|
1
|
Marshak S, Totary H, Cerasi E and Melloul
D: Purification of the beta-cell glucose-sensitive factor that
transactivates the insulin gene differentially in normal and
transformed islet cells. Proc Natl Acad Sci USA. 93:15057–15062.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ohlsson H, Karlsson K and Edlund T: IPF1,
a homeodomain-containing transactivator of the insulin gene. EMBO
J. 12:4251–4259. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
MacFarlane WM, Read ML, Gilligan M,
Bujalska I and Docherty K: Glucose modulates the binding activity
of the beta-cell transcription factor IUF1 in a phosphorylation-
dependent manner. Biochem J. 303:625–531. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Miller CP, McGehee RE Jr and Habener JF:
IDX-1: A new homeodomain transcription factor expressed in rat
pancreatic islets and duodenum that transactivates the somatostatin
gene. EMBO J. 13:1145–1156. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Stoffers DA, Ferrer J, Clarke WL and
Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to
IPF1. Nat Genet. 17:138–139. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Leonard J, Peers B, Johnson T, Ferreri K,
Lee S and Montminy MR: Characterization of somatostatin
transactivating factor-1, a novel homeobox factor that stimulates
somatostatin expression in pancreatic islet cells. Mol Endocrinol.
7:1275–1283. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Offield MF, Jetton TL, Labosky PA, Ray M,
Stein RW, Magnuson MA, Hogan BL and Wright CV: PDX-1 is required
for pancreatic outgrowth and differentiation of the rostral
duodenum. Development. 122:983–995. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Stoffel M, Stein R, Wright CV, Espinosa R
III, Le Beau MM and Bell GI: Localization of human homeodomain
transcription factor insulin promoter factor 1 (IPF1) to chromosome
band 13q12.1. Genomics. 28:125–126. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yokoi N, Serikawa T and Walther R: Pdx1, a
homeodomain transcription factor required for pancreas development,
maps to rat chromosome 12. Exp Anim. 46:323–324. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fiedorek FT Jr and Kay ES: Mapping of the
insulin promoter factor 1 gene (Ipf1) to distal mouse chromosome 5.
Genomics. 28:581–584. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Brooke NM, Garcia-Fernàndez J and Holland
PW: The ParaHox gene cluster is an evolutionary sister of the Hox
gene cluster. Nature. 392:920–922. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wilding L and Gannon M: The role of pdx1
and HNF6 in proliferation and differentiation of endocrine
precursors. Diabetes Metab Res Rev. 20:114–123. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gao T, McKenna B, Li C, Reichert M, Nguyen
J, Singh T, Yang C, Pannikar A, Doliba N, Zhang T, et al: Pdx1
maintains β cell identity and function by repressing an α cell
program. Cell Metab. 19:259–271. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tang ZC, Chu Y, Tan YY, Li J and Gao S:
Pancreatic and duodenal homeobox-1 in pancreatic ductal
adenocarcinoma and diabetes mellitus. Chin Med J (Engl).
133:344–350. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ma J, Chen M, Wang J, Xia HH, Zhu S, Liang
Y, Gu Q, Qiao L, Dai Y, Zou B, et al: Pancreatic duodenal
homeobox-1 (PDX1) functions as a tumor suppressor in gastric
cancer. Carcinogenesis. 29:1327–1333. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Peshavaria M, Gamer L, Henderson E,
Teitelman G, Wright CV and Stein R: XIHbox 8, an endoderm-specific
Xenopus homeodomain protein, is closely related to a mammalian
insulin gene transcription factor. Mol Endocrinol. 8:806–816. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Milewski WM, Duguay SJ, Chan SJ and
Steiner DF: Conservation of PDX-1 structure, function, and
expression in zebrafish. Endocrinology. 139:1440–1449. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Usher ET and Showalter SA: Biophysical
insights into Glucose-dependent transcriptional regulation by PDX1.
J Biol Chem. 298:1026232022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Peshavaria M, Cissell MA, Henderson E,
Petersen HV and Stein R: The PDX-1 activation domain provides
specific functions necessary for transcriptional stimulation in
pancreatic beta-cells. Mol Endocrinol. 14:1907–1917. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Peshavaria M, Henderson E, Sharma A,
Wright CV and Stein R: Functional characterization of the
transactivation properties of the PDX-1 homeodomain protein. Mol
Cell Biol. 17:3987–3996. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang X, Sterr M, Ansarullah Burtscher I,
Böttcher A, Beckenbauer J, Siehler J, Meitinger T, Häring HU,
Staiger H, et al: Point mutations in the PDX1 transactivation
domain impair human β-cell development and function. Mol Metab.
24:80–97. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Longo A, Guanga GP and Rose RB: Structural
basis for induced fit mechanisms in DNA recognition by the Pdx1
homeodomain. Biochemistry. 46:2948–2957. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liberzon A, Ridner G and Walker MD: Role
of intrinsic DNA binding specificity in defining target genes of
the mammalian transcription factor PDX1. Nucleic Acids Res.
32:54–64. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu A, Desai BM and Stoffers DA:
Identification of PCIF1, a POZ domain protein that inhibits PDX-1
(MODY4) transcriptional activity. Mol Cell Biol. 24:4372–4383.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu A, Oliver-Krasinski J and Stoffers DA:
Two conserved domains in PCIF1 mediate interaction with pancreatic
transcription factor PDX-1. FEBS Lett. 580:6701–6706. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Taylor DG, Babu D and Mirmira RG: The
C-terminal domain of the beta cell homeodomain factor Nkx6.1
enhances sequence-selective DNA binding at the insulin promoter.
Biochemistry. 44:11269–1178. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chakrabarti SK, James JC and Mirmira RG:
Quantitative assessment of gene targeting in vitro and in vivo by
the pancreatic transcription factor, Pdx1. Importance of chromatin
structure in directing promoter binding. J Biol Chem.
277:13286–13293. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Iype T, Francis J, Garmey JC, Schisler JC,
Nesher R, Weir GC, Becker TC, Newgard CB, Griffen SC and Mirmira
RG: Mechanism of insulin gene regulation by the pancreatic
transcription factor Pdx-1: Application of pre-mRNA analysis and
chromatin immunoprecipitation to assess formation of functional
transcriptional complexes. J Biol Chem. 280:16798–16807. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cissell MA, Zhao L, Sussel L, Henderson E
and Stein R: Transcription factor occupancy of the insulin gene in
vivo. Evidence for direct regulation by Nkx2.2. J Biol Chem.
278:751–756. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Le Lay J, Matsuoka TA, Henderson E and
Stein R: Identification of a novel PDX-1 binding site in the human
insulin gene enhancer. J Biol Chem. 279:22228–22235. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lottmann H, Vanselow J, Hessabi B and
Walther R: The Tet-On system in transgenic mice: Inhibition of the
mouse pdx-1 gene activity by antisense RNA expression in pancreatic
beta-cells. J Mol Med (Berl). 79:321–328. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Waeber G, Thompson N, Nicod P and Bonny C:
Transcriptional activation of the GLUT2 gene by the
IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol. 10:1327–1334.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Watada H, Kajimoto Y, Miyagawa J, Hanafusa
T, Hamaguchi K, Matsuoka T, Yamamoto K, Matsuzawa Y, Kawamori R and
Yamasaki Y: PDX-1 induces insulin and glucokinase gene expressions
in alphaTC1 clone 6 cells in the presence of betacellulin.
Diabetes. 45:1826–1831. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Watada H, Kajimoto Y, Umayahara Y,
Matsuoka T, Kaneto H, Fujitani Y, Kamada T, Kawamori R and Yamasaki
Y: The human glucokinase gene beta-cell-type promoter: An essential
role of insulin promoter factor 1/PDX-1 in its activation in
HIT-T15 cells. Diabetes. 45:1478–1488. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ahlgren U, Jonsson J, Jonsson L, Simu K
and Edlund H: beta-cell-specific inactivation of the mouse
Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and
maturity onset diabetes. Genes Dev. 12:1763–1768. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang H, Maechler P, Ritz-Laser B,
Hagenfeldt KA, Ishihara H, Philippe J and Wollheim CB: Pdx1 level
defines pancreatic gene expression pattern and cell lineage
differentiation. J Biol Chem. 276:25279–25286. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Watada H, Kajimoto Y, Kaneto H, Matsuoka
T, Fujitani Y, Miyazaki J and Yamasaki Y: Involvement of the
homeodomain-containing transcription factor PDX-1 in islet amyloid
polypeptide gene transcription. Biochem Biophys Res Commun.
229:746–751. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Macfarlane WM, Campbell SC, Elrick LJ,
Oates V, Bermano G, Lindley KJ, Aynsley-Green A, Dunne MJ, James RF
and Docherty K: Glucose regulates islet amyloid polypeptide gene
transcription in a PDX1- and Calcium-dependent manner. J Biol Chem.
275:15330–15335. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Smith SB, Watada H, Scheel DW, Mrejen C
and German MS: Autoregulation and maturity onset diabetes of the
young transcription factors control the human PAX4 promoter. J Biol
Chem. 275:36910–36919. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Iype T, Taylor DG, Ziesmann SM, Garmey JC,
Watada H and Mirmira RG: The transcriptional repressor Nkx6.1 also
functions as a deoxyribonucleic acid context-dependent
transcriptional activator during pancreatic beta-cell
differentiation: Evidence for feedback activation of the nkx6.1
gene by Nkx6.1. Mol Endocrinol. 18:1363–1375. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Raum JC, Gerrish K, Artner I, Henderson E,
Guo M, Sussel L, Schisler JC, Newgard CB and Stein R: FoxA2,
Nkx2.2, and PDX-1 regulate islet beta-cell-specific mafA expression
through conserved sequences located between base pairs-8118 and
−7750 upstream from the transcription start site. Mol Cell Biol.
26:5735–5743. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Annicotte JS, Fayard E, Swift GH, Selander
L, Edlund H, Tanaka T, Kodama T, Schoonjans K and Auwerx J:
Pancreatic-duodenal homeobox 1 regulates expression of liver
receptor homolog 1 during pancreas development. Mol Cell Biol.
23:6713–6724. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gerrish K, Cissell MA and Stein R: The
role of hepatic nuclear factor 1 alpha and PDX-1 in transcriptional
regulation of the pdx-1 gene. J Biol Chem. 276:47775–47784. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lambert SA, Jolma A, Campitelli LF, Das
PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT:
The human transcription factors. Cell. 172:650–665. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Scott MP, Tamkun JW and Hartzell GW III:
The structure and function of the homeodomain. Biochim Biophys
Acta. 989:25–48. 1989.PubMed/NCBI
|
|
46
|
Wright CV, Schnegelsberg P and De Robertis
EM: XlHbox 8: A novel Xenopus homeo protein restricted to a narrow
band of endoderm. Development. 105:787–794. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yoshioka M, Kayo T, Ikeda T and Koizumi A:
A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines
early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice.
Diabetes. 46:887–894. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kim SK and Hebrok M: Intercellular signals
regulating pancreas development and function. Genes Dev.
15:111–1127. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Babu DA, Deering TG and Mirmira RG: A feat
of metabolic proportions: Pdx1 orchestrates islet development and
function in the maintenance of glucose homeostasis. Mol Genet
Metab. 92:43–55. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Guz Y, Montminy MR, Stein R, Leonard J,
Gamer LW, Wright CV and Teitelman G: Expression of murine STF-1, a
putative insulin gene transcription factor, in beta cells of
pancreas, duodenal epithelium and pancreatic exocrine and endocrine
progenitors during ontogeny. Development. 121:11–18. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jonsson J, Carlsson L, Edlund T and Edlund
H: Insulin-promoter-factor 1 is required for pancreas development
in mice. Nature. 371:606–609. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Stoffers DA, Zinkin NT, Stanojevic V,
Clarke WL and Habener JF: Pancreatic agenesis attributable to a
single nucleotide deletion in the human IPF1 gene coding sequence.
Nat Genet. 15:106–110. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gannon M, Ables ET, Crawford L, Lowe D,
Offield MF, Magnuson MA and Wright CV: pdx-1 function is
specifically required in embryonic beta cells to generate
appropriate numbers of endocrine cell types and maintain glucose
homeostasis. Dev Biol. 314:406–417. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Nasteska D, Fine NHF, Ashford FB, Cuozzo
F, Viloria K, Smith G, Dahir A, Dawson PWJ, Lai YC, Bastidas-Ponce
A, et al: PDX1(LOW) MAFA(LOW) β-cells contribute to islet function
and insulin release. Nat Commun. 12:6742021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Benninger RKP and Kravets V: The
physiological role of β-cell heterogeneity in pancreatic islet
function. Nat Rev Endocrinol. 18:9–22. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Peers B, Leonard J, Sharma S, Teitelman G
and Montminy MR: Insulin expression in pancreatic islet cells
relies on cooperative interactions between the helix loop helix
factor E47 and the homeobox factor STF-1. Mol Endocrinol.
8:1798–1806. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Merrins MJ, Corkey BE, Kibbey RG and
Prentki M: Metabolic cycles and signals for insulin secretion. Cell
Metab. 34:947–968. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Docherty HM, Hay CW, Ferguson LA, Barrow
J, Durward E and Docherty K: Relative contribution of PDX-1, MafA
and E47/beta2 to the regulation of the human insulin promoter.
Biochem J. 389:813–820. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Thomsen SK and Gloyn AL: The pancreatic β
cell: Recent insights from human genetics. Trends Endocrinol Metab.
25:425–434. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Stanojevic V, Habener JF and Thomas MK:
Pancreas duodenum homeobox-1 transcriptional activation requires
interactions with p300. Endocrinology. 145:2918–2928. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wu H, MacFarlane WM, Tadayyon M, Arch JR,
James RF and Docherty K: Insulin stimulates pancreatic-duodenal
homoeobox factor-1 (PDX1) DNA-binding activity and insulin promoter
activity in pancreatic beta cells. Biochem J. 344:813–818. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Macfarlane WM, Smith SB, James RF, Clifton
AD, Doza YN, Cohen P and Docherty K: The p38/reactivating kinase
mitogen-activated protein kinase cascade mediates the activation of
the transcription factor insulin upstream factor 1 and insulin gene
transcription by high glucose in pancreatic beta-cells. J Biol
Chem. 272:20936–20944. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Macfarlane WM, McKinnon CM, Felton-Edkins
ZA, Cragg H, James RF and Docherty K: Glucose stimulates
translocation of the homeodomain transcription factor PDX1 from the
cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem.
274:1011–1016. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Rutter GA, Georgiadou E, Martinez-Sanchez
A and Pullen TJ: Metabolic and functional specialisations of the
pancreatic beta cell: Gene disallowance, mitochondrial metabolism
and intercellular connectivity. Diabetologia. 63:1990–1998. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Andersen FG, Jensen J, Heller RS, Petersen
HV, Larsson LI, Madsen OD and Serup P: Pax6 and Pdx1 form a
functional complex on the rat somatostatin gene upstream enhancer.
FEBS Lett. 445:315–320. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Boam DS and Docherty K: A tissue-specific
nuclear factor binds to multiple sites in the human insulin-gene
enhancer. Biochem J. 264:233–239. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Macfarlane WM, Frayling TM, Ellard S,
Evans JC, Allen LI, Bulman MP, Ayres S, Shepherd M, Clark P,
Millward A, et al: Missense mutations in the insulin promoter
factor-1 gene predispose to type 2 diabetes. J Clin Invest.
104:R33–R39. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Siddiqui K, Musambil M and Nazir N:
Maturity onset diabetes of the young (MODY)-history, first case
reports and recent advances. Gene. 555:66–71. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hani EH, Stoffers DA, Chèvre JC, Durand E,
Stanojevic V, Dina C, Habener JF and Froguel P: Defective mutations
in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2
diabetes mellitus. J Clin Invest. 104:R41–R48. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Rafique I, Mir A, Saqib MAN, Naeem M,
Marchand L and Polychronakos C: Causal variants in maturity onset
diabetes of the young (MODY)-A systematic review. BMC Endocr
Disord. 21:2232021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sharma A, Zangen DH, Reitz P, Taneja M,
Lissauer ME, Miller CP, Weir GC, Habener JF and Bonner-Weir S: The
homeodomain protein IDX-1 increases after an early burst of
proliferation during pancreatic regeneration. Diabetes. 48:507–513.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hosotani R, Ida J, Kogire M, Fujimoto K,
Doi R and Imamura M: Expression of pancreatic duodenal hoemobox-1
in pancreatic islet neogenesis after surgical wrapping in rats.
Surgery. 135:297–306. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Marshak S, Benshushan E, Shoshkes M, Havin
L, Cerasi E and Melloul D: Functional conservation of regulatory
elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor
3beta transcription factors mediate beta-cell-specific expression.
Mol Cell Biol. 20:7583–7590. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu T, Gou SM, Wang CY, Wu HS, Xiong JX
and Zhou F: Pancreas duodenal homeobox-1 expression and
significance in pancreatic cancer. World J Gastroenterol.
13:2615–2618. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Igarashi S, Matsubara T, Harada K, Ikeda
H, Sato Y, Sasaki M, Matsui O and Nakanuma Y: Bile duct expression
of pancreatic and duodenal homeobox 1 in perihilar
cholangiocarcinogenesis. Histopathology. 61:266–276. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang XP, Li ZJ, Magnusson J and Brunicardi
FC: Tissue MicroArray analyses of pancreatic duodenal homeobox-1 in
human cancers. World J Surg. 29:334–338. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Takahashi O, Hamada J, Abe M, Hata S,
Asano T, Takahashi Y, Tada M, Miyamoto M, Kondo S and Moriuchi T:
Dysregulated expression of HOX and ParaHOX genes in human
esophageal squamous cell carcinoma. Oncol Rep. 17:753–760.
2007.PubMed/NCBI
|
|
78
|
Lee Y, Dho SH, Lee J, Hwang JH, Kim M,
Choi WY, Lee JY, Lee J, Chang W, Lee MY, et al: Hypermethylation of
PDX1, EN2, and MSX1 predicts the prognosis of colorectal cancer.
Exp Mol Med. 54:156–168. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jaraj SJ, Camparo P, Boyle H, Germain F,
Nilsson B, Petersson F and Egevad L: Intra- and interobserver
reproducibility of interpretation of immunohistochemical stains of
prostate cancer. Virchows Arch. 455:375–381. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Huang LJ, Chen SX, Luo WJ, Jiang HH, Zhang
PF and Yi H: Proteomic analysis of secreted proteins of non-small
cell lung cancer. Ai Zheng. 25:1361–1367. 2006.PubMed/NCBI
|
|
81
|
Li KR, Yu PL, Zheng QQ, Wang X, Fang X, Li
LC and Xu CR: Spatiotemporal and genetic cell lineage tracing of
endodermal organogenesis at single-cell resolution. Cell.
188:796–813.e24. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rindi G, Mete O, Uccella S, Basturk O, La
Rosa S, Brosens LAA, Ezzat S, de Herder WW, Klimstra DS, Papotti M,
et al: Overview of the 2022 WHO classification of neuroendocrine
neoplasms. Endocr Pathol. 33:115–154. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Massironi S: The diagnostic challenges of
functioning neuroendocrine tumors: Balancing accuracy,
availability, and personalized care. Expert Rev Endocrinol Metab.
19:99–101. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bevere M, Gkountakos A, Martelli FM,
Scarpa A, Luchini C and Simbolo M: An insight on functioning
pancreatic neuroendocrine neoplasms. Biomedicines. 11:3032023.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gurevich LE, Proshchina AE, Voronkova IA,
Ashevskaya VE, Korosteleva PA and Dolzhansky OV: Differential
diagnostic value of the expression of the transcription factor
PDX-1 in neuroendocrine and non-neuroendocrine tumors of the
pancreas and other organs. Arkh Patol. 81:11–21. 2019.(In Russian).
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Vinogradova TV and Sverdlov ED: PDX1: A
unique pancreatic master regulator constantly changes its functions
during embryonic development and progression of pancreatic cancer.
Biochemistry (Mosc). 82:887–893. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Roy N, Takeuchi KK, Ruggeri JM, Bailey P,
Chang D, Li J, Leonhardt L, Puri S, Hoffman MT, Gao S, et al: PDX1
dynamically regulates pancreatic ductal adenocarcinoma initiation
and maintenance. Genes Dev. 30:2669–2683. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kopp JL, von Figura G, Mayes E, Liu FF,
Dubois CL, Morris JP IV, Pan FC, Akiyama H, Wright CV, Jensen K, et
al: Identification of Sox9-dependent acinar-to-ductal reprogramming
as the principal mechanism for initiation of pancreatic ductal
adenocarcinoma. Cancer Cell. 22:737–750. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Fendrich V, Esni F, Garay MV, Feldmann G,
Habbe N, Jensen JN, Dor Y, Stoffers D, Jensen J, Leach SD and
Maitra A: Hedgehog signaling is required for effective regeneration
of exocrine pancreas. Gastroenterology. 135:621–631. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Song SY, Gannon M, Washington MK, Scoggins
CR, Meszoely IM, Goldenring JR, Marino CR, Sandgren EP, Coffey RJ
Jr, Wright CV and Leach SD: Expansion of Pdx1-expressing pancreatic
epithelium and islet neogenesis in transgenic mice overexpressing
transforming growth factor alpha. Gastroenterology. 117:1416–1426.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Qian CJ, Xu ZR, Chen LY, Wang YC and Yao
J: LncRNA MAFG-AS1 accelerates cell migration, invasion and aerobic
glycolysis of esophageal squamous cell carcinoma cells via
miR-765/PDX1 Axis. Cancer Manag Res. 12:6895–6908. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Liang Z, Zhao B, Hou J, Zheng J and Xin G:
CircRNA circ-OGDH (hsa_circ_0003340) acts as a ceRNA to regulate
glutamine metabolism and esophageal squamous cell carcinoma
progression by the miR-615-5p/PDX1 Axis. Cancer Manag Res.
13:3041–3053. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sakai H, Eishi Y, Li XL, Akiyama Y, Miyake
S, Takizawa T, Konishi N, Tatematsu M, Koike M and Yuasa Y: PDX1
homeobox protein expression in pseudopyloric glands and gastric
carcinomas. Gut. 53:323–330. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ma J, Wang JD, Zhang WJ, Zou B, Chen WJ,
Lam CS, Chen MH, Pang R, Tan VP, Hung IF, et al: Promoter
hypermethylation and histone hypoacetylation contribute to
pancreatic-duodenal homeobox 1 silencing in gastric cancer.
Carcinogenesis. 31:1552–1560. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
David CJ, Huang YH, Chen M, Su J, Zou Y,
Bardeesy N, Iacobuzio-Donahue CA and Massagué J: TGF-β tumor
suppression through a lethal EMT. Cell. 164:1015–1030. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kondratyeva L, Chernov I, Kopantzev E,
Didych D, Kuzmich A, Alekseenko I, Kostrov S and Sverdlov E:
Pancreatic lineage specifier PDX1 increases adhesion and decreases
motility of cancer cells. Cancers (Basel). 13:43902021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kondratyeva LG, Safina DR, Chernov IP,
Kopantzev EP, Kostrov SV and Sverdlov ED: PDX1, a key factor in
pancreatic embryogenesis, can exhibit antimetastatic activity in
pancreatic ductal adenocarcinoma. Cancer Manag Res. 11:7077–7087.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Morton JP, Klimstra DS, Mongeau ME and
Lewis BC: Trp53 deletion stimulates the formation of metastatic
pancreatic tumors. Am J Pathol. 172:1081–1087. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Cai YC, Banner B, Glickman J and Odze RD:
Cytokeratin 7 and 20 and thyroid transcription factor 1 can help
distinguish pulmonary from gastrointestinal carcinoid and
pancreatic endocrine tumors. Hum Pathol. 32:1087–1093. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Srivastava A and Hornick JL:
Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1
can help distinguish gastrointestinal carcinoid tumors from
pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg
Pathol. 33:626–632. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yang Z, Klimstra DS, Hruban RH and Tang
LH: Immunohistochemical characterization of the origins of
metastatic well-differentiated neuroendocrine tumors to the liver.
Am J Surg Pathol. 41:915–922. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bourdeleau P, de Mestier L, Pokossy-Epée
J, Hentic O, Tihy M, Afzal-Awan Z, Couvelard A, Ronot M, Rebours V,
Ruszniewski P, et al: Temporal increase in Ki-67 index in patients
with pancreatic neuroendocrine tumours. Endocr Relat Cancer.
32:e2403212025. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Greenberg JA, Shah Y, Ivanov NA, Marshall
T, Kulm S, Williams J, Tran C, Scognamiglio T, Heymann JJ,
Lee-Saxton YJ, et al: Developing a predictive model for metastatic
potential in pancreatic neuroendocrine tumor. J Clin Endocrinol
Metab. 110:263–274. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mattiolo P, Bevere M, Mafficini A,
Verschuur AVD, Calicchia M, Hackeng WM, Simbolo M, Paiella S,
Dreijerink KMA, Landoni L, et al: Glucagon-producing pancreatic
neuroendocrine tumors (Glucagonomas) are enriched in aggressive
neoplasms with ARX and PDX1 Co-expression, DAXX/ATRX Mutations, and
ALT (Alternative Lengthening of Telomeres). Endocr Pathol.
35:354–361. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Mulders MCF, Verschuur AVD, de Lussanet de
la Sablonière QG, Roes EM, Geisenberger C, Brosens LA, de Herder
WW, van Velthuysen MF and Hofland J: Clinicopathological and
epigenetic differences between primary neuroendocrine tumors and
neuroendocrine metastases in the ovary. J Pathol Clin Res.
10:e700002024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Moser E, Ura A, Klöppel G and Kasajima A:
Subtyping of pancreatic neuroendocrine tumors by transcription
factors, hormones, histology, and patient outcome. Pathologie
(Heidelb). 45:20–25. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Phalon C, Rao DD and Nemunaitis J:
Potential use of RNA interference in cancer therapy. Expert Rev Mol
Med. 12:e262010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Napoli C, Lemieux C and Jorgensen R:
Introduction of a chimeric chalcone synthase gene into petunia
results in reversible Co-Suppression of homologous genes in trans.
Plant Cell. 2:279–289. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Brummelkamp TR, Bernards R and Agami R:
Stable suppression of tumorigenicity by virus-mediated RNA
interference. Cancer Cell. 2:243–247. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Elbashir SM, Harborth J, Lendeckel W,
Yalcin A, Weber K and Tuschl T: Duplexes of 21-nucleotide RNAs
mediate RNA interference in cultured mammalian cells. Nature.
411:494–498. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Brummelkamp TR, Bernards R and Agami R: A
system for stable expression of short interfering RNAs in mammalian
cells. Science. 296:550–553. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fleming JB, Shen GL, Holloway SE, Davis M
and Brekken RA: Molecular consequences of silencing mutant K-ras in
pancreatic cancer cells: Justification for K-ras-directed therapy.
Mol Cancer Res. 3:413–423. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Qiu Z, Huang C, Sun J, Qiu W, Zhang J, Li
H, Jiang T, Huang K and Cao J: RNA interference-mediated signal
transducers and activators of transcription 3 gene silencing
inhibits invasion and metastasis of human pancreatic cancer cells.
Cancer Sci. 98:1099–1106. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wu J, Liu S, Yu J, Zhou G, Rao D, Jay CM,
Kumar P, Sanchez R, Templeton N, Senzer N, et al: Vertically
integrated translational studies of PDX1 as a therapeutic target
for pancreatic cancer via a novel bifunctional RNAi platform.
Cancer Gene Ther. 21:48–53. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Liu S, Ballian N, Belaguli NS, Patel S, Li
M, Templeton NS, Gingras MC, Gibbs R, Fisher W and Brunicardi FC:
PDX-1 acts as a potential molecular target for treatment of human
pancreatic cancer. Pancreas. 37:210–220. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Liu SH, Rao DD, Nemunaitis J, Senzer N,
Zhou G, Dawson D, Gingras MC, Wang Z, Gibbs R, Norman M, et al:
PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and
islet neoplasia using a novel RNA interference platform. PLoS One.
7:e404522012. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Jay CM, Ruoff C, Kumar P, Maass H, Spanhel
B, Miller M, Arrington A, Montalvo N, Gresham V, Rao DD, et al:
Assessment of intravenous pbi-shRNA PDX1 nanoparticle
(OFHIRNA-PDX1) in yucatan swine. Cancer Gene Ther. 20:683–689.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yu J, Liu SH, Sanchez R, Nemunaitis J,
Rozengurt E and Brunicardi FC: PDX1 associated therapy in
translational medicine. Ann Transl Med. 4:2142016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Madiraju AK, Erion DM, Rahimi Y, Zhang XM,
Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald
MJ, et al: Metformin suppresses gluconeogenesis by inhibiting
mitochondrial glycerophosphate dehydrogenase. Nature. 510:542–546.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Gong J, Robbins LA, Lugea A, Waldron RT,
Jeon CY and Pandol SJ: Diabetes, pancreatic cancer, and metformin
therapy. Front Physiol. 5:4262014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Bao B, Wang Z, Ali S, Ahmad A, Azmi AS,
Sarkar SH, Banerjee S, Kong D, Li Y, Thakur S, et al: Metformin
inhibits cell proliferation, migration and invasion by attenuating
CSC function mediated by deregulating miRNAs in pancreatic cancer
cells. Cancer Prev Res (Phila). 5:355–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kisfalvi K, Moro A, Sinnett-Smith J, Eibl
G and Rozengurt E: Metformin inhibits the growth of human
pancreatic cancer xenografts. Pancreas. 42:781–785. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Sinnett-Smith J, Kisfalvi K, Kui R and
Rozengurt E: Metformin inhibition of mTORC1 activation, DNA
synthesis and proliferation in pancreatic cancer cells: Dependence
on glucose concentration and role of AMPK. Biochem Biophys Res
Commun. 430:352–357. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Wang LW, Li ZS, Zou DW, Jin ZD, Gao J and
Xu GM: Metformin induces apoptosis of pancreatic cancer cells.
World J Gastroenterol. 14:7192–7198. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Karnevi E, Said K, Andersson R and
Rosendahl AH: Metformin-mediated growth inhibition involves
suppression of the IGF-I receptor signalling pathway in human
pancreatic cancer cells. BMC Cancer. 13:2352013. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Fasih A, Elbaz HA, Hüttemann M, Konski AA
and Zielske SP: Radiosensitization of pancreatic cancer cells by
metformin through the AMPK pathway. Radiat Res. 182:50–59. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Kisfalvi K, Eibl G, Sinnett-Smith J and
Rozengurt E: Metformin disrupts crosstalk between G protein-coupled
receptor and insulin receptor signaling systems and inhibits
pancreatic cancer growth. Cancer Res. 69:6539–6545. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhou G, Yu J, Wang A, Liu SH,
Sinnett-Smith J, Wu J, Sanchez R, Nemunaitis J, Ricordi C,
Rozengurt E and Brunicardi FC: Metformin restrains pancreatic
duodenal Homeobox-1 (PDX-1) function by inhibiting ERK signaling in
pancreatic ductal adenocarcinoma. Curr Mol Med. 16:83–90. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Sun X, Cai W, Li H, Gao C, Ma X, Guo Y, Fu
D, Xiao D, Zhang Z, Wang Y, et al: Endothelial-like
cancer-associated fibroblasts facilitate pancreatic cancer
metastasis via vasculogenic mimicry and paracrine signalling. Gut.
74:1437–1451. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Lin Y, Pu S, Wang J, Wan Y, Wu Z, Guo Y,
Feng W, Ying Y, Ma S, Meng XJ, et al: Pancreatic STAT5 activation
promotes KrasG12D-induced and inflammation-induced acinar-to-ductal
metaplasia and pancreatic cancer. Gut. 73:1831–1843. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Xie Y, Zhou T, Li X, Zhao K, Bai W, Hou X,
Liu Z, Ni B, Zhang Z, Yan J, et al: Targeting ESE3/EHF With
Nifurtimox Inhibits CXCR2+ neutrophil infiltration and overcomes
pancreatic cancer resistance to chemotherapy and immunotherapy.
Gastroenterology. 167:281–297. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Zhang X, Lao M, Xu J, Duan Y, Yang H, Li
M, Ying H, He L, Sun K, Guo C, et al: Combination cancer
immunotherapy targeting TNFR2 and PD-1/PD-L1 signaling reduces
immunosuppressive effects in the microenvironment of pancreatic
tumors. J Immunother Cancer. 10:e0039822020. View Article : Google Scholar
|
|
133
|
Renz BW, Takahashi R, Tanaka T, Macchini
M, Hayakawa Y, Dantes Z, Maurer HC, Chen X, Jiang Z, Westphalen CB,
et al: β2 Adrenergic-neurotrophin feedforward loop promotes
pancreatic cancer. Cancer Cell. 33:75–90.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|