|
1
|
Kondo T: Stem cell-like cancer cells in
cancer cell lines. Cancer Biomark. 3:245–250. 2007.PubMed/NCBI
|
|
2
|
Dalerba P, Cho RW and Clarke MF: Cancer
stem cells: models and concepts. Annu Rev Med. 58:267–284. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Reinwald M, Siehl JM, Goldin-Lang P,
Menssen HD and Thiel E: Relative expression of Wilms-Tumor Gene
(wt1) splice variants KTS−/E5−,
KTS−/E5+, KTS+/E5− and
KTS+/E5+ in AML patients reveals a similar
pattern as in embryonic tissue. Blood. 98:206B. 2001.
|
|
4
|
La Spina M, Pizzolitto S, Skrap M, et al:
Embryonal tumor with abundant neuropil and true rosettes. A new
entity or only variations of a parent neoplasms (PNETs)? This is
the dilemma. J Neuro-Oncol. 78:317–320. 2006.PubMed/NCBI
|
|
5
|
Cohnheim J: Ueber entzündung und eiterung.
Virchows Arch. 40:1–79. 1867.
|
|
6
|
Furth J and Kahn M: The transmission of
leukemia of mice with a single cell. Am J Cancer. 31:276–282.
1937.
|
|
7
|
Makino S and Kano K: Cytological studies
of tumors. XIV Isolation of single-cell clones from a mixed-cell
tumor of the rat. J Natl Cancer I. 15:1165–1181. 1955.PubMed/NCBI
|
|
8
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Blair A and Sutherland HJ: Primitive acute
myeloid leukemia cells with long-term proliferative ability in
vitro and in vivo lack surface expression of c-kit (CD117). Exp
Hematol. 28:660–671. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jordan C, Upchurch D, Szilvassy S, et al:
The interleukin-3 receptor alpha chain is a unique marker for human
acute myelogenous leukemia, stem cells. Leukemia. 14:1777–1784.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hope KJ, Jin L and Dick JE: Acute myeloid
leukemia originates from a hierarchy of leukemic stem cell classes
that differ in self-renewal capacity. Nat Immunol. 5:738–743. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rowley JD: The role of chromosome
translocations in leukemogenesis. Semin Hematol. 36:59–72.
1999.PubMed/NCBI
|
|
13
|
Holyoake T, Jiang X, Eaves C and Eaves A:
Isolation of a highly quiescent subpopulation of primitive leukemic
cells in chronic myeloid leukemia. Blood. 94:2056–2064.
1999.PubMed/NCBI
|
|
14
|
Cobaleda C, Gutierrez-Cianca N,
Perez-Losada J, et al: A primitive hematopoietic cell is the target
for the leukemic transformation in human Philadelphia-positive
acute lymphoblastic leukemia. Blood. 95:1007–1013. 2000.
|
|
15
|
Buchanan GR: 50 years ago in The Journal
of Pediatrics - Treatment of Wilm’s tumor. J Pediatr. 148:812.
2006.
|
|
16
|
Wright JH: Neurocytoma or neuroblastoma, a
kind of tumor not generally recognized. J Exp Med. 12:556–561.
1910. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shimada H, Chatten J, Newton WA Jr, et al:
Histopathologic prognostic factors in neuroblastic tumors:
definition of subtypes of ganglioneuroblastoma and an age-linked
classification of neuroblastomas. J Natl Cancer I. 73:405–416.
1984.PubMed/NCBI
|
|
18
|
O’Hare M: Teratomas, neoplasia and
differentiation: a biological overview. I The natural history of
teratomas. Invest Cell Pathol. 1:39–63. 1978.PubMed/NCBI
|
|
19
|
Pierce G Jr and Verney E: An in vitro and
in vivo study of differentiation in teratocarcinomas. Cancer.
14:1017–1029. 1961. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Stevens LC: Experimental production of
testicular teratomas in mice. Proc Natl Acad Sci USA. 52:654–661.
1964. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stevens LC: Development of transplantable
teratocarcinomas from intratesticular grafts of preimplantation and
postimplantation mouse embryos. Dev Biol. 21:364–382. 1970.
View Article : Google Scholar
|
|
22
|
Kleinsmith LJ and Pierce GB:
Multipotentiality of single embryonal carcinoma cells. Cancer Res.
24:15441964.PubMed/NCBI
|
|
23
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. PNAS. 100:3983–3988. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jordan CT: Cancer stem cell biology: from
leukemia to solid tumors. Curr Opin Cell Biol. 16:708–712. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kai K, Arima Y, Kamiya T and Saya H:
Breast cancer stem cells. Breast Cancer. 17:80–85. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ignatova TN, Kukekov VG, Laywell ED,
Suslov ON, Vrionis FD and Steindler DA: Human cortical glial tumors
contain neural stem-like cells expressing astroglial and neuronal
markers in vitro. Glia. 39:193–206. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Singh SK, Clarke ID, Terasaki M, et al:
Identification of a cancer stem cell in human brain tumors. Cancer
Res. 63:58212003.PubMed/NCBI
|
|
28
|
Piccirillo SGM and Vescovi AL: Brain
tumour stem cells: possibilities of new therapeutic strategies.
Expert Opin Biol Ther. 7:1129–1135. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Friedewald WF and Rous P: The initiating
and promoting elements in tumor production - An analysis of the
effects of tar, benzpyrene, and methylcholanthrene on rabbit skin.
J Exp Med. 80:101–126. 1944. View Article : Google Scholar
|
|
30
|
Berenblum I: Carcinogenesis and tumor
pathogenesis. Adv Cancer Res. 2:129–175. 1954. View Article : Google Scholar
|
|
31
|
Boutwell RK: Some biological aspects of
skin carcinogenesis. Prog Exp Tumor Res. 4:207–250. 1964.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Potten CS and Morris RJ: Epithelial stem
cells in vivo. J Cell Sci. (Suppl 10): 45–62. 1988. View Article : Google Scholar
|
|
33
|
Virchow R: Archiv fuer pathologische
anatomie und physiologie und fuer klinische. Medizin. 8:231855.
|
|
34
|
Cohnheim J: Ueber entzündung und eiterung.
Virchows Archiv. 40:1–79. 1867.
|
|
35
|
Beard J: Embryological aspects and
etiology of carcinoma. Lancet. 1:1758–1761. 1902. View Article : Google Scholar
|
|
36
|
Rippert H: Geschwulstelehre fur Aerzte und
Studierende Bonn. 1904
|
|
37
|
Rotter H: Histogenese der malignen
Geschwülste. J Cancer Res Clin. 18:171–208. 1922.
|
|
38
|
Brown K, Strathdee D, Bryson S, Lambie W
and Balmain A: The malignant capacity of skin tumours induced by
expression of a mutant H-ras transgene depends on the cell type
targeted. Curr Biol. 8:516–524. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Arnold I and Watt FM: c-Myc activation in
transgenic mouse epidermis results in mobilization of stem cells
and differentiation of their progeny. Curr Biol. 11:558–568. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Munger K and Howley PM: Human
papillomavirus immortalization and transformation functions. Virus
Res. 89:213–228. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pelengaris S, Littlewood T, Khan M, Elia G
and Evan G: Reversible activation of c-Myc in skin: induction of a
complex neoplastic phenotype by a single oncogenic lesion.
Molecular Cell. 3:565–577. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Waikel RL, Kawachi Y, Waikel PA, Wang XJ
and Roop DR: Deregulated expression of c-Myc depletes epidermal
stem cells. Nat Genet. 28:165–168. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Akiyama T: Wnt/[beta]-catenin signaling.
Cytokine Growth Factor Rev. 11:273–282. 2000.
|
|
44
|
Giles RH, van Es JH and Clevers H: Caught
up in a Wnt storm: Wnt signaling in cancer. BBA-Rev Cancer.
1653:1–24. 2003.PubMed/NCBI
|
|
45
|
Koesters R and Doeberitz MV: The Wnt
signaling pathway in solid childhood tumors. Cancer Lett.
198:123–138. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Peifer M and Polakis P: Cancer - Wnt
signaling in oncogenesis and embryogenesis - a look outside the
nucleus. Science. 287:1606–1609. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kuhl M, Sheldahl LC, Park M, Miller JR and
Moon RT: The Wnt/Ca2+ pathway - a new vertebrate Wnt
signaling pathway takes shape. Trends Genet. 16:279–283. 2000.
View Article : Google Scholar
|
|
48
|
Peifer M and McEwen DG: The ballet of
morphogenesis: Unveiling the hidden choreographers. Cell.
109:271–274. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liu CM, Li YM, Semenov M, et al: Control
of beta-catenin phosphorylation/degradation by a dual-kinase
mechanism. Cell. 108:837–847. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Aberle H, Bauer A, Stappert J, Kispert A
and Kemler R: beta-catenin is a target for the ubiquitin-proteasome
pathway. Embo J. 16:3797–3804. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Itoh K, Krupnik VE and Sokol SY: Axis
determination in Xenopus involves biochemical interactions of axin,
glycogen synthase kinase 3 and beta-catenin. Curr Biol. 8:591–594.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tetsu O and McCormick F: Beta-catenin
regulates expression of cyclin D1 in colon carcinoma cells. Nature.
398:422–426. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yanagawa S, Matsuda Y, Lee JS, et al:
Casein kinase I phosphorylates the Armadillo protein and induces
its degradation in Drosophila. Embo J. 21:1733–1742. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
He TC, Sparks AB, Rago C, et al:
Identification of c-MYC as a target of the APC pathway. Science.
281:1509–1512. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
He X: A Wnt-Wnt situation. Developmental
Cell. 4:791–797. 2003. View Article : Google Scholar
|
|
56
|
Morgan TH: The theory of the gene. Am Nat.
513–544. 1917. View
Article : Google Scholar
|
|
57
|
Kidd S, Kelley MR and Young MW: Sequence
of the notch locus of Drosophila melanogaster: relationship
of the encoded protein to mammalian clotting and growth-factors.
Mol Cell Biol. 6:3094–3108. 1986.PubMed/NCBI
|
|
58
|
Wharton KA, Johansen KM, Xu T and
Artavanis-Tsakonas S: Nucleotide sequence from the neurogenic locus
notch implies a gene product that shares homology with proteins
containing EGF-like repeats. Cell. 43:5671985. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hansson EM, Lendahl U and Chapman G: Notch
signaling in development and disease. Semin Cancer Biol.
14:320–328. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Artavanis-Tsakonas S, Rand MD and Lake RJ:
Notch signaling: Cell fate control and signal integration in
development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Christensen S, Kodoyianni V, Bosenberg M,
Friedman L and Kimble J: lag-1, a gene required for lin-12 and
glp-1 signaling in Caenorhabditis elegans, is homologous to
human CBF1 and Drosophila Su(H). Development. 122:1373–1383.
1996.PubMed/NCBI
|
|
62
|
Fryer CJ, Lamar E, Turbachova I, Kintner C
and Jones KA: Mastermind mediates chromatin-specific transcription
and turnover of the Notch enhancer complex. Gene Dev. 16:1397–1411.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fortini ME and Artavanis-Tsakonas S: The
suppressor of hairless protein participates in notch receptor
signaling. Cell. 79:273–282. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jarriault S, Brou C, Logeat F, Schroeter
EH, Kopan R and Israel A: Signaling downstream of activated
mammalian notch. Nature. 377:355–358. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nam Y, Weng AP, Aster JC and Blacklow SC:
Structural requirements for assembly of the CSL center dot
Intracellular Notch1 center dot Mastermind-like 1 transcriptional
activation complex. J Biol Chem. 278:21232–21239. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Schroeter EH, Kisslinger JA and Kopan R:
Notch-1 signalling requires ligand-induced proteolytic release of
intracellular domain. Nature. 393:382–386. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wu LZ, Aster JC, Blacklow SC, Lake R,
Artavanis-Tsakonas S and Griffin JD: MAML1, a human homologue of
Drosophila Mastermind, is a transcriptional co-activator for
NOTCH receptors. Nat Genet. 26:484–489. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Aster JC and Pear WS: Notch signaling in
leukemia. Curr Opin Hematol. 8:237–244. 2001. View Article : Google Scholar
|
|
69
|
Jeffries S, Robbins DJ and Capobianco AJ:
Characterization of a high-molecular-weight notch complex in the
nucleus of Notch(ic)-transformed RKE cells and in a human T-cell
leukemia cell line. Mol Cell Biol. 22:3927–3941. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zweidler-McKay PA and Pear WS: Notch and T
cell malignancy. Semin Cancer Biol. 14:329–340. 2004. View Article : Google Scholar
|
|
71
|
Callahan R and Raafat A: Notch signaling
in mammary gland tumorigenesis. J Mammary Gland Biol. 6:23–36.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fiúza UM and Arias AM: Cell and molecular
biology of Notch. J Endocrinol. 194:459–474. 2007.
|
|
73
|
Ulasov IV, Nandi S, Dey M, Sonabend AM and
Lesniak MS: Inhibition of Sonic Hedgehog and Notch pathways
enhances sensitivity of CD133(+) glioma stem cells to temozolomide
therapy. Mol Med. 17:103–112. 2011.PubMed/NCBI
|
|
74
|
Fitzgerald K, Harrington A and Leder P:
Ras pathway signals are required for notch-mediated oncogenesis.
Oncogene. 19:4191–4198. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Politi K, Feirt N and Kitajewski J: Notch
in mammary gland development and breast cancer. Semin Cancer Biol.
14:341–347. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shahi P, Seethammagari MR, Valdez JM, Xin
L and Spencer DM: Wnt and Notch pathways have interrelated opposing
roles on prostate progenitor cell proliferation and
differentiation. Stem Cells. 29:678–688. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Nicolas M, Wolfer A, Raj K, et al: Notch1
functions as a tumor suppressor in mouse skin. Nat Genet.
33:416–421. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shou JY, Ross S, Koeppen H, de Sauvage FJ
and Gao WQ: Dynamics of notch expression during murine prostate
development and tumorigenesis. Cancer Res. 61:7291–7297.
2001.PubMed/NCBI
|
|
79
|
Pesce M, Wang XY, Wolgemuth DJ and Scholer
H: Differential expression of the Oct-4 transcription factor during
mouse germ cell differentiation. Mech Develop. 71:89–98. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Pesce M, Gross MK and Schoeler HR: In line
with our ancestors: Oct-4 and the mammalian germ. Bioessays.
20:1056. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Oliver RTD: Germ cell cancer. Curr Opin
Oncol. 11:2361999. View Article : Google Scholar
|
|
82
|
Kraft HJ, Mosselman S, Smits HA, et al:
Oct-4 regulates alternative platelet-derived growth factor alpha
receptor gene promoter in human embryonal carcinoma cells. J Biol
Chem. 271:12873–12878. 1996. View Article : Google Scholar
|
|
83
|
Zhou S, Morris JJ, Barnes YX, Lan L,
Schuetz JD and Sorrentino BP: Bcrp1 gene expression is required for
normal numbers of side population stem cells in mice, and confers
relative protection to mitoxantrone in hematopoietic cells in vivo.
Proc Natl Acad Sci USA. 99:12339–12344. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhou S, Schuetz JD, Bunting KD, et al: The
ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem
cells and is a molecular determinant of the side-population
phenotype. Nat Med. 7:1028–1034. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gottesman MM, Fojo T and Bates SE:
Multidrug resistance in cancer: Role of ATP-dependent transporters.
Nat Rev Cancer. 2:48–58. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
86
|
Akashi K, He X, Chen J, et al:
Transcriptional accessibility for genes of multiple tissues and
hematopoietic lineages is hierarchically controlled during early
hematopoiesis. Blood. 101:383–390. 2003. View Article : Google Scholar
|
|
87
|
Moserle L, Indraccolo S, Ghisi M, et al:
The side population of ovarian cancer cells is a primary target of
IFN-alpha antitumor effects. Cancer Res. 68:5658–5668. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Papapetrou EP, Tomishima MJ, Chambers SM,
et al: Stoichiometric and temporal requirements of Oct4, Sox2,
Klf4, and c-Myc expression for efficient human iPSC induction and
differentiation. Proc Natl Acad Sci USA. 106:12759–12764. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Takaishi S, Okumura T and Wang TC: Gastric
cancer stem cells. J Clin Oncol. 26:2876–2882. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ito R, Fukuda K, Saikawa Y, et al:
Prospective identification of tumorigenic cells in human gastric
cancer. Proc Am Assoc Cancer Res Annual Meeting. 49:1088–1089.
2008.
|
|
91
|
Ricci-Vitiani L, Lombardi DG, Pilozzi E,
et al: Identification and expansion of human
colon-cancer-initiating cells. Nature. 445:111–115. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
O’Brien CA, Pollett A, Gallinger S and
Dick JE: A human colon cancer cell capable of initiating tumour
growth in immunodeficient mice. Nature. 445:106–110.
2007.PubMed/NCBI
|
|
93
|
Dalerba P, Dylla SJ, Park I-K, et al:
Phenotypic characterization of human colorectal cancer stem cells.
Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chiba T, Kita K, Zheng YW, et al: Side
population purified from hepatocellular carcinoma cells harbors
cancer stem cell-like properties. Hepatology. 44:240–251. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chandrasekar PH and Ramesh M: Challenges
in the management of invasive aspergillosis in hematopoietic stem
cell transplantation. Expert Rev Anti Infect Ther. 7:1151–1153.
2009. View Article : Google Scholar : PubMed/NCBI
|