International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
T‑cadherin and its impact on human diseases (Review)
Truncated‑cadherin (T‑cadherin) is a distinct glycosylphosphatidylinositol‑anchored atypical cadherin that differs from classical cadherins since it does not have transmembrane and intracellular domains. It primarily functions as a dual receptor, serving as a physiological receptor for low‑density lipoprotein (LDL) and a specific receptor for high‑molecular‑weight (HMW) adiponectin. Upon binding to LDL, T‑cadherin activates calcium signaling, thereby promoting cell proliferation and migration and contributing to the development of atherosclerotic plaques. Conversely, its interaction with HMW adiponectin mediates cardiovascular protective effects through various mechanisms, such as increased exosome secretion, reduced intracellular ceramide accumulation, improved insulin sensitivity and anti‑inflammatory actions. T‑cadherin is predominantly expressed in cardiovascular tissues, such as endothelial cells, smooth muscle cells, pericytes and cardiomyocytes. Genetic polymorphisms in cadherin‑13, the gene encoding T‑cadherin, are notably associated with the risk of hypertension, type 2 diabetes and end‑stage renal disease. In cancer, T‑cadherin generally has tumor‑suppressive effects, particularly in gastric, ovarian and breast cancers. This function is often compromised by promoter region hypermethylation, which leads to gene silencing and subsequently inhibits key signaling pathways, such as the PI3K/Akt, Wnt/β‑catenin and epithelial‑mesenchymal transition pathways. The present review provided a comprehensive overview of the molecular mechanisms, regulation of expression and potential clinical importance of T‑cadherin as a diagnostic biomarker and therapeutic target for cardiovascular diseases, including atherosclerosis, hypertension and heart failure, metabolic disorders, such as diabetes, and various cancers. Further research is required to fully elucidate the signal transduction pathways and competitive dynamics of T‑cadherin ligand binding.