ZY: Reactive oxygen Species-induced lipid
peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med
Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu Z, Nan P, Gong Y, Tian L, Zheng Y and
Wu Z: Endoplasmic reticulum stress-triggered ferroptosis via the
XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic
nephropathy. Biomed Pharmacother. 164:1148972023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sun L, Dong H, Zhang W, Wang N, Ni N, Bai
X and Liu N: Lipid peroxidation, GSH depletion, and SLC7A11
inhibition are common causes of EMT and ferroptosis in A549 cells,
but different in specific mechanisms. DNA Cell Biol. 40:172–183.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang XY, Xu YY and Chen WY: MicroRNA-1324
inhibits cell proliferative ability and invasiveness by targeting
MECP2 in gastric cancer. Eur Rev Med Pharmacol Sci. 24:4766–4774.
2020.PubMed/NCBI
|
|
36
|
Hendricks JM, Doubravsky CE, Wehri E, Li
Z, Roberts MA, Deol KK, Lange M, Lasheras-Otero I, Momper JD, Dixon
SJ, et al: Identification of structurally diverse FSP1 inhibitors
that sensitize cancer cells to ferroptosis. Cell Chem Biol.
30:1090–1103.e7. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yi J, Minikes AM and Jiang X: Aiming at
cancer in vivo: Ferroptosis-inducer delivered by nanoparticles.
Cell Chem Biol. 26:621–622. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sato M, Kusumi R, Hamashima S, Kobayashi
S, Sasaki S, Komiyama Y, Izumikawa T, Conrad M, Bannai S and Sato
H: The ferroptosis inducer erastin irreversibly inhibits system
xc- and synergizes with cisplatin to increase
cisplatin's cytotoxicity in cancer cells. Sci Rep. 8:9682018.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wei TT, Zhang MY, Zheng XH, Xie TH, Wang
W, Zou J, Li Y, Li HY, Cai J, Wang X, et al: Interferon-γ induces
retinal pigment epithelial cell Ferroptosis by a
JAK1-2/STAT1/SLC7A11 signaling pathway in Age-related Macular
Degeneration. FEBS J. 289:1968–1983. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Guo M, Zhu Y, Shi Y, Meng X, Dong X, Zhang
H, Wang X, Du M and Yan H: Inhibition of ferroptosis promotes
retina ganglion cell survival in experimental optic neuropathies.
Redox Biol. 58:1025412022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kuo PJ, Rau CS, Wu YC, Tsai CW, Wu CJ, Lin
CW and Hsieh CH: Translational potential of baicalein in mitigating
RSL3-Induced ferroptosis in fibroblasts: Implications for
therapeutic Interventions. Int J Med Sci. 21:1257–1264. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Huang X and Chau Y: Intravitreal
nanoparticles for retinal delivery. Drug Discov Today.
24:1510–1523. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Schär P and Fritsch O: DNA repair and the
control of DNA methylation. Prog Drug Res. 67:51–68.
2011.PubMed/NCBI
|
|
44
|
Guerriero E, Capone F, Accardo M, Sorice
A, Costantini M, Colonna G, Castello G and Costantini S: GPX4 and
GPX7 over-expression in human hepatocellular carcinoma tissues. Eur
J Histochem. 59:25402015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yagublu V, Arthur JR, Babayeva SN, Nicol
F, Post S and Keese M: Expression of selenium-containing proteins
in human colon carcinoma tissue. Anticancer Res. 31:2693–2698.
2011.PubMed/NCBI
|
|
46
|
Cejas P, García-Cabezas MA, Casado E,
Belda-Iniesta C, De Castro J, Fresno JA, Sereno M, Barriuso J,
Espinosa E, Zamora P, et al: Phospholipid hydroperoxide glutathione
peroxidase (PHGPx) expression is downregulated in poorly
differentiated breast invasive ductal carcinoma. Free Radic Res.
41:681–687. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Rudenko E, Kondratov O, Gerashchenko G,
Lapska Y, Kravchenko S, Koliada O, Vozianov S, Zgonnyk Y and
Kashuba V: Aberrant expression of selenium-containing glutathione
peroxidases in clear cell renal cell carcinomas. Exp Oncol.
37:105–110. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Guo Y, Yu S, Zhang C and Kong AN:
Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med.
88:337–349. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Song X and Long D: Nrf2 and Ferroptosis: A
new research direction for neurodegenerative diseases. Front
Neurosci. 14:2672020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yin Y, Liu S, Liu H and Wu W: Nintedanib
inhibits normal human vitreous-induced epithelial-mesenchymal
transition in human retinal pigment epithelial cells. Biomed
Pharmacother. 166:1154032023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang Y, Li M and Han X: Icariin affects
cell cycle progression and proliferation of human retinal pigment
epithelial cells via enhancing expression of H19. PeerJ.
8:e88302020. View Article : Google Scholar : PubMed/NCBI
|