|
1
|
Khan SA, Davidson BR, Goldin RD, et al:
Guidelines for the diagnosis and treatment of cholangiocarcinoma:
an update. Gut. 61:1657–1669. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gentilini A, Rombouts K, Galastri S, et
al: Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the
interaction between hepatic stellate cells and cholangiocarcinoma.
J Hepatol. 57:813–820. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Limpaiboon T: Epigenetic aberrations in
cholangiocarcinoma: potential biomarkers and promising target for
novel therapeutic strategies. Asian Pac J Cancer Prev. 13:41–45.
2012.PubMed/NCBI
|
|
4
|
Boonjaraspinyo S, Wu Z, Boonmars T,
Kaewkes S, et al: Overexpression of PDGFA and its receptor during
carcinogenesis of Opisthorchis viverrini-associated
cholangiocarcinoma. Parasitol Int. 61:145–150. 2012. View Article : Google Scholar
|
|
5
|
Buranrat B, Chau-in S, Prawan A, et al:
NQO1 Expression Correlates with Cholangiocarcinoma Prognosis. Asian
Pac J Cancer Prev. 13:131–136. 2012.PubMed/NCBI
|
|
6
|
Taylor-Robinson SD, Toledano MB, Arora S,
et al: Increase in mortalityrates for intrahepatic
cholangiocarcinoma in England and Wales 1968–1998. Gut. 48:816–820.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tanaka M, Tanaka H, Tsukuma H, et al: Risk
factors for intrahepatic cholangiocarcinoma: a possible role of
hepatitis B virus. Journal of Viral Hepatitis. 17:742–748. 2010.
View Article : Google Scholar
|
|
8
|
Li M, Li J, Li P, et al: Hepatitis B virus
infection increases the risk of cholangiocarcinoma: a meta-analysis
and systematic review. J Gastroenterol Hepatol. 27:1561–1568. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sempoux C, Jibara G, Ward SC, et al:
Intrahepatic cholangiocarcinoma: new insights in pathology. Semin
Liver Dis. 31:49–60. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Suarez-Munoz MA, Fernandez-Aguilar JL,
Sanchez-Perez B, et al: Risk factors and classifications of hilar
cholangiocarcinoma. World J Gastrointest Oncol. 15:132–138. 2013.
View Article : Google Scholar
|
|
11
|
Zhou Y, Zhou Q, Lin Q, et al: Evaluation
of risk factors for extrahepatic cholangiocarcinoma: ABO blood
group, hepatitis B virus and their synergism. Int J Cancer.
15:1867–1875. 2013. View Article : Google Scholar
|
|
12
|
Sawanyawisuth K: Genes and
cholangiocarcinoma. Southeast Asian J Trop Med Public Health.
40:701–712. 2009.PubMed/NCBI
|
|
13
|
Fava G: Molecular mechanisms of
cholangiocarcinoma. World J Gastrointest Pathophysiol. 15:12–22.
2010.
|
|
14
|
Briggs CD, Neal CP, Mann CD, et al:
Prognostic molecular markers in cholangiocarcinoma: A systematic
review. Eur J Cancer. 45:33–47. 2009. View Article : Google Scholar
|
|
15
|
Borger DR, Tanabe KK, Fan KC, et al:
Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in
cholangiocarcinoma identified through broad-based tumor genotyping.
Oncologist. 17:72–79. 2012. View Article : Google Scholar :
|
|
16
|
Subimerb C, Pinlaor S, Lulitanond V, et
al: Circulating CD14+CD16+ monocyte levels predict tissue invasive
character of cholangiocarcinoma. Clin Exp Immunol. 161:471–479.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gu FM, Gao Q, Shi GM, et al: Intratumoral
IL-17+ cells and neutrophils show strong prognostic
significance in intrahepatic cholangiocarcinoma. Ann Surg Oncol.
19:2506–2514. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Utispan K, Thuwajit P, Abiko Y, et al:
Gene expression profiling of cholangiocarcinoma-derived fibroblast
reveals alterations related to tumor progression and indicates
periostin as a poor prognostic marker. Mol Cancer. 9:1–20. 2010.
View Article : Google Scholar
|
|
19
|
Keeratichamroen S, Leelawat K, Thongtawee
T, et al: Expression of CD24 in cholangiocarcinoma cells is
associated with disease progression and reduced patient survival.
Int J Oncol. 39:873–881. 2011.PubMed/NCBI
|
|
20
|
Yonglitthipagon P, Pairojkul C, Chamgramol
Y, et al: Up-regulation of annexin A2 in cholangiocarcinoma caused
by Opisthorchis viverrini and its implication as a prognostic
marker. Int J Parasitol. 40:1203–1212. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Khan SA, Davidson BR, Goldin R, et al:
Guidelines for the diagnosis and treatment of cholangiocarcinoma:
consensus document. Gut. 51:1–9. 2002. View Article : Google Scholar
|
|
22
|
Li YG and Zhang N: Clinical significance
of serum tumour M2-PK and CA19-9 detection in the diagnosis of
cholangiocarcinoma. Dig Liver Dis. 41:605–608. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Leelawat K, Narong S, Wannaprasert J, et
al: Prospective study of MMP7 serum levels in the diagnosis of
cholangiocarcinoma. World J Gastroenterol. 16:4697–4703. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Singh S, Tang SJ, Sreenarasimhaiah J, et
al: The clinical utility and limitations of serum carbohydrate
antigen (CA19-9) as a diagnostic tool for pancreatic cancer and
cholangiocarcinoma. Dig Dis Sci. 56:2491–2496. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jo JH, Chung MJ, Park JY, et al: High
serum CA19-9 levels are associated with an increased risk of
cholangiocarcinoma in patients with intrahepatic duct stones: a
case-control study. Surg Endosc. 27:4210–4216. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wannhoff A, Hov JR, Folseraas T, et al:
FUT2 and FUT3 genotype determines CA19-9 cut-off values for
detection of cholangiocarcinoma in patients with primary sclerosing
cholangitis. 59:1278–1284. 2013.PubMed/NCBI
|
|
27
|
Sinakos E, Saenger AK, Keach J, et al:
Many patients with primary sclerosing cholangitis and increased
serum levels of carbohydrate antigen 19-9 do not have
cholangiocarcinoma. Clin Gastroenterol Hepatol. 9:434–439. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu SL, Song ZF, Hu QG, et al: Serum
carbohydrate antigen (CA) 19-9 as a prognostic factor in
cholangiocarcinoma: a meta-analysis. Front Med China. 4:457–462.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Juntermanns B, Radunz S, Heuer M, et al:
Tumor markers as a diagnostic key for hilar cholangiocarcinoma. Eur
J Med Res. 15:357–361. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Silsirivanit A, Araki N, Wongkham C, et
al: A novel serum carbohydrate marker on mucin 5AC: values for
diagnostic and prognostic indicators for cholangiocarcinoma.
Cancer. 117:3393–3403. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sawanyawisuth K, Silsirivanit A, Kunlabut
K, et al: A novel carbohydrate antigen expression during
development of Opisthorchis viverrini-associated cholangiocarcinoma
in golden hamster: a potential marker for early diagnosis.
Parasitol Int. 61:151–154. 2012. View Article : Google Scholar
|
|
32
|
Silsirivanit A, Araki N, Wongkham C, et
al: CA-S27: A novel Lewis a associated carbohydrate epitope is
diagnostic and prognostic for cholangiocarcinoma. Cancer Sci.
104:1278–1284. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tao LY, Cai L, He XD, et al: Comparison of
serum tumor markers for intrahepatic cholangiocarcinoma and
hepatocellular carcinoma. Am Surg. 76:1210–1213. 2010.PubMed/NCBI
|
|
34
|
Leelawat K, Sakchinabut S, Narong S, et
al: Detection of serum MMP-7 and MMP-9 in cholangiocarcinoma
patients: evaluation of diagnostic accuracy. BMC Gastroenterol.
9:1–8. 2009. View Article : Google Scholar
|
|
35
|
Prakobwong S, Charoensuk L, Hiraku Y, et
al: Plasma hydroxyproline, MMP-7 and collagen I as novel predictive
risk markers of hepatobiliary disease-associated
cholangiocarcinoma. Int J Cancer. 131:E416–E424. 2012. View Article : Google Scholar
|
|
36
|
Brewer HB Jr, Fairwell T, LaRue A, et al:
The amino acid sequence of human APOA-I, an apolipoprotein isolated
from high density lipoproteins. Biochem Biophys Res Commun.
80:623–630. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang X, Dai S, Zhang Z, et al:
Characterization of apolipoprotein A-I as a potential biomarker for
cholangiocarcinoma. Eur J Cancer Care (Engl). 18:625–635. 2009.
View Article : Google Scholar
|
|
38
|
Leelawat K, Narong S, Wannaprasert J, et
al: Serum NGAL to clinically distinguish cholangiocarcinoma from
benign biliary tract diseases. Int J Hepatol. 2011:1–6. 2011.
View Article : Google Scholar
|
|
39
|
Flower DR: The lipocalin protein family:
structure and function. Biochem J. 318:1–14. 1996.PubMed/NCBI
|
|
40
|
Srisomsap C, Sawangareetrakul P,
Subhasitanont P, et al: Proteomic Studies of Cholangiocarcinoma and
Hepatocellular Carcinoma Cell Secretomes. J Biomed Biotechnol.
2010:1–18. 2010. View Article : Google Scholar
|
|
41
|
Jie Z, Cai Y, Yang W, et al: Protective
effects of α1-antitrypsin on acute lung injury inrabbits induced by
endotoxin. Chin Med J (Engl). 116:1678–1682. 2003.
|
|
42
|
Jamnongkan W, Techasen A, Thanan R, et al:
Oxidized alpha-1 antitrypsin as a predictive risk marker of
opisthorchiasis-associated cholangiocarcinoma. Tumour Biol.
34:695–704. 2013. View Article : Google Scholar
|
|
43
|
Sriwanitchrak P, Viyanant V, Chaijaroenkul
W, et al: Proteomics analysis and evaluation of biomarkers for
detection of cholangiocarcinoma. Asian Pac J Cancer Prev.
12:1503–1510. 2011.PubMed/NCBI
|
|
44
|
Tang W, Inagaki Y, Kokudo N, et al: KL-6
mucin expression in carcinoma of the ampulla of Vater: Association
with cancer progression. World J Gastroenterol. 11:5450–5454.
2005.PubMed/NCBI
|
|
45
|
Xu H, Inagaki Y, Tang W, et al: Elevation
of serum KL-6 mucin levels in patients with cholangiocarcinoma.
Hepatogastroenterology. 55:2000–2004. 2008.
|
|
46
|
Khoontawad J, Hongsrichan N, Chamgramol Y,
et al: Increase of exostosin 1 in plasma as a potential biomarker
for opisthorchiasis-associated cholangiocarcinoma. Tumour Biol.
35:1029–1039. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tian M, Cui YZ, Song GH, et al: Proteomic
analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins
in pancreatic juice from pancreatic ductal adenocarcinoma patients.
BMC Cancer. 8:1–11. 2008. View Article : Google Scholar
|
|
48
|
Jackson D, Craven RA, Hutson RC, et al:
Proteomic profiling identifies afamin as a potential biomarker for
ovarian cancer. Clin Cancer Res. 13:7370–7379. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dieplinger H, Ankerst DP, Burges A, et al:
Afamin and Apolipoprotein A-IV: Novel protein markers for ovarian
cancer. Cancer Epidemiol Biomarkers Prev. 18:1127–1133. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dieplinger B, Egger M, Gabriel C, et al:
Analytical characterization and clinical evaluation of an
enzyme-linked immunosorbent assay for measurement of afamin in
human plasma. Clin Chim Acta. 425:236–241. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tolek A, Wongkham C, Proungvitaya S, et
al: Serum α1β-glycoprotein and afamin ratio as potential diagnostic
and prognostic markers in cholangiocarcinoma. Exp Biol Med
(Maywood). 237:1142–1149. 2012. View Article : Google Scholar
|
|
52
|
Zhang X, Xiao Z, Liu X, et al: The
potential role of ORM2 in the development of colorectal cancer.
PLoS One. 7:1–7. 2012.
|
|
53
|
Nagahara M, Nishida N, Iwatsuki M, et al:
Kinesin 18A expression: clinical relevance to colorectal cancer
progression. Int J Cancer. 129:2543–2552. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Rucksaken R, Khoontawad J, Roytrakul S, et
al: Proteomic analysis to identify plasma orosomucoid 2 and kinesin
18A as potential biomarkers of cholangiocarcinoma. Cancer Biomark.
12:81–95. 2012.
|
|
55
|
Wang Y, Zhou B, Li J, et al: Inhibitors of
5-lipoxygenase inhibit expression of intercellular adhesion
molecule-1 in human melanoma cells. Acta Pharmacol Sin. 25:672–677.
2004.PubMed/NCBI
|
|
56
|
Touvier M, Fezeu L, Ahluwalia N, et al:
Pre-diagnostic levels of adiponectin and soluble vascular cell
adhesion molecule-1 are associated with colorectal cancer risk.
World J Gastroenterol. 18:2805–2812. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Song WB, Lv YH, Zhang ZS, et al: Soluble
intercellular adhesion molecule-1, D-lactate and diamine oxidase in
patients with inflammatory bowel disease. World J Gastroenterol.
15:3916–3919. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Janan M, Proungvitaya S, Limpaiboon T, et
al: Serum adhesion molecule-1 (icam-1) as a potential prognostic
marker for cholangiocarcinoma patients. Asian Pac J Cancer Prev.
13:107–114. 2012.PubMed/NCBI
|
|
59
|
Schneider J, Bitterlich N and Schulze G:
Improved sensitivity in the diagnosis of gastro-intestinal tumors
by Fuzzy Logic-based tumor marker profiles including the tumor
M2-PK. Anticancer Res. 25:1507–1515. 2005.PubMed/NCBI
|
|
60
|
Yin L, Wang X, Luo C, et al: The value of
expression of M2-PK and VEGF in patients with advanced gastric
cancer. Cell Biochem Biophys. 67:1033–1039. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Koss K, Harrison RF, Gregory J, et al: The
metabolic marker tumour pyruvate kinase type M2 (tumour M2-PK)
shows increased expression along the
metaplasia-dysplasia-adenocarcinoma sequence in Barrett’s
oesophagus. J Clin Pathol. 57:1156–1159. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu G, Bazer FW, Burghardt RC, et al:
Proline and hydroxyproline metabolism: implications for animal and
human nutrition. Amino Acids. 40:1053–1063. 2011. View Article : Google Scholar
|
|
63
|
Jagtap VR and Ganu JV: Effect of
antiresorptive therapy on urinary hydroxyproline in postmenopausal
osteoporosis. Indian J Clin Biochem. 27:90–93. 2012. View Article : Google Scholar :
|
|
64
|
Kristiansen TZ, Harsha HC, Grønborg M, et
al: Differential membrane proteomics using 18O-labeling to identify
biomarkers for cholangiocarcinoma. J Proteome Res. 7:4670–4677.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li W, Wang X, Li B, et al: Diagnostic
significance of overexpression of Golgi membrane protein 1 in
prostate cancer. Urology. 80:e1–e7. 2012. View Article : Google Scholar
|
|
66
|
Chen MH, Jan YH, Chang PM, et al:
Expression of GOLM1 correlates with prognosis in human
hepatocellular carcinoma. Ann Surg Oncol. 20:616–624. 2013.
View Article : Google Scholar
|
|
67
|
Beyazit Y, Purnak T, Suvak B, et al:
Increased ACE in extrahepatic cholangiocarcinoma as a clue for
activated RAS in biliary neoplasms. Clin Res Hepatol Gastroenterol.
35:644–649. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu JB, Yu ZP, Zhao WZ, et al: Liquid
chromatographic assay of peptides activity with inhibiting
angiotensin converting enzyme. Chem Res Chin Univ. 26:712–716.
2010.
|
|
69
|
Kósa JP, Horváth P, Wölfling J, et al:
CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3
on colorectal cancer cells. World J Gastroenterol. 19:2621–2628.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kennedy L, Baker K, Hodges K, et al:
Dysregulation of vitamin D3 synthesis leads to enhanced
cholangiocarcinoma growth. Dig Liver Dis. 45:316–322. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hunsawong T, Singsuksawat E, In-chon N, et
al: Estrogen is increased in male cholangiocarcinoma patients’
serum and stimulates invasion in cholangiocarcinoma cell lines in
vitro. J Cancer Res Clin Oncol. 138:1311–1320. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yin X, Zheng SS, Zhang BH, et al:
Elevation of serum c-glutamyltransferase as a predictorn of
aggressive tumor behaviors and unfavorable prognosis in patients
with intrahepatic cholangiocarcinoma: analysis of a large
monocenter study. Eur J Gastroenterol Hepatol. 25:1408–1414. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Forrest LM, McMillan DC, McArdle CS, et
al: Evaluation of cumulative prognostic scores based on the
systemic inflammatory response in patients with inoperable
non-small-cell lung cancer. Br J Cancer. 89:1028–1030. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Oshiro Y, Sasaki R, Fukunaga K, et al:
Inflammation-based prognostic score is a useful predictor of
postoperative outcome in patients with extrahepatic
cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 20:389–395. 2013.
View Article : Google Scholar
|
|
75
|
Specht S, Isse K, Nozaki I, et al: SPRR2A
expression in cholangiocarcinoma increases local tumor invasiveness
but prevents metastasis. Clin Exp Metastasis. 30:877–890. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sato Y, Harada K, Sasaki M, et al: Heat
shock proteins 27 and 70 are potential biliary markers for the
detection of cholangiocarcinoma. Am J Pathol. 180:123–130. 2012.
View Article : Google Scholar
|