Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2026 Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Purchase PDF
Review

PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)

  • Authors:
    • Chen Zhou
    • Yifei Wang
    • Jie Zhao
    • Yantao Yang
    • Yuhang Yuan
    • Xiaochen Hou
    • Yu Tang
    • Lianhua Ye
  • View Affiliations / Copyright

    Affiliations: Department of Thoracic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunan, Kunming, Yunnan 650118, P.R. China, Department of Biomedical Engineering Research, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Department of Medical Genetics, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
  • Article Number: 95
    |
    Published online on: January 22, 2026
       https://doi.org/10.3892/mmr.2026.13806
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Pancreatic and duodenal homeobox gene 1 (PDX1) is a critical transcription factor involved in pancreatic development and the functionality of mature β‑cells. PDX1 regulates key genes, including insulin and GLUT2, through its DNA‑binding homologous structural domain. In tumors, PDX1 exhibits complex, context‑dependent functions. In pancreatic ductal adenocarcinoma, it transitions from inhibiting follicular cell transformation to promoting tumor proliferation and preventing apoptosis, ultimately inhibiting epithelial‑mesenchymal transition during metastasis. In gastric cancer, PDX1 acts as a tumor suppressor gene, while in esophageal, colorectal, and prostate cancers, it plays a pro‑oncogenic role. Given the dual role of PDX1 in tumorigenesis, its aberrant expression offers potential applications in tumor diagnosis, treatment, and prognosis. The present review explored the structure, function, and mechanisms of PDX1 in tumors, as well as its clinical translational potential, aiming to provide insights for further basic research and pave the way for clinical drug development.

View Figures

Figure 1

Schematic diagram of the PDX1 protein
structure. PDX1, pancreatic and duodenal homeobox gene 1.

Figure 2

Research process of PDX1. PDX1 has
been transiently named as MODY4, GSF, IPF1, STF1 and IDX1. PDX1,
pancreatic and duodenal homeobox gene 1; MODY, maturity-onset
diabetes of the young; GSF, glucose-sensitive factor; IPF1, insulin
promoter factor 1, homeodomain transcription factor; STF1,
somatostatin transcription factor 1; IDX1, islet/duodenum
homeobox-1.

Figure 3

The differing effect of PDX1 on
tumorigenesis across various stages. PDX1, pancreatic and duodenal
homeobox gene 1; PDAC, pancreatic ductal adenocarcinomas; RAF, Raf
protein kinase; MEK, mitogen-activated extracellular
signal-regulated kinase; EMT, epithelial-mesenchymal transition;
MYC, myelocytomatosis oncogene.
View References

1 

Marshak S, Totary H, Cerasi E and Melloul D: Purification of the beta-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc Natl Acad Sci USA. 93:15057–15062. 1996. View Article : Google Scholar : PubMed/NCBI

2 

Ohlsson H, Karlsson K and Edlund T: IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 12:4251–4259. 1993. View Article : Google Scholar : PubMed/NCBI

3 

MacFarlane WM, Read ML, Gilligan M, Bujalska I and Docherty K: Glucose modulates the binding activity of the beta-cell transcription factor IUF1 in a phosphorylation- dependent manner. Biochem J. 303:625–531. 1994. View Article : Google Scholar : PubMed/NCBI

4 

Miller CP, McGehee RE Jr and Habener JF: IDX-1: A new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 13:1145–1156. 1994. View Article : Google Scholar : PubMed/NCBI

5 

Stoffers DA, Ferrer J, Clarke WL and Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 17:138–139. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Leonard J, Peers B, Johnson T, Ferreri K, Lee S and Montminy MR: Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol. 7:1275–1283. 1993. View Article : Google Scholar : PubMed/NCBI

7 

Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL and Wright CV: PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 122:983–995. 1996. View Article : Google Scholar : PubMed/NCBI

8 

Stoffel M, Stein R, Wright CV, Espinosa R III, Le Beau MM and Bell GI: Localization of human homeodomain transcription factor insulin promoter factor 1 (IPF1) to chromosome band 13q12.1. Genomics. 28:125–126. 1995. View Article : Google Scholar : PubMed/NCBI

9 

Yokoi N, Serikawa T and Walther R: Pdx1, a homeodomain transcription factor required for pancreas development, maps to rat chromosome 12. Exp Anim. 46:323–324. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Fiedorek FT Jr and Kay ES: Mapping of the insulin promoter factor 1 gene (Ipf1) to distal mouse chromosome 5. Genomics. 28:581–584. 1995. View Article : Google Scholar : PubMed/NCBI

11 

Brooke NM, Garcia-Fernàndez J and Holland PW: The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature. 392:920–922. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Wilding L and Gannon M: The role of pdx1 and HNF6 in proliferation and differentiation of endocrine precursors. Diabetes Metab Res Rev. 20:114–123. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Gao T, McKenna B, Li C, Reichert M, Nguyen J, Singh T, Yang C, Pannikar A, Doliba N, Zhang T, et al: Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab. 19:259–271. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Tang ZC, Chu Y, Tan YY, Li J and Gao S: Pancreatic and duodenal homeobox-1 in pancreatic ductal adenocarcinoma and diabetes mellitus. Chin Med J (Engl). 133:344–350. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Ma J, Chen M, Wang J, Xia HH, Zhu S, Liang Y, Gu Q, Qiao L, Dai Y, Zou B, et al: Pancreatic duodenal homeobox-1 (PDX1) functions as a tumor suppressor in gastric cancer. Carcinogenesis. 29:1327–1333. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Peshavaria M, Gamer L, Henderson E, Teitelman G, Wright CV and Stein R: XIHbox 8, an endoderm-specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor. Mol Endocrinol. 8:806–816. 1994. View Article : Google Scholar : PubMed/NCBI

17 

Milewski WM, Duguay SJ, Chan SJ and Steiner DF: Conservation of PDX-1 structure, function, and expression in zebrafish. Endocrinology. 139:1440–1449. 1998. View Article : Google Scholar : PubMed/NCBI

18 

Usher ET and Showalter SA: Biophysical insights into Glucose-dependent transcriptional regulation by PDX1. J Biol Chem. 298:1026232022. View Article : Google Scholar : PubMed/NCBI

19 

Peshavaria M, Cissell MA, Henderson E, Petersen HV and Stein R: The PDX-1 activation domain provides specific functions necessary for transcriptional stimulation in pancreatic beta-cells. Mol Endocrinol. 14:1907–1917. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Peshavaria M, Henderson E, Sharma A, Wright CV and Stein R: Functional characterization of the transactivation properties of the PDX-1 homeodomain protein. Mol Cell Biol. 17:3987–3996. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Wang X, Sterr M, Ansarullah Burtscher I, Böttcher A, Beckenbauer J, Siehler J, Meitinger T, Häring HU, Staiger H, et al: Point mutations in the PDX1 transactivation domain impair human β-cell development and function. Mol Metab. 24:80–97. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Longo A, Guanga GP and Rose RB: Structural basis for induced fit mechanisms in DNA recognition by the Pdx1 homeodomain. Biochemistry. 46:2948–2957. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Liberzon A, Ridner G and Walker MD: Role of intrinsic DNA binding specificity in defining target genes of the mammalian transcription factor PDX1. Nucleic Acids Res. 32:54–64. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Liu A, Desai BM and Stoffers DA: Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity. Mol Cell Biol. 24:4372–4383. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Liu A, Oliver-Krasinski J and Stoffers DA: Two conserved domains in PCIF1 mediate interaction with pancreatic transcription factor PDX-1. FEBS Lett. 580:6701–6706. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Taylor DG, Babu D and Mirmira RG: The C-terminal domain of the beta cell homeodomain factor Nkx6.1 enhances sequence-selective DNA binding at the insulin promoter. Biochemistry. 44:11269–1178. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Chakrabarti SK, James JC and Mirmira RG: Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J Biol Chem. 277:13286–13293. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Iype T, Francis J, Garmey JC, Schisler JC, Nesher R, Weir GC, Becker TC, Newgard CB, Griffen SC and Mirmira RG: Mechanism of insulin gene regulation by the pancreatic transcription factor Pdx-1: Application of pre-mRNA analysis and chromatin immunoprecipitation to assess formation of functional transcriptional complexes. J Biol Chem. 280:16798–16807. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Cissell MA, Zhao L, Sussel L, Henderson E and Stein R: Transcription factor occupancy of the insulin gene in vivo. Evidence for direct regulation by Nkx2.2. J Biol Chem. 278:751–756. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Le Lay J, Matsuoka TA, Henderson E and Stein R: Identification of a novel PDX-1 binding site in the human insulin gene enhancer. J Biol Chem. 279:22228–22235. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Lottmann H, Vanselow J, Hessabi B and Walther R: The Tet-On system in transgenic mice: Inhibition of the mouse pdx-1 gene activity by antisense RNA expression in pancreatic beta-cells. J Mol Med (Berl). 79:321–328. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Waeber G, Thompson N, Nicod P and Bonny C: Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol. 10:1327–1334. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Watada H, Kajimoto Y, Miyagawa J, Hanafusa T, Hamaguchi K, Matsuoka T, Yamamoto K, Matsuzawa Y, Kawamori R and Yamasaki Y: PDX-1 induces insulin and glucokinase gene expressions in alphaTC1 clone 6 cells in the presence of betacellulin. Diabetes. 45:1826–1831. 1996. View Article : Google Scholar : PubMed/NCBI

34 

Watada H, Kajimoto Y, Umayahara Y, Matsuoka T, Kaneto H, Fujitani Y, Kamada T, Kawamori R and Yamasaki Y: The human glucokinase gene beta-cell-type promoter: An essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes. 45:1478–1488. 1996. View Article : Google Scholar : PubMed/NCBI

35 

Ahlgren U, Jonsson J, Jonsson L, Simu K and Edlund H: beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 12:1763–1768. 1998. View Article : Google Scholar : PubMed/NCBI

36 

Wang H, Maechler P, Ritz-Laser B, Hagenfeldt KA, Ishihara H, Philippe J and Wollheim CB: Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J Biol Chem. 276:25279–25286. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Watada H, Kajimoto Y, Kaneto H, Matsuoka T, Fujitani Y, Miyazaki J and Yamasaki Y: Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun. 229:746–751. 1996. View Article : Google Scholar : PubMed/NCBI

38 

Macfarlane WM, Campbell SC, Elrick LJ, Oates V, Bermano G, Lindley KJ, Aynsley-Green A, Dunne MJ, James RF and Docherty K: Glucose regulates islet amyloid polypeptide gene transcription in a PDX1- and Calcium-dependent manner. J Biol Chem. 275:15330–15335. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Smith SB, Watada H, Scheel DW, Mrejen C and German MS: Autoregulation and maturity onset diabetes of the young transcription factors control the human PAX4 promoter. J Biol Chem. 275:36910–36919. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Iype T, Taylor DG, Ziesmann SM, Garmey JC, Watada H and Mirmira RG: The transcriptional repressor Nkx6.1 also functions as a deoxyribonucleic acid context-dependent transcriptional activator during pancreatic beta-cell differentiation: Evidence for feedback activation of the nkx6.1 gene by Nkx6.1. Mol Endocrinol. 18:1363–1375. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Raum JC, Gerrish K, Artner I, Henderson E, Guo M, Sussel L, Schisler JC, Newgard CB and Stein R: FoxA2, Nkx2.2, and PDX-1 regulate islet beta-cell-specific mafA expression through conserved sequences located between base pairs-8118 and −7750 upstream from the transcription start site. Mol Cell Biol. 26:5735–5743. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Annicotte JS, Fayard E, Swift GH, Selander L, Edlund H, Tanaka T, Kodama T, Schoonjans K and Auwerx J: Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol Cell Biol. 23:6713–6724. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Gerrish K, Cissell MA and Stein R: The role of hepatic nuclear factor 1 alpha and PDX-1 in transcriptional regulation of the pdx-1 gene. J Biol Chem. 276:47775–47784. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT: The human transcription factors. Cell. 172:650–665. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Scott MP, Tamkun JW and Hartzell GW III: The structure and function of the homeodomain. Biochim Biophys Acta. 989:25–48. 1989.PubMed/NCBI

46 

Wright CV, Schnegelsberg P and De Robertis EM: XlHbox 8: A novel Xenopus homeo protein restricted to a narrow band of endoderm. Development. 105:787–794. 1989. View Article : Google Scholar : PubMed/NCBI

47 

Yoshioka M, Kayo T, Ikeda T and Koizumi A: A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 46:887–894. 1997. View Article : Google Scholar : PubMed/NCBI

48 

Kim SK and Hebrok M: Intercellular signals regulating pancreas development and function. Genes Dev. 15:111–1127. 2001. View Article : Google Scholar : PubMed/NCBI

49 

Babu DA, Deering TG and Mirmira RG: A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab. 92:43–55. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Guz Y, Montminy MR, Stein R, Leonard J, Gamer LW, Wright CV and Teitelman G: Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development. 121:11–18. 1995. View Article : Google Scholar : PubMed/NCBI

51 

Jonsson J, Carlsson L, Edlund T and Edlund H: Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 371:606–609. 1994. View Article : Google Scholar : PubMed/NCBI

52 

Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL and Habener JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 15:106–110. 1997. View Article : Google Scholar : PubMed/NCBI

53 

Gannon M, Ables ET, Crawford L, Lowe D, Offield MF, Magnuson MA and Wright CV: pdx-1 function is specifically required in embryonic beta cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol. 314:406–417. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Nasteska D, Fine NHF, Ashford FB, Cuozzo F, Viloria K, Smith G, Dahir A, Dawson PWJ, Lai YC, Bastidas-Ponce A, et al: PDX1(LOW) MAFA(LOW) β-cells contribute to islet function and insulin release. Nat Commun. 12:6742021. View Article : Google Scholar : PubMed/NCBI

55 

Benninger RKP and Kravets V: The physiological role of β-cell heterogeneity in pancreatic islet function. Nat Rev Endocrinol. 18:9–22. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Peers B, Leonard J, Sharma S, Teitelman G and Montminy MR: Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol Endocrinol. 8:1798–1806. 1994. View Article : Google Scholar : PubMed/NCBI

57 

Merrins MJ, Corkey BE, Kibbey RG and Prentki M: Metabolic cycles and signals for insulin secretion. Cell Metab. 34:947–968. 2022. View Article : Google Scholar : PubMed/NCBI

58 

Docherty HM, Hay CW, Ferguson LA, Barrow J, Durward E and Docherty K: Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter. Biochem J. 389:813–820. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Thomsen SK and Gloyn AL: The pancreatic β cell: Recent insights from human genetics. Trends Endocrinol Metab. 25:425–434. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Stanojevic V, Habener JF and Thomas MK: Pancreas duodenum homeobox-1 transcriptional activation requires interactions with p300. Endocrinology. 145:2918–2928. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Wu H, MacFarlane WM, Tadayyon M, Arch JR, James RF and Docherty K: Insulin stimulates pancreatic-duodenal homoeobox factor-1 (PDX1) DNA-binding activity and insulin promoter activity in pancreatic beta cells. Biochem J. 344:813–818. 1999. View Article : Google Scholar : PubMed/NCBI

62 

Macfarlane WM, Smith SB, James RF, Clifton AD, Doza YN, Cohen P and Docherty K: The p38/reactivating kinase mitogen-activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic beta-cells. J Biol Chem. 272:20936–20944. 1997. View Article : Google Scholar : PubMed/NCBI

63 

Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF and Docherty K: Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem. 274:1011–1016. 1999. View Article : Google Scholar : PubMed/NCBI

64 

Rutter GA, Georgiadou E, Martinez-Sanchez A and Pullen TJ: Metabolic and functional specialisations of the pancreatic beta cell: Gene disallowance, mitochondrial metabolism and intercellular connectivity. Diabetologia. 63:1990–1998. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Andersen FG, Jensen J, Heller RS, Petersen HV, Larsson LI, Madsen OD and Serup P: Pax6 and Pdx1 form a functional complex on the rat somatostatin gene upstream enhancer. FEBS Lett. 445:315–320. 1999. View Article : Google Scholar : PubMed/NCBI

66 

Boam DS and Docherty K: A tissue-specific nuclear factor binds to multiple sites in the human insulin-gene enhancer. Biochem J. 264:233–239. 1989. View Article : Google Scholar : PubMed/NCBI

67 

Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LI, Bulman MP, Ayres S, Shepherd M, Clark P, Millward A, et al: Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest. 104:R33–R39. 1999. View Article : Google Scholar : PubMed/NCBI

68 

Siddiqui K, Musambil M and Nazir N: Maturity onset diabetes of the young (MODY)-history, first case reports and recent advances. Gene. 555:66–71. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Hani EH, Stoffers DA, Chèvre JC, Durand E, Stanojevic V, Dina C, Habener JF and Froguel P: Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Invest. 104:R41–R48. 1999. View Article : Google Scholar : PubMed/NCBI

70 

Rafique I, Mir A, Saqib MAN, Naeem M, Marchand L and Polychronakos C: Causal variants in maturity onset diabetes of the young (MODY)-A systematic review. BMC Endocr Disord. 21:2232021. View Article : Google Scholar : PubMed/NCBI

71 

Sharma A, Zangen DH, Reitz P, Taneja M, Lissauer ME, Miller CP, Weir GC, Habener JF and Bonner-Weir S: The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes. 48:507–513. 1999. View Article : Google Scholar : PubMed/NCBI

72 

Hosotani R, Ida J, Kogire M, Fujimoto K, Doi R and Imamura M: Expression of pancreatic duodenal hoemobox-1 in pancreatic islet neogenesis after surgical wrapping in rats. Surgery. 135:297–306. 2004. View Article : Google Scholar : PubMed/NCBI

73 

Marshak S, Benshushan E, Shoshkes M, Havin L, Cerasi E and Melloul D: Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3beta transcription factors mediate beta-cell-specific expression. Mol Cell Biol. 20:7583–7590. 2000. View Article : Google Scholar : PubMed/NCBI

74 

Liu T, Gou SM, Wang CY, Wu HS, Xiong JX and Zhou F: Pancreas duodenal homeobox-1 expression and significance in pancreatic cancer. World J Gastroenterol. 13:2615–2618. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Igarashi S, Matsubara T, Harada K, Ikeda H, Sato Y, Sasaki M, Matsui O and Nakanuma Y: Bile duct expression of pancreatic and duodenal homeobox 1 in perihilar cholangiocarcinogenesis. Histopathology. 61:266–276. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Wang XP, Li ZJ, Magnusson J and Brunicardi FC: Tissue MicroArray analyses of pancreatic duodenal homeobox-1 in human cancers. World J Surg. 29:334–338. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Takahashi O, Hamada J, Abe M, Hata S, Asano T, Takahashi Y, Tada M, Miyamoto M, Kondo S and Moriuchi T: Dysregulated expression of HOX and ParaHOX genes in human esophageal squamous cell carcinoma. Oncol Rep. 17:753–760. 2007.PubMed/NCBI

78 

Lee Y, Dho SH, Lee J, Hwang JH, Kim M, Choi WY, Lee JY, Lee J, Chang W, Lee MY, et al: Hypermethylation of PDX1, EN2, and MSX1 predicts the prognosis of colorectal cancer. Exp Mol Med. 54:156–168. 2022. View Article : Google Scholar : PubMed/NCBI

79 

Jaraj SJ, Camparo P, Boyle H, Germain F, Nilsson B, Petersson F and Egevad L: Intra- and interobserver reproducibility of interpretation of immunohistochemical stains of prostate cancer. Virchows Arch. 455:375–381. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Huang LJ, Chen SX, Luo WJ, Jiang HH, Zhang PF and Yi H: Proteomic analysis of secreted proteins of non-small cell lung cancer. Ai Zheng. 25:1361–1367. 2006.PubMed/NCBI

81 

Li KR, Yu PL, Zheng QQ, Wang X, Fang X, Li LC and Xu CR: Spatiotemporal and genetic cell lineage tracing of endodermal organogenesis at single-cell resolution. Cell. 188:796–813.e24. 2025. View Article : Google Scholar : PubMed/NCBI

82 

Rindi G, Mete O, Uccella S, Basturk O, La Rosa S, Brosens LAA, Ezzat S, de Herder WW, Klimstra DS, Papotti M, et al: Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol. 33:115–154. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Massironi S: The diagnostic challenges of functioning neuroendocrine tumors: Balancing accuracy, availability, and personalized care. Expert Rev Endocrinol Metab. 19:99–101. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Bevere M, Gkountakos A, Martelli FM, Scarpa A, Luchini C and Simbolo M: An insight on functioning pancreatic neuroendocrine neoplasms. Biomedicines. 11:3032023. View Article : Google Scholar : PubMed/NCBI

85 

Gurevich LE, Proshchina AE, Voronkova IA, Ashevskaya VE, Korosteleva PA and Dolzhansky OV: Differential diagnostic value of the expression of the transcription factor PDX-1 in neuroendocrine and non-neuroendocrine tumors of the pancreas and other organs. Arkh Patol. 81:11–21. 2019.(In Russian). View Article : Google Scholar : PubMed/NCBI

86 

Vinogradova TV and Sverdlov ED: PDX1: A unique pancreatic master regulator constantly changes its functions during embryonic development and progression of pancreatic cancer. Biochemistry (Mosc). 82:887–893. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Roy N, Takeuchi KK, Ruggeri JM, Bailey P, Chang D, Li J, Leonhardt L, Puri S, Hoffman MT, Gao S, et al: PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev. 30:2669–2683. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JP IV, Pan FC, Akiyama H, Wright CV, Jensen K, et al: Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell. 22:737–750. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Fendrich V, Esni F, Garay MV, Feldmann G, Habbe N, Jensen JN, Dor Y, Stoffers D, Jensen J, Leach SD and Maitra A: Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology. 135:621–631. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Song SY, Gannon M, Washington MK, Scoggins CR, Meszoely IM, Goldenring JR, Marino CR, Sandgren EP, Coffey RJ Jr, Wright CV and Leach SD: Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology. 117:1416–1426. 1999. View Article : Google Scholar : PubMed/NCBI

91 

Qian CJ, Xu ZR, Chen LY, Wang YC and Yao J: LncRNA MAFG-AS1 accelerates cell migration, invasion and aerobic glycolysis of esophageal squamous cell carcinoma cells via miR-765/PDX1 Axis. Cancer Manag Res. 12:6895–6908. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Liang Z, Zhao B, Hou J, Zheng J and Xin G: CircRNA circ-OGDH (hsa_circ_0003340) acts as a ceRNA to regulate glutamine metabolism and esophageal squamous cell carcinoma progression by the miR-615-5p/PDX1 Axis. Cancer Manag Res. 13:3041–3053. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Sakai H, Eishi Y, Li XL, Akiyama Y, Miyake S, Takizawa T, Konishi N, Tatematsu M, Koike M and Yuasa Y: PDX1 homeobox protein expression in pseudopyloric glands and gastric carcinomas. Gut. 53:323–330. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Ma J, Wang JD, Zhang WJ, Zou B, Chen WJ, Lam CS, Chen MH, Pang R, Tan VP, Hung IF, et al: Promoter hypermethylation and histone hypoacetylation contribute to pancreatic-duodenal homeobox 1 silencing in gastric cancer. Carcinogenesis. 31:1552–1560. 2010. View Article : Google Scholar : PubMed/NCBI

95 

David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA and Massagué J: TGF-β tumor suppression through a lethal EMT. Cell. 164:1015–1030. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Kondratyeva L, Chernov I, Kopantzev E, Didych D, Kuzmich A, Alekseenko I, Kostrov S and Sverdlov E: Pancreatic lineage specifier PDX1 increases adhesion and decreases motility of cancer cells. Cancers (Basel). 13:43902021. View Article : Google Scholar : PubMed/NCBI

97 

Kondratyeva LG, Safina DR, Chernov IP, Kopantzev EP, Kostrov SV and Sverdlov ED: PDX1, a key factor in pancreatic embryogenesis, can exhibit antimetastatic activity in pancreatic ductal adenocarcinoma. Cancer Manag Res. 11:7077–7087. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Morton JP, Klimstra DS, Mongeau ME and Lewis BC: Trp53 deletion stimulates the formation of metastatic pancreatic tumors. Am J Pathol. 172:1081–1087. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Cai YC, Banner B, Glickman J and Odze RD: Cytokeratin 7 and 20 and thyroid transcription factor 1 can help distinguish pulmonary from gastrointestinal carcinoid and pancreatic endocrine tumors. Hum Pathol. 32:1087–1093. 2001. View Article : Google Scholar : PubMed/NCBI

100 

Srivastava A and Hornick JL: Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol. 33:626–632. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Yang Z, Klimstra DS, Hruban RH and Tang LH: Immunohistochemical characterization of the origins of metastatic well-differentiated neuroendocrine tumors to the liver. Am J Surg Pathol. 41:915–922. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Bourdeleau P, de Mestier L, Pokossy-Epée J, Hentic O, Tihy M, Afzal-Awan Z, Couvelard A, Ronot M, Rebours V, Ruszniewski P, et al: Temporal increase in Ki-67 index in patients with pancreatic neuroendocrine tumours. Endocr Relat Cancer. 32:e2403212025. View Article : Google Scholar : PubMed/NCBI

103 

Greenberg JA, Shah Y, Ivanov NA, Marshall T, Kulm S, Williams J, Tran C, Scognamiglio T, Heymann JJ, Lee-Saxton YJ, et al: Developing a predictive model for metastatic potential in pancreatic neuroendocrine tumor. J Clin Endocrinol Metab. 110:263–274. 2024. View Article : Google Scholar : PubMed/NCBI

104 

Mattiolo P, Bevere M, Mafficini A, Verschuur AVD, Calicchia M, Hackeng WM, Simbolo M, Paiella S, Dreijerink KMA, Landoni L, et al: Glucagon-producing pancreatic neuroendocrine tumors (Glucagonomas) are enriched in aggressive neoplasms with ARX and PDX1 Co-expression, DAXX/ATRX Mutations, and ALT (Alternative Lengthening of Telomeres). Endocr Pathol. 35:354–361. 2024. View Article : Google Scholar : PubMed/NCBI

105 

Mulders MCF, Verschuur AVD, de Lussanet de la Sablonière QG, Roes EM, Geisenberger C, Brosens LA, de Herder WW, van Velthuysen MF and Hofland J: Clinicopathological and epigenetic differences between primary neuroendocrine tumors and neuroendocrine metastases in the ovary. J Pathol Clin Res. 10:e700002024. View Article : Google Scholar : PubMed/NCBI

106 

Moser E, Ura A, Klöppel G and Kasajima A: Subtyping of pancreatic neuroendocrine tumors by transcription factors, hormones, histology, and patient outcome. Pathologie (Heidelb). 45:20–25. 2024. View Article : Google Scholar : PubMed/NCBI

107 

Phalon C, Rao DD and Nemunaitis J: Potential use of RNA interference in cancer therapy. Expert Rev Mol Med. 12:e262010. View Article : Google Scholar : PubMed/NCBI

108 

Napoli C, Lemieux C and Jorgensen R: Introduction of a chimeric chalcone synthase gene into petunia results in reversible Co-Suppression of homologous genes in trans. Plant Cell. 2:279–289. 1990. View Article : Google Scholar : PubMed/NCBI

109 

Brummelkamp TR, Bernards R and Agami R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2:243–247. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411:494–498. 2001. View Article : Google Scholar : PubMed/NCBI

111 

Brummelkamp TR, Bernards R and Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science. 296:550–553. 2002. View Article : Google Scholar : PubMed/NCBI

112 

Fleming JB, Shen GL, Holloway SE, Davis M and Brekken RA: Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: Justification for K-ras-directed therapy. Mol Cancer Res. 3:413–423. 2005. View Article : Google Scholar : PubMed/NCBI

113 

Qiu Z, Huang C, Sun J, Qiu W, Zhang J, Li H, Jiang T, Huang K and Cao J: RNA interference-mediated signal transducers and activators of transcription 3 gene silencing inhibits invasion and metastasis of human pancreatic cancer cells. Cancer Sci. 98:1099–1106. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Wu J, Liu S, Yu J, Zhou G, Rao D, Jay CM, Kumar P, Sanchez R, Templeton N, Senzer N, et al: Vertically integrated translational studies of PDX1 as a therapeutic target for pancreatic cancer via a novel bifunctional RNAi platform. Cancer Gene Ther. 21:48–53. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Liu S, Ballian N, Belaguli NS, Patel S, Li M, Templeton NS, Gingras MC, Gibbs R, Fisher W and Brunicardi FC: PDX-1 acts as a potential molecular target for treatment of human pancreatic cancer. Pancreas. 37:210–220. 2008. View Article : Google Scholar : PubMed/NCBI

116 

Liu SH, Rao DD, Nemunaitis J, Senzer N, Zhou G, Dawson D, Gingras MC, Wang Z, Gibbs R, Norman M, et al: PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. PLoS One. 7:e404522012. View Article : Google Scholar : PubMed/NCBI

117 

Jay CM, Ruoff C, Kumar P, Maass H, Spanhel B, Miller M, Arrington A, Montalvo N, Gresham V, Rao DD, et al: Assessment of intravenous pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) in yucatan swine. Cancer Gene Ther. 20:683–689. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Yu J, Liu SH, Sanchez R, Nemunaitis J, Rozengurt E and Brunicardi FC: PDX1 associated therapy in translational medicine. Ann Transl Med. 4:2142016. View Article : Google Scholar : PubMed/NCBI

119 

Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, et al: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 510:542–546. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Gong J, Robbins LA, Lugea A, Waldron RT, Jeon CY and Pandol SJ: Diabetes, pancreatic cancer, and metformin therapy. Front Physiol. 5:4262014. View Article : Google Scholar : PubMed/NCBI

121 

Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, Banerjee S, Kong D, Li Y, Thakur S, et al: Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila). 5:355–364. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Kisfalvi K, Moro A, Sinnett-Smith J, Eibl G and Rozengurt E: Metformin inhibits the growth of human pancreatic cancer xenografts. Pancreas. 42:781–785. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Sinnett-Smith J, Kisfalvi K, Kui R and Rozengurt E: Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK. Biochem Biophys Res Commun. 430:352–357. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Wang LW, Li ZS, Zou DW, Jin ZD, Gao J and Xu GM: Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol. 14:7192–7198. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Karnevi E, Said K, Andersson R and Rosendahl AH: Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer. 13:2352013. View Article : Google Scholar : PubMed/NCBI

126 

Fasih A, Elbaz HA, Hüttemann M, Konski AA and Zielske SP: Radiosensitization of pancreatic cancer cells by metformin through the AMPK pathway. Radiat Res. 182:50–59. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Kisfalvi K, Eibl G, Sinnett-Smith J and Rozengurt E: Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res. 69:6539–6545. 2009. View Article : Google Scholar : PubMed/NCBI

128 

Zhou G, Yu J, Wang A, Liu SH, Sinnett-Smith J, Wu J, Sanchez R, Nemunaitis J, Ricordi C, Rozengurt E and Brunicardi FC: Metformin restrains pancreatic duodenal Homeobox-1 (PDX-1) function by inhibiting ERK signaling in pancreatic ductal adenocarcinoma. Curr Mol Med. 16:83–90. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Sun X, Cai W, Li H, Gao C, Ma X, Guo Y, Fu D, Xiao D, Zhang Z, Wang Y, et al: Endothelial-like cancer-associated fibroblasts facilitate pancreatic cancer metastasis via vasculogenic mimicry and paracrine signalling. Gut. 74:1437–1451. 2025. View Article : Google Scholar : PubMed/NCBI

130 

Lin Y, Pu S, Wang J, Wan Y, Wu Z, Guo Y, Feng W, Ying Y, Ma S, Meng XJ, et al: Pancreatic STAT5 activation promotes KrasG12D-induced and inflammation-induced acinar-to-ductal metaplasia and pancreatic cancer. Gut. 73:1831–1843. 2024. View Article : Google Scholar : PubMed/NCBI

131 

Xie Y, Zhou T, Li X, Zhao K, Bai W, Hou X, Liu Z, Ni B, Zhang Z, Yan J, et al: Targeting ESE3/EHF With Nifurtimox Inhibits CXCR2+ neutrophil infiltration and overcomes pancreatic cancer resistance to chemotherapy and immunotherapy. Gastroenterology. 167:281–297. 2024. View Article : Google Scholar : PubMed/NCBI

132 

Zhang X, Lao M, Xu J, Duan Y, Yang H, Li M, Ying H, He L, Sun K, Guo C, et al: Combination cancer immunotherapy targeting TNFR2 and PD-1/PD-L1 signaling reduces immunosuppressive effects in the microenvironment of pancreatic tumors. J Immunother Cancer. 10:e0039822020. View Article : Google Scholar

133 

Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, Maurer HC, Chen X, Jiang Z, Westphalen CB, et al: β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 33:75–90.e7. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • Purchase
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou C, Wang Y, Zhao J, Yang Y, Yuan Y, Hou X, Tang Y and Ye L: <p>PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)</p>. Mol Med Rep 33: 95, 2026.
APA
Zhou, C., Wang, Y., Zhao, J., Yang, Y., Yuan, Y., Hou, X. ... Ye, L. (2026). <p>PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)</p>. Molecular Medicine Reports, 33, 95. https://doi.org/10.3892/mmr.2026.13806
MLA
Zhou, C., Wang, Y., Zhao, J., Yang, Y., Yuan, Y., Hou, X., Tang, Y., Ye, L."<p>PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)</p>". Molecular Medicine Reports 33.3 (2026): 95.
Chicago
Zhou, C., Wang, Y., Zhao, J., Yang, Y., Yuan, Y., Hou, X., Tang, Y., Ye, L."<p>PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)</p>". Molecular Medicine Reports 33, no. 3 (2026): 95. https://doi.org/10.3892/mmr.2026.13806
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou C, Wang Y, Zhao J, Yang Y, Yuan Y, Hou X, Tang Y and Ye L: <p>PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)</p>. Mol Med Rep 33: 95, 2026.
APA
Zhou, C., Wang, Y., Zhao, J., Yang, Y., Yuan, Y., Hou, X. ... Ye, L. (2026). <p>PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)</p>. Molecular Medicine Reports, 33, 95. https://doi.org/10.3892/mmr.2026.13806
MLA
Zhou, C., Wang, Y., Zhao, J., Yang, Y., Yuan, Y., Hou, X., Tang, Y., Ye, L."<p>PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)</p>". Molecular Medicine Reports 33.3 (2026): 95.
Chicago
Zhou, C., Wang, Y., Zhao, J., Yang, Y., Yuan, Y., Hou, X., Tang, Y., Ye, L."<p>PDX1 in human cancers: Molecular mechanisms, dual roles and clinical implications (Review)</p>". Molecular Medicine Reports 33, no. 3 (2026): 95. https://doi.org/10.3892/mmr.2026.13806
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team