|
1
|
Reis-Filho JS and Tutt AN: Triple negative
tumours: a critical review. Histopathology. 52:108–118. 2008.
View Article : Google Scholar
|
|
2
|
Hu Z, Fan C, Oh DS, et al: The molecular
portraits of breast tumors are conserved across microarray
platforms. BMC Genomics. 7:962006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bauer KR, Brown M, Cress RD, Parise CA and
Caggiano V: Descriptive analysis of estrogen receptor
(ER)-negative, progeste- rone receptor (PR)-negative, and
HER2-negative invasive breast cancer, the so-called triple-negative
phenotype: a popu- lation-based study from the California cancer
registry. Cancer. 109:1721–1728. 2007. View Article : Google Scholar
|
|
4
|
Dent R, Trudeau M, Pritchard KI, et al:
Triple-negative breast cancer: clinical features and patterns of
recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gail MH, Anderson WF, Garcia-Closas M and
Sherman ME: Absolute risk models for subtypes of breast cancer. J
Natl Cancer Inst. 99:1657–1659. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Reis-Filho JS, Westbury C and Pierga JY:
The impact of expression profiling on prognostic and predictive
testing in breast cancer. J Clin Pathol. 59:225–231. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Messina M: A brief historical overview of
the past two decades of soy and isoflavone research. J Nutr.
140:1350S–1354S. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Murkies AL, Wilcox G and Davis SR:
Clinical review 92: Phytoestrogens. J Clin Endocrinol Metab.
83:297–303. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tham DM, Gardner CD and Haskell WL:
Clinical review 97: Potential health benefits of dietary
phytoestrogens: a review of the clinical, epidemiological, and
mechanistic evidence. J Clin Endocrinol Metab. 83:2223–2235.
1998.PubMed/NCBI
|
|
10
|
Humfrey CD: Phytoestrogens and human
health effects: weighing up the current evidence. Nat Toxins.
6:51–59. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Collins-Burow BM, Burow ME, Duong BN and
McLachlan JA: Estrogenic and antiestrogenic activities of flavonoid
phytochemicals through estrogen receptor binding-dependent and
-independent mechanisms. Nutr Cancer. 38:229–244. 2000. View Article : Google Scholar
|
|
12
|
Collins BM, McLachlan JA and Arnold SF:
The estrogenic and antiestrogenic activities of phytochemicals with
the human estrogen receptor expressed in yeast. Steroids.
62:365–372. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fournier DB, Erdman JW Jr and Gordon GB:
Soy, its components, and cancer prevention: a review of the in
vitro, animal, and human data. Cancer Epidemiol Biomarkers Prev.
7:1055–1065. 1998.PubMed/NCBI
|
|
14
|
Barnes S: The chemopreventive properties
of soy isoflavonoids in animal models of breast cancer. Breast
Cancer Res Treat. 46:169–179. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lamartiniere CA, Zhang JX and Cotroneo MS:
Genistein studies in rats: potential for breast cancer prevention
and reproductive and developmental toxicity. Am J Clin Nutr.
68:1400S–1405S. 1998.PubMed/NCBI
|
|
16
|
Diel P, Smolnikar K, Schulz T,
Laudenbach-Leschowski U, Michna H and Vollmer G: Phytoestrogens and
carcinogenesis-differential effects of genistein in experimental
models of normal and malignant rat endometrium. Hum Reprod.
16:997–1006. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Boue SM, Carter CH, Ehrlich KC and
Cleveland TE: Induction of the soybean phytoalexins coumestrol and
glyceollin by Aspergillus. J Agric Food Chem. 48:2167–2172. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bhattacharyya M and Ward EWB: Resistance,
susceptibility and accumulation of glyceollins I-III in soybean
organs inoculated with Phytophthora megasperma f. sp.
Glycinea. Physiol and Mol Plant Pathol. 29:227–237. 1986.
View Article : Google Scholar
|
|
19
|
Boue SM, Wiese TE, Nehls S, Burow ME,
Elliott S, Carter-Wientjes CH, Shih BY, McLachlan JA and Cleveland
TE: Evaluation of the estrogenic effects of legume extracts
containing phytoestrogens. J Agric Food Chem. 51:2193–2199. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Graham TL and Graham MY: Glyceollin
elicitors induce major but distinctly different shifts in
isoflavonoid metabolism in proximal and distal soybean cell
populations. Mol Plant Microbe Interact. 4:60–68. 1991. View Article : Google Scholar
|
|
21
|
Burow ME, Boue SM, Collins-Burow BM, et
al: Phytochemical glyceollins, isolated from soy, mediate
antihormonal effects through estrogen receptor alpha and beta. J
Clin Endocrinol Metab. 86:1750–1758. 2001.
|
|
22
|
Salvo VA, Boue SM, Fonseca JP, et al:
Antiestrogenic glyceollins suppress human breast and ovarian
carcinoma tumorigenesis. Clin Cancer Res. 12:7159–7164. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rhodes LV, Muir SE, Elliott S, et al:
Adult human mesenchymal stem cells enhance breast tumorigenesis and
promote hormone independence. Breast Cancer Res Treat. 121:293–300.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Burow ME, Tang Y, Collins-Burow BM, et al:
Effects of environmental estrogens on tumor necrosis factor
alpha-mediated apoptosis in MCF-7 cells. Carcinogenesis.
20:2057–2061. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gao X, Gulari E and Zhou X: In situ
synthesis of oligonucleotide microarrays. Biopolymers. 73:579–596.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhu Q, Hong A, Sheng N, et al:
microParaflo biochip for nucleic acid and protein analysis. Methods
Mol Biol. 382:287–312. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bolstad BM, Irizarry RA, Astrand M and
Speed TP: A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias.
Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Farazi TA, Spitzer JI, Morozov P and
Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011.
View Article : Google Scholar
|
|
29
|
Winter J and Diederichs S: MicroRNA
biogenesis and cancer. Methods Mol Biol. 676:3–22. 2011. View Article : Google Scholar
|
|
30
|
Allen KE and Weiss GJ: Resistance may not
be futile: microRNA biomarkers for chemoresistance and potential
therapeutics. Mol Cancer Ther. 9:3126–3136. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gandellini P, Profumo V, Folini M and
Zaffaroni N: MicroRNAs as new therapeutic targets and tools in
cancer. Expert Opin Ther Targets. 15:265–279. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nana-Sinkam SP and Croce CM: MicroRNA
dysregulation in cancer: opportunities for the development of
microRNA-based drugs. IDrugs. 13:843–846. 2011.PubMed/NCBI
|
|
33
|
Ma L and Weinberg RA: MicroRNAs in
malignant progression. Cell Cycle. 7:570–572. 2008. View Article : Google Scholar
|
|
34
|
O'Day E and Lal A: MicroRNAs and their
target gene networks in breast cancer. Breast Cancer Res.
12:2012011.
|
|
35
|
Gregory PA, Bracken CP, Bert AG and
Goodall GJ: MicroRNAs as regulators of epithelial-mesenchymal
transition. Cell Cycle. 7:3112–3118. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Korpal M and Kang Y: The emerging role of
miR-200 family of microRNAs in epithelial-mesenchymal transition
and cancer metastasis. RNA Biol. 5:115–119. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen J, Wang L, Matyunina LV, Hill CG and
McDonald JF: Overexpression of miR-429 induces
mesenchymal-to-epithelial transition (MET) in metastatic ovarian
cancer cells. Gynecol Oncol. 121:200–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tryndyak VP, Beland FA and Pogribny IP:
E-cadherin transcriptional down-regulation by epigenetic and
microRNA-200 family alterations is related to mesenchymal and
drug-resistant phenotypes in human breast cancer cells. Int J
Cancer. 126:2575–2583. 2011.PubMed/NCBI
|
|
39
|
Ota D, Mimori K, Yokobori T, et al:
Identification of recurrence-related microRNAs in the bone marrow
of breast cancer patients. Int J Oncol. 38:955–962. 2011.PubMed/NCBI
|
|
40
|
Patel JB, Appaiah HN, Burnett RM, et al:
Control of EVI-1 oncogene expression in metastatic breast cancer
cells through microRNA miR-22. Oncogene. 30:1290–1301. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li J, Liang S, Yu H, Zhang J, Ma D and Lu
X: An inhibitory effect of miR-22 on cell migration and invasion in
ovarian cancer. Gynecol Oncol. 119:543–548. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li J, Liang SH and Lu X: Potential role of
ezrin and its related microRNA in ovarian cancer invasion and
metastasis. Zhonghua Fu Chan Ke Za Zhi. 45:787–792. 2011.PubMed/NCBI
|
|
43
|
Wu N, Zhao X, Liu M, et al: Role of
microRNA-26b in glioma development and its mediated regulation on
EphA2. PLoS One. 6:e162642011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu XX, Li XJ, Zhang B, et al:
MicroRNA-26b is underexpressed in human breast cancer and induces
cell apoptosis by targeting SLC7A11. FEBS Lett. 585:1363–1367.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Martinez I, Cazalla D, Almstead LL, Steitz
JA and DiMaio D: miR-29 and miR-30 regulate B-Myb expression during
cellular senescence. Proc Natl Acad Sci USA. 108:522–527. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Villarreal G Jr, Oh DJ, Kang MH and Rhee
DJ: Coordinated Regulation of Extracellular Matrix Synthesis by the
MicroRNA-29 Family in the Trabecular Meshwork. Invest Ophthalmol
Vis Sci. 52:3391–3397. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Maurer B, Stanczyk J, Jungel A, et al:
MicroRNA-29, a key regulator of collagen expression in systemic
sclerosis. Arthritis Rheum. 62:1733–1743. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li Z, Hassan MQ, Jafferji M, et al:
Biological functions of miR-29b contribute to positive regulation
of osteoblast differentiation. J Biol Chem. 284:15676–15684. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ott CE, Grunhagen J, Jager M, et al:
MicroRNAs differentially expressed in postnatal aortic development
downregulate elastin via 3′ UTR and coding-sequence binding sites.
PLoS One. 6:e162502011.PubMed/NCBI
|
|
50
|
Mott JL, Kobayashi S, Bronk SF and Gores
GJ: mir-29 regulates Mcl-1 protein expression and apoptosis.
Oncogene. 26:6133–6140. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Park SY, Lee JH, Ha M, Nam JW and Kim VN:
miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat
Struct Mol Biol. 16:23–29. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hashimoto Y, Akiyama Y, Otsubo T, Shimada
S and Yuasa Y: Involvement of epigenetically silenced microRNA-181c
in gastric carcinogenesis. Carcinogenesis. 31:777–784. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li D, Zhao Y, Liu C, et al: Analysis of
MiR-195 and MiR-497 expression, regulation and role in breast
cancer. Clin Cancer Res. 7:1722–1730. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang X, Wang J, Ma H, Zhang J and Zhou X:
Downregulation of miR-195 correlates with lymph node metastasis and
poor prognosis in colorectal cancer. Med Oncol. March
10–2011.(E-pub ahead of print).
|
|
55
|
Sekiya Y, Ogawa T, Iizuka M, Yoshizato K,
Ikeda K and Kawada N: Down-regulation of cyclin E1 expression by
microRNA-195 accounts for interferon-beta-induced inhibition of
hepatic stellate cell proliferation. J Cell Physiol. 226:2535–2542.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu L, Chen L, Xu Y, Li R and Du X:
microRNA-195 promotes apoptosis and suppresses tumorigenicity of
human colorectal cancer cells. Biochem Biophys Res Commun.
400:236–240. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tili E, Michaille JJ, Adair B, et al:
Resveratrol decreases the levels of miR-155 by upregulating
miR-663, a microRNA targeting JunB and JunD. Carcinogenesis.
31:1561–1566. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pan J, Hu H, Zhou Z, et al:
Tumor-suppressive mir-663 gene induces mitotic catastrophe growth
arrest in human gastric cancer cells. Oncol Rep. 24:105–112.
2011.PubMed/NCBI
|
|
59
|
Zhang X, Yu H, Lou JR, et al: MicroRNA-19
(miR-19) regulates tissue factor expression in breast cancer cells.
J Biol Chem. 286:1429–1435. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ory B, Ramsey MR, Wilson C, et al: A
microRNA-dependent program controls p53-independent survival and
chemosensitivity in human and murine squamous cell carcinoma. J
Clin Invest. 121:809–820. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Du L, Schageman JJ, Subauste MC, et al:
miR-93, miR-98, and miR-197 regulate expression of tumor suppressor
gene FUS1. Mol Cancer Res. 7:1234–1243. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Arndt GM, Dossey L, Cullen LM, et al:
Characterization of global microRNA expression reveals oncogenic
potential of miR-145 in metastatic colorectal cancer. BMC Cancer.
9:3742009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li Q, Wang G, Shan JL, et al: MicroRNA-224
is upregulated in HepG2 cells and involved in cellular migration
and invasion. J Gastroenterol Hepatol. 25:164–171. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Mees ST, Mardin WA, Sielker S, et al:
Involvement of CD40 targeting miR-224 and miR-486 on the
progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol.
16:2339–2350. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wingett DG, Vestal RE, Forcier K, Hadjokas
N and Nielson CP: CD40 is functionally expressed on human breast
carcinomas: variable inducibility by cytokines and enhancement of
Fas-mediated apoptosis. Breast Cancer Res Treat. 50:27–36. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Castilla MA, Moreno-Bueno G, Romero-Perez
L, et al: Micro- RNA signature of the epithelial-mesenchymal
transition in endometrial carcinosarcoma. J Pathol. 223:72–80.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bonci D: MicroRNA-21 as therapeutic target
in cancer and cardiovascular disease. Recent Pat Cardiovasc Drug
Discov. 5:156–161. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Radojicic J, Zaravinos A, Vrekoussis T,
Kafousi M, Spandidos DA and Stathopoulos EN: MicroRNA expression
analysis in triple-negative (ER, PR and Her2/neu) breast cancer.
Cell Cycle. 10:507–517. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mei M, Ren Y, Zhou X, et al:
Downregulation of miR-21 enhances chemotherapeutic effect of taxol
in breast carcinoma cells. Technol Cancer Res Treat. 9:77–86. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gong C, Yao Y, Wang Y, et al:
Up-regulation of miR-21 mediates resistance to trastuzumab therapy
for breast cancer. J Biol Chem. 286:19127–19137. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Meng F, Henson R, Wehbe-Janek H, Ghoshal
K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the
PTEN tumor suppressor gene in human hepatocellular cancer.
Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Qi L, Bart J, Tan LP, et al: Expression of
miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia
of the breast in relation to ductal carcinoma in situ and invasive
carcinoma. BMC Cancer. 9:1632009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Frankel LB, Christoffersen NR, Jacobsen A,
Lindow M, Krogh A and Lund AH: Programmed cell death 4 (PDCD4) is
an important functional target of the microRNA miR-21 in breast
cancer cells. J Biol Chem. 283:1026–1033. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Song B, Wang C, Liu J, et al: MicroRNA-21
regulates breast cancer invasion partly by targeting tissue
inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res.
29:292010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhu S, Si ML, Wu H and Mo YY: MicroRNA-21
targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol
Chem. 282:14328–14336. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhu S, Wu H, Wu F, Nie D, Sheng S and Mo
YY: MicroRNA-21 targets tumor suppressor genes in invasion and
metastasis. Cell Res. 18:350–359. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Russell RL, Pedersen AN, Kantor J, et al:
Relationship of nm23 to proteolytic factors, proliferation and
motility in breast cancer tissues and cell lines. Br J Cancer.
78:710–717. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kokkinos MI, Wafai R, Wong MK, Newgreen
DF, Thompson EW and Waltham M: Vimentin and epithelial-mesenchymal
transition in human breast cancer – observations in vitro and in
vivo. Cells Tissues Organs. 185:191–203. 2007.
|
|
79
|
Joglekar MV, Patil D, Joglekar VM, et al:
The miR-30 family microRNAs confer epithelial phenotype to human
pancreatic cells. Islets. 1:137–147. 2009. View Article : Google Scholar : PubMed/NCBI
|