|
1
|
Mohamed AA, Elmancy LY, Abulola SM,
Al-Qattan SA, Mohamed Ibrahim MI and Maayah ZH: Assessment of
native myocardial T1 mapping for early detection of
Anthracycline-induced cardiotoxicity in patients with cancer: A
systematic review and meta-analysis. Cardiovasc Toxicol.
24:563–575. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
van der Zanden SY, Qiao X and Neefjes J:
New insights into the activities and toxicities of the old
anticancer drug doxorubicin. FEBS J. 288:6095–6111. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kirkham AA, Beaudry RI, Paterson DI,
Mackey JR and Haykowsky MJ: Curing breast cancer and killing the
heart: A novel model to explain elevated cardiovascular disease and
mortality risk among women with early stage breast cancer. Prog
Cardiovasc Dis. 62:116–126. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Parambil JV, Najim M, Mahmoud M, Abubeker
IY, Kartha A, Calaud F, Al-Mohamed A, Al-Mohannadi D, Chandra P and
A Yassin M: Breast cancer screening practices in a tertiary care
center in the state of qatar: A Cross-sectional survey. Breast
Cancer (Dove Med Press). 13:21–30. 2021.PubMed/NCBI
|
|
5
|
Clayton ZS, Hutton DA, Mahoney SA and
Seals DR: Anthracycline Chemotherapy-mediated vascular dysfunction
as a model of accelerated vascular aging. Aging Cancer. 2:45–69.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Clayton ZS, Ade CJ, Dieli-Conwright CM and
Mathelier HM: A bench to bedside perspective on anthracycline
chemotherapy-mediated cardiovascular dysfunction: Challenges and
opportunities. A symposium review. J Appl Physiol (1985).
133:1415–1429. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
De Angelis A, Urbanek K, Cappetta D,
Piegari E, Ciuffreda LP, Rivellino A, Russo R, Esposito G, Rossi F
and Berrino L: Doxorubicin cardiotoxicity and target cells: A
broader perspective. Cardiooncology. 2:22016.PubMed/NCBI
|
|
8
|
Kattan LA, Abulola SM, Mohamed Ibrahim MI
and Maayah ZH: Anthracyclines-induced vascular endothelial
dysfunction in cancer patients and survivors using brachial
Flow-mediated dilation (FMD) tool: A systematic review and
Meta-analysis. Cardiovasc Toxicol. 25:692–718. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Imig JD: Epoxygenase metabolites.
Epithelial and vascular actions. Mol Biotechnol. 16:233–251. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zeldin DC: Epoxygenase pathways of
arachidonic acid metabolism. J Biol Chem. 276:36059–36062. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Node K, Ruan XL, Dai J, Yang SX, Graham L,
Zeldin DC and Liao JK: Activation of Galpha s mediates induction of
tissue-type plasminogen activator gene transcription by
epoxyeicosatrienoic acids. J Biol Chem. 276:15983–15989. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen JK, Capdevila J and Harris RC:
Cytochrome p450 epoxygenase metabolism of arachidonic acid inhibits
apoptosis. Mol Cell Biol. 21:6322–6331. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pomposiello SI, Carroll MA, Falck JR and
McGiff JC: Epoxyeicosatrienoic acid-mediated renal vasodilation to
arachidonic acid is enhanced in SHR. Hypertension. 37:887–893.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pratt PF, Li P, Hillard CJ, Kurian J and
Campbell WB: Endothelium-independent, ouabain-sensitive relaxation
of bovine coronary arteries by EETs. Am J Physiol Heart Circ
Physiol. 280:H1113–H1121. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang Y, Oltman CL, Lu T, Lee HC,
Dellsperger KC and VanRollins M: EET homologs potently dilate
coronary microvessels and activate BK(Ca) channels. Am J Physiol
Heart Circ Physiol. 280:H2430–H2440. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Campbell WB: New role for
epoxyeicosatrienoic acids as Anti-inflammatory mediators. Trends
Pharmacol Sci. 21:125–127. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Node K, Huo Y, Ruan X, Yang B, Spiecker M,
Ley K, Zeldin DC and Liao JK: Anti-inflammatory properties of
cytochrome P450 Epoxygenase-derived eicosanoids. Science.
285:1276–1279. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Levick SP, Loch DC, Taylor SM and Janicki
JS: Arachidonic acid metabolism as a potential mediator of cardiac
fibrosis associated with inflammation. J Immunol. 178:641–646.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Althurwi HN, Maayah ZH, Elshenawy OH and
El-Kadi AO: Early changes in cytochrome P450s and their associated
arachidonic acid metabolites play a crucial role in the initiation
of cardiac hypertrophy induced by isoproterenol. Drug Metab Dispos.
43:1254–1266. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Dhulkifle H, Therachiyil L, Hasan MH,
Sayed TS, Younis SM, Korashy HM, Yalcin HC and Maayah ZH:
Inhibition of cytochrome P450 epoxygenase promotes
Endothelium-to-mesenchymal transition and exacerbates
doxorubicin-induced cardiovascular toxicity. Mol Biol Rep.
51:8592024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rand AA, Rajamani A, Kodani SD, Harris TR,
Schlatt L, Barnych B, Passerini AG and Hammock BD:
Epoxyeicosatrienoic acid (EET)-stimulated angiogenesis is mediated
by epoxy hydroxyeicosatrienoic acids (EHETs) formed from COX-2. J
Lipid Res. 60:1996–2005. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Maayah ZH, Elshenawy OH, Althurwi HN,
Abdelhamid G and El-Kadi AO: Human fetal ventricular cardiomyocyte,
RL-14 cell line, is a promising model to study drug metabolizing
enzymes and their associated arachidonic acid metabolites. J
Pharmacol Toxicol Methods. 71:33–41. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Duan JX, Guan XX, Cheng W, Deng DD, Chen
P, Liu C, Zhou Y, Hammock BD and Yang HH: COX-2/sEH-Mediated
macrophage activation is a target for pulmonary protection in mouse
models of chronic obstructive pulmonary disease. Lab Invest.
104:1003192024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Maayah ZH, El Gendy MAM, El-Kadi AO and
Korashy HM: Sunitinib, a tyrosine kinase inhibitor, induces
cytochrome P450 1A1 gene in human breast cancer MCF7 cells through
ligand-independent aryl hydrocarbon receptor activation. Arch
Toxicol. 87:847–856. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pan JA, Zhang H, Lin H, Gao L, Zhang HL,
Zhang JF, Wang CQ and Gu J: Irisin ameliorates doxorubicin-induced
cardiac perivascular fibrosis through inhibiting
endothelial-to-mesenchymal transition by regulating ROS
accumulation and autophagy disorder in endothelial cells. Redox
Biol. 46:1021202021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu Y, Asnani A, Zou L, Bentley VL, Yu M,
Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, et al: Visnagin
protects against doxorubicin-induced cardiomyopathy through
modulation of mitochondrial malate dehydrogenase. Sci Transl Med.
6:266ra1702014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zakaria Z, Suleiman M and Benslimane F:
Imatinib- and ponatinib-mediated cardiotoxicity in zebrafish
embryos and H9c2 cardiomyoblasts. Mol Med Rep. 30:1872024.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Westerfield M: The zebrafish book: A guide
for the laboratory use of zebrafish (Danio rerio). 4th edition.
University of Oregon Press; Eugene: 2000
|
|
29
|
Yalcin HC, Amindari A, Butcher JT, Althani
A and Yacoub M: Heart function and hemodynamic analysis for
zebrafish embryos. Dev Dyn. 246:868–880. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Strykowski JL and Schech JM: Effectiveness
of recommended euthanasia methods in larval zebrafish (Danio
rerio). J Am Assoc Lab Anim Sci. 54:81–84. 2015.PubMed/NCBI
|
|
31
|
Leary S, Underwood W, Anthony R and
Cartner S: AVMA Guidelines for the Euthanasia of Animals: 2020
Edition. Veterinary A and Association M (eds.), . 2020.
|
|
32
|
Lam PY, Kutchukian P, Anand R, Imbriglio
J, Andrews C, Padilla H, Vohra A, Lane S, Parker DL Jr, Cornella
Taracido I, et al: Cyp1 inhibition prevents Doxorubicin-induced
cardiomyopathy in a zebrafish Heart-Failure model. Chembiochem.
21:1905–1910. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Asnani A, Zheng B, Liu Y, Wang Y, Chen HH,
Vohra A, Chi A, Cornella-Taracido I, Wang H, Johns DG, et al:
Highly potent visnagin derivatives inhibit Cyp1 and prevent
doxorubicin cardiotoxicity. JCI Insight. 3:e967532018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huang B, Cui YQ, Guo WB, Yang L and Miao
AJ: Waterborne and dietary accumulation of well-dispersible
hematite nanoparticles by zebrafish at different life stages.
Environ Pollut. 259:1138522020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang G, Panigrahy D, Hwang SH, Yang J,
Mahakian LM, Wettersten HI, Liu JY, Wang Y, Ingham ES, Tam S, et
al: Dual inhibition of cyclooxygenase-2 and soluble epoxide
hydrolase synergistically suppresses primary tumor growth and
metastasis. Proc Natl Acad Sci USA. 111:11127–11132. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Dhulkifle H, Sayed TS, Abunada HH, Abulola
SM, Alhoshani A, Korashy HM and Maayah ZH:
6-Formylindolo(3,2-b)carbazole dampens inflammation and reduces
Endotoxin-induced kidney injury via Nrf2 activation. Chem Res
Toxicol. 36:552–560. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Therachiyil L, Peerapen P, Younis SM,
Ahmad A, Thongboonkerd V, Uddin S and Korashy HM: Proteomic insight
towards key modulating proteins regulated by the aryl hydrocarbon
receptor involved in ovarian carcinogenesis and chemoresistance. J
Proteomics. 295:1051082024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Korashy HM, Maayah ZH, Al Anazi FE, Alsaad
AM, Alanazi IO, Belali OM, Al-Atawi FO and Alshamsan A: Sunitinib
inhibits breast cancer cell proliferation by inducing apoptosis,
Cell-cycle arrest and DNA repair while inhibiting NF-κB signaling
pathways. Anticancer Res. 37:4899–4909. 2017.PubMed/NCBI
|
|
40
|
Cox J, Neuhauser N, Michalski A, Scheltema
RA, Olsen JV and Mann M: Andromeda: A peptide search engine
integrated into the MaxQuant environment. J Proteome Res.
10:1794–1805. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tyanova S, Temu T and Cox J: The MaxQuant
computational platform for mass Spectrometry-based shotgun
proteomics. Nature Protocols. 11:2301–2319. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cox J, Hein MY, Luber CA, Paron I, Nagaraj
N and Mann M: Accurate Proteome-wide label-free quantification by
delayed normalization and maximal peptide ratio extraction, termed
MaxLFQ. Mol Cell Proteomics. 13:2513–2526. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hourani W, Deb PK, Alhawamdeh M, Al-Shari
N, Borah P, Dahabiyeh LA, Jaber AY, P N, S S, Dasappa JP and
Venugopala KN: Anticancer and cyclooxygenase inhibitory activity of
benzylidene derivatives of fenobam and its thio analogues. Curr Med
Chem. 2024 December 16–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang CY, Guan XX, Song ZH, Jiang HL, Liu
YB, Chen P, Duan JX and Zhou Y: COX-2/sEH dual inhibitor PTUPB
attenuates Epithelial-mesenchymal transformation of alveolar
epithelial cells via Nrf2-mediated inhibition of TGF-β1/smad
signaling. Oxid Med Cell Longev. 2022:57596262022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Roche C, Besnier M, Cassel R, Harouki N,
Coquerel D, Guerrot D, Nicol L, Loizon E, Remy-Jouet I, Morisseau
C, et al: Soluble epoxide hydrolase inhibition improves coronary
endothelial function and prevents the development of cardiac
alterations in obese Insulin-resistant mice. Am J Physiol Heart
Circ Physiol. 308:H1020–H1029. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang YF, Sun CC, Duan JX, Yang HH, Zhang
CY, Xiong JB, Zhong WJ, Zu C, Guan XX, Jiang HL, et al: A COX-2/sEH
dual inhibitor PTUPB ameliorates cecal ligation and
Puncture-induced sepsis in mice via Anti-inflammation and
Anti-oxidative stress. Biomed Pharmacother. 126:1099072020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fishbein A, Wang W, Yang H, Yang J,
Hallisey VM, Deng J, Verheul SML, Hwang SH, Gartung A, Wang Y, et
al: Resolution of eicosanoid/cytokine storm prevents carcinogen and
inflammation-initiated hepatocellular cancer progression. Proc Natl
Acad Sci USA. 117:21576–21587. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hwang SH, Wagner KM, Morisseau C, Liu JY,
Dong H, Wecksler AT and Hammock BD: Synthesis and
structure-activity relationship studies of urea-containing
pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble
epoxide hydrolase. J Med Chem. 54:3037–3050. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lesk AM and Chothia C: How different amino
acid sequences determine similar protein structures: The structure
and evolutionary dynamics of the globins. J Mol Biol. 136:225–230.
231–270. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Todd AE, Orengo CA and Thornton JM:
Evolution of function in protein superfamilies, from a structural
perspective. J Mol Biol. 307:1113–1143. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xie L and Bourne PE: Functional coverage
of the human genome by existing structures, structural genomics
targets, and homology models. PLoS Comput Biol. 1:e312005.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cronin A, Mowbray S, Durk H, Homburg S,
Fleming I, Fisslthaler B, Oesch F and Arand M: The N-terminal
domain of mammalian soluble epoxide hydrolase is a phosphatase.
Proc Natl Acad Sci USA. 100:1552–1557. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Al-Shar'I NA, Al-Balas QA, Al-Waqfi RA,
Hassan MA, Alkhalifa AE and Ayoub NM: Discovery of a nanomolar
inhibitor of the human glyoxalase-I enzyme using structure-based
poly-pharmacophore modelling and molecular docking. J Comput Aided
Mol Des. 33:799–815. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Rouzer CA and Marnett LJ: Structural and
chemical biology of the interaction of cyclooxygenase with
substrates and non-steroidal Anti-inflammatory drugs. Chem Rev.
120:7740–7781. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bosman M, Kruger DN, Favere K, De Meyer
GRY, Franssen C, Van Craenenbroeck EM and Guns PJ: Dexrazoxane does
not mitigate early vascular toxicity induced by doxorubicin in
mice. PLoS One. 18:e02948482023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kim HS, Kim SK and Kang KW: Differential
effects of sEH inhibitors on the proliferation and migration of
vascular smooth muscle cells. Int J Mol Sci. 18:26832017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Park SK, Herrnreiter A, Pfister SL,
Gauthier KM, Falck BA, Falck JR and Campbell WB: GPR40 is a
low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J
Biol Chem. 293:10675–10691. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yang HH, Duan JX, Liu SK, Xiong JB, Guan
XX, Zhong WJ, Sun CC, Zhang CY, Luo XQ, Zhang YF, et al: A
COX-2/sEH dual inhibitor PTUPB alleviates
lipopolysaccharide-induced acute lung injury in mice by inhibiting
NLRP3 inflammasome activation. Theranostics. 10:4749–4761. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jankiewicz WK, Barnett SD, Stavniichuk A,
Hwang SH, Hammock BD, Belayet JB, Khan AH and Imig JD: Dual
sEH/COX-2 inhibition using PTUPB-A promising approach to
Antiangiogenesis-induced nephrotoxicity. Front Pharmacol.
12:7447762021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang CY, Duan JX, Yang HH, Sun CC, Zhong
WJ, Tao JH, Guan XX, Jiang HL, Hammock BD, Hwang SH, et al:
COX-2/sEH dual inhibitor PTUPB alleviates bleomycin-induced
pulmonary fibrosis in mice via inhibiting senescence. FEBS J.
287:1666–1680. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cheng Y, Austin SC, Rocca B, Koller BH,
Coffman TM, Grosser T, Lawson JA and FitzGerald GA: Role of
prostacyclin in the cardiovascular response to thromboxane A2.
Science. 296:539–541. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Schmelzer KR, Inceoglu B, Kubala L, Kim
IH, Jinks SL, Eiserich JP and Hammock BD: Enhancement of
antinociception by coadministration of nonsteroidal
anti-inflammatory drugs and soluble epoxide hydrolase inhibitors.
Proc Natl Acad Sci USA. 103:13646–13651. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Khan MAH, Hwang SH, Barnett SD,
Stavniichuk A, Jankiewicz WK, Hammock BD and Imig JD: Multitarget
molecule, PTUPB, to treat diabetic nephropathy in rats. Br J
Pharmacol. 178:4468–4484. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu H, Li D, Zhang CY, Huang LL, Zeng YJ,
Chen TG, Yu K, Meng JW, Lin YX, Guo R, et al: Restoration of ARA
metabolic disorders in vascular smooth muscle cells alleviates
intimal hyperplasia. Eur J Pharmacol. 983:1768242024. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang CY, Tan XH, Yang HH, Jin L, Hong JR,
Zhou Y and Huang XT: COX-2/sEH dual inhibitor alleviates hepatocyte
senescence in NAFLD mice by restoring autophagy through
Sirt1/PI3K/AKT/mTOR. Int J Mol Sci. 23:82672022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang Y, Lu J, Huang S, Zhang Y, Liu J, Xu
Y, Yao B and Wang X: CYP2J deficiency leads to cardiac injury and
presents dual regulatory effects on cardiac function in rats.
Toxicol Appl Pharmacol. 473:1166102023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dai N, Yang C, Fan Q, Wang M, Liu X, Zhao
H and Zhao C: The Anti-inflammatory effect of soluble epoxide
hydrolase inhibitor and 14, 15-EET in kawasaki disease through
PPARgamma/STAT1 signaling pathway. Front Pediatr. 8:4512020.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Maayah ZH, Abdelhamid G, Elshenawy OH,
El-Sherbeni AA, Althurwi HN, McGinn E, Dawood D, Alammari AH and
El-Kadi AOS: The role of soluble epoxide hydrolase enzyme on
Daunorubicin-mediated cardiotoxicity. Cardiovasc Toxicol.
18:268–283. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cho JG, Lee A, Chang W, Lee MS and Kim J:
Endothelial to mesenchymal transition represents a key link in the
interaction between inflammation and endothelial dysfunction. Front
Immunol. 9:2942018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Montorfano I, Becerra A, Cerro R,
Echeverría C, Sáez E, Morales MG, Fernández R, Cabello-Verrugio C
and Simon F: Oxidative stress mediates the conversion of
endothelial cells into myofibroblasts via a TGF-β1 and
TGF-β2-dependent pathway. Lab Invest. 94:1068–1082. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li J, Xiong J, Yang B, Zhou Q, Wu Y, Luo
H, Zhou H, Liu N, Li Y, Song Z and Zheng Q: Endothelial cell
apoptosis induces TGF-β Signaling-dependent host
Endothelial-mesenchymal transition to promote transplant
arteriosclerosis. Am J Transplant. 15:3095–3111. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhou K, Tian KJ, Yan BJ, Gui DD, Luo W,
Ren Z, Wei DH, Liu LS and Jiang ZS: A promising field: regulating
imbalance of EndMT in cardiovascular diseases. Cell Cycle.
20:1477–1486. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Perez L, Munoz-Durango N, Riedel CA,
Echeverría C, Kalergis AM, Cabello-Verrugio C and Simon F:
Endothelial-to-mesenchymal transition: Cytokine-mediated pathways
that determine endothelial fibrosis under inflammatory conditions.
Cytokine Growth Factor Rev. 33:41–54. 2017. View Article : Google Scholar : PubMed/NCBI
|