|
1
|
Dokmanovic M and Marks PA: Prospects:
histone deacetylase inhibitors. J Cell Biochem. 96:293–304. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Barneda-Zahonero B and Parra M: Histone
deacetylases and cancer. Mol Oncol. 6:579–589. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Miller TA, Witter DJ and Belvedere S:
Histone deacetylase inhibitors. J Med Chem. 46:5097–5116. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bertrand P: Inside HDAC with HDAC
inhibitors. Eur J Med Chem. 45:2095–2116. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Giannini G, Cabri W, Fattorusso C and
Rodriquez M: Histone deacetylase inhibitors in the treatment of
cancer: overview and perspectives. Future Med Chem. 4:1439–1460.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Khan O and La Thangue NB: HDAC inhibitors
in cancer biology: emerging mechanisms and clinical applications.
Immunol Cell Biol. 90:85–94. 2012. View Article : Google Scholar
|
|
7
|
Kim YK, Kim NH, Hwang JW, et al: Histone
deacetylase inhibitor apicidin-mediated drug resistance:
involvement of P-glycoprotein. Biochem Biophys Res Commun.
368:959–964. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Glaser KB: Defining the role of gene
regulation in resistance to HDAC inhibitors - mechanisms beyond
P-glycoprotein. Leuk Res. 30:651–652. 2006. View Article : Google Scholar
|
|
9
|
Gottesman MM, Fojo T and Bates SE:
Multidrug resistance in cancer: role of ATP-dependent transporters.
Nat Rev Cancer. 2:48–58. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gerlach JH, Kartner N, Bell DR and Ling V:
Multidrug resistance. Cancer Surv. 5:25–46. 1986.PubMed/NCBI
|
|
11
|
Goda K, Bacsó Z and Szabó G: Multidrug
resistance through the spectacle of P-glycoprotein. Curr Cancer
Drug Targets. 9:281–297. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hagelkruys A, Sawicka A, Rennmayr M and
Seiser C: The biology of HDAC in cancer: the nuclear and epigenetic
components. Handb Exp Pharmacol. 206:13–37. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ahmad M, Hamid A, Hussain A, et al:
Understanding histone deacetylases in the cancer development and
treatment: an epigenetic perspective of cancer chemotherapy. DNA
Cell Biol. 31(Suppl 1): S62–S71. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Smith KT and Workman JL: Histone
deacetylase inhibitors: anticancer compounds. Int J Biochem Cell
Biol. 41:21–25. 2009. View Article : Google Scholar
|
|
16
|
Bradner JE, West N, Grachan ML, et al:
Chemical phylogenetics of histone deacetylases. Nat Chem Biol.
6:238–243. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang L, Fang H and Xu W: Strategies in
developing promising histone deacetylase inhibitors. Med Res Rev.
30:585–602. 2010. View Article : Google Scholar
|
|
18
|
Stimson L and La Thangue NB: Biomarkers
for predicting clinical responses to HDAC inhibitors. Cancer Lett.
280:177–183. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Weichert W, Röske A, Niesporek S, et al:
Class I histone deacetylase expression has independent prognostic
impact in human colorectal cancer: Specific role of class I histone
deacetylases in vitro and in vivo. Clin Cancer Res. 14:1669–1677.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Piekarz RL, Frye R, Prince HM, Kirschbaum
MH, Zain J, Allen SL, Jaffe ES, Ling A, Turner M, Peer CJ, Figg WD,
Steinberg SM, Smith S, Joske D, Lewis I, Hutchins L, Craig M, Fojo
AT, Wright JJ and Bates SE: Phase 2 trial of romidepsin in patients
with peripheral T-cell lymphoma. Blood. 117:5827–5834. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Minucci S and Pelicci PG: Histone
deacetylase inhibitors and the promise of epigenetic (and more)
treatments for cancer. Nat Rev Cancer. 6:38–51. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Botrugno OA, Santoro F and Minucci S:
Histone deacetylase inhibitors as a new weapon in the arsenal of
differentiation therapies of cancer. Cancer Lett. 280:134–144.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Finnin MS, Donigian JR, Cohen A, et al:
Structures of a histone deacetylase homologue bound to the TSA and
SAHA inhibitors. Nature. 401:188–193. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xu Y, Jiang Z, Yin P, Li Q and Liu J: Role
for Class I histone deacetylases in multidrug resistance. Exp Cell
Res. 318:177–186. 2012. View Article : Google Scholar
|
|
25
|
Konsoula Z and Jung M: Involvement of
P-glycoprotein and multidrug resistance associated protein 1 on the
transepithelial transport of a mercaptoacetamide-based
histone-deacetylase inhibitor in Caco-2 cells. Biol Pharm Bull.
32:74–78. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hauswald S, Duque-Afonso J, Wagner MM, et
al: Histone deacetylase inhibitors induce a very broad, pleiotropic
anticancer drug resistance phenotype in acute myeloid leukemia
cells by modulation of multiple ABC transporter genes. Clin Cancer
Res. 15:3705–3715. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE
and Gottesman MM: P-glycoprotein: from genomics to mechanism.
Oncogene. 22:7468–7485. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yatouji S, El-Khoury V, Trentesaux C,
Trussardi-Regnier A, Benabid R, Bontems F and Dufer J: Differential
modulation of nuclear texture, histone acetylation, and MDR1 gene
expression in human drug-sensitive and -resistant OV1 cell lines.
Int J Oncol. 30:1003–1009. 2007.PubMed/NCBI
|
|
29
|
Eyal S, Lamb JG, Smith-Yockman M, et al:
The antiepileptic and anticancer agent, valproic acid, induces
P-glycoprotein in human tumour cell lines and in rat liver. Br J
Pharmacol. 149:250–260. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Xiao JJ, Foraker AB, Swaan PW, et al:
Efflux of depsipeptide FK228 (FR901228, NSC-630176) is mediated by
P-glycoprotein and multidrug resistance-associated protein 1. J
Pharmacol Exp Ther. 313:268–276. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
To KK, Polgar O, Huff LM, Morisaki K and
Bates SE: Histone modifications at the ABCG2 promoter following
treatment with histone deacetylase inhibitor mirror those in
multidrug-resistant cells. Mol Cancer Res. 6:151–164. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim H, Kim SN, Park YS, et al: HDAC
inhibitors downregulate MRP2 expression in multidrug resistant
cancer cells: implication for chemosensitization. Int J Oncol.
38:807–812. 2011. View Article : Google Scholar
|
|
33
|
Xiao JJ, Huang Y, Dai Z, et al:
Chemoresistance to depsipeptide FK228
[(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,2,3-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,22-pentanone]
is mediated by reversible MDR1 induction in human cancer cell
lines. J Pharmacol Exp Ther. 314:467–475. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tabe Y, Konopleva M, Contractor R, et al:
Upregulation of MDR1 and induction of doxorubicin resistance by
histone deacetylase inhibitor depsipeptide (FK228) and ATRA in
acute promyelocytic leukemia cells. Blood. 107:1546–1554. 2006.
View Article : Google Scholar
|
|
35
|
Yamada H, Arakawa Y, Saito S, Agawa M,
Kano Y and Horiguchi-Yamada J: Depsipeptide-resistant KU812 cells
show reversible P-glycoprotein expression, hyper-acetylated
histones, and modulated gene expression profile. Leuk Res.
30:723–734. 2006. View Article : Google Scholar
|
|
36
|
Dean M, Hamon Y and Chimini G: The human
ATP-binding cassette (ABC) transporter superfamily. J Lipid Res.
42:1007–1017. 2001.PubMed/NCBI
|
|
37
|
Robey RW, Zhan Z, Piekarz RL, Kayastha GL,
Fojo T and Bates SE: Increased MDR1 expression in normal and
malignant peripheral blood mononuclear cells obtained from patients
receiving depsipeptide (FR901228, FK228, NSC630176). Clin Cancer
Res. 12:1547–1555. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Darkin-Rattray SJ, Gurnett AM, Myers RW,
et al: Apicidin: A novel antiprotozoal agent that inhibits parasite
histone deacetylase. Proc Nat Acad Sci USA. 93:13143–13147. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vannini A, Volpari C, Filocamo G, et al:
Crystal structure of a eukaryotic zinc-dependent histone
deacetylase, human HDAC8, complexed with a hydroxamic acid
inhibitor. Proc Natl Acad Sci USA. 101:15064–15069. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Han JW, Ahn SH, Park SH, et al: Apicidin,
a histone deacetylase inhibitor, inhibits proliferation of tumor
cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res.
60:6068–6074. 2000.PubMed/NCBI
|
|
41
|
Ahn MY, Kang DO, Na YJ, et al: Histone
deacetylase inhibitor, apicidin, inhibits human ovarian cancer cell
migration via class II histone deacetylase 4 silencing. Cancer
Lett. 325:189–199. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kwon SH, Ahn SH, Kim YK, et al: Apicidin,
a histone deacetylase inhibitor, induces apoptosis and Fas/Fas
ligand expression in human acute promyelocytic leukemia cells. J
Biol Chem. 277:2073–2080. 2002. View Article : Google Scholar
|
|
43
|
Kim SN, Kim NH, Lee W, Seo DW and Kim YK:
Histone deacetylase inhibitor induction of P-glycoprotein
transcription requires both histone deacetylase 1 dissociation and
recruitment of CAAT/enhancer binding protein β and pCAF to the
promoter region. Mol Cancer Res. 7:735–744. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nakayama M, Wada M, Harada T, et al:
Hypomethylation status of CpG sites at the promoter region and
overexpression of the human MDR1 gene in acute myeloid leukemias.
Blood. 92:4296–4307. 1998.PubMed/NCBI
|
|
45
|
Mann BS, Johnson JR, Cohen MH, Justice R
and Pazdur R: FDA approval summary: vorinostat for treatment of
advanced primary cutaneous T-cell lymphoma. Oncologist.
12:1247–1252. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mitsiades N, Mitsiades CS, Richardson PG,
et al: Molecular sequelae of histone deacetylase inhibition in
human malignant B cells. Blood. 101:4055–4062. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fedier A, Dedes KJ, Imesch P, Von Bueren
AO and Fink D: The histone deacetylase inhibitors suberoylanilide
hydroxamic (Vorinostat) and valproic acid induce irreversible and
MDR1-independent resistance in human colon cancer cells. Int J
Oncol. 31:633–641. 2007.PubMed/NCBI
|
|
48
|
Ruefli AA, Bernhard D, Tainton KM, Kofler
R, Smyth MJ and Johnstone RW: Suberoylanilide hydroxamic acid
(SAHA) overcomes multidrug resistance and induces cell death in
P-glycoprotein-expressing cells. Int J Cancer. 99:292–298. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dedes KJ, Dedes I, Imesch P, von Bueren
AO, Fink D and Fedier A: Acquired vorinostat resistance shows
partial cross-resistance to ‘second-generation’ HDAC inhibitors and
correlates with loss of histone acetylation and apoptosis but not
with altered HDAC and HAT activities. Anticancer Drugs. 20:321–333.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dowdy SC, Jiang S, Zhou XC, et al: Histone
deacetylase inhibitors and paclitaxel cause synergistic effects on
apoptosis and microtubule stabilization in papillary serous
endometrial cancer cells. Mol Cancer Ther. 5:2767–2776. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tang R, Faussat AM, Majdak P, et al:
Valproic acid inhibits proliferation and induces apoptosis in acute
myeloid leukemia cells expressing P-gp and MRP1. Leukemia.
18:1246–1251. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sarkadi B, Homolya L, Szakács G and Váradi
A: Human multidrug resistance ABCB and ABCG transporters:
Participation in a chemoimmunity defense system. Physiol Rev.
86:1179–1236. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Massart C, Poirier C, Fergelot P, Fardel O
and Gibassier J: Effect of sodium butyrate on doxorubicin
resistance and expression of multidrug resistance genes in thyroid
carcinoma cells. Anticancer Drugs. 16:255–261. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Frommel TO, Coon JS, Tsuruo T and Roninson
IB: Variable effects of sodium butyrate on the expression and
function of the MDR1 (P-glycoprotein) gene in colon carcinoma cell
lines. Int J Cancer. 55:297–302. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Morrow CS, Nakagawa M, Goldsmith ME,
Madden MJ and Cowan KH: Reversible transcriptional activation of
mdr1 by sodium butyrate treatment of human colon cancer cells. J
Biol Chem. 269:10739–10746. 1994.PubMed/NCBI
|
|
56
|
Pasvanis S, Tremblay S and Dumais N: High
sodium butyrate levels induce MDR1 activation in colorectal cells:
Impact of 15-deoxy-Δ(12,14)-prostaglandin J(2) on the resistance to
saquinavir. Biochem Biophys Res Commun. 418:609–615. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
El-Khoury V, Breuzard G, Fourré N and
Dufer J: The histone deacetylase inhibitor trichostatin A
downregulates human MDR1 (ABCB1) gene expression by a
transcription-dependent mechanism in a drug-resistant small cell
lung carcinoma cell line model. Br J Cancer. 97:562–573. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gonçalves P, Gregório I and Martel F: The
short-chain fatty acid butyrate is a substrate of breast cancer
resistance protein. Am J Physiol Cell Physiol. 301:C984–C994. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cerveny L, Svecova L, Anzenbacherova E, et
al: Valproic acid induces CYP3A4 and MDR1 gene expression by
activation of constitutive androstane receptor and pregnane X
receptor pathways. Drug Metab Dispos. 35:1032–1041. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Burk O, Arnold KA, Geick A, Tequde H and
Eichelbaum M: A role for constitutive androstane receptor in the
regulation of human intestinal MDR1 expression. Biol Chem.
386:503–513. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kobayashi K, Sueyoshi T, Inoue K, Moore R
and Negishi M: Cytoplasmic accumulation of the nuclear receptor CAR
by a tetratricopeptide repeat protein in HepG2 cells. Mol
Pharmacol. 64:1069–1075. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Im JY, Park H, Kang KW, Choi WS and Kim
HS: Modulation of cell cycles and apoptosis by apicidin in estrogen
receptor (ER)-positive and-negative human breast cancer cells. Chem
Biol Interact. 172:235–244. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Korkmaz CG, Frønsdal K, Zhang Y, Lorenzo
PI and Saatcioglu F: Potentiation of androgen receptor
transcriptional activity by inhibition of histone deacetylation -
rescue of transcriptionally compromised mutants. J Endocrinol.
182:377–389. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen Y, Tang Y, Guo C, Wang J, Boral D and
Nie D: Nuclear receptors in the multidrug resistance through the
regulation of drug-metabolizing enzymes and drug transporters.
Biochem Pharmacol. 83:1112–1126. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Peet DJ, Turley SD, Ma W, et al:
Cholesterol and bile acid metabolism are impaired in mice lacking
the nuclear oxysterol receptor LXR alpha. Cell. 93:693–704. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chisaki I, Kobayashi M, Itagaki S, Hirano
T and Iseki K: Liver X receptor regulates expression of MRP2 but
not that of MDR1 and BCRP in the liver. Biochim Biophys Acta.
2396–2403. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Watanabe K, Sakurai K, Tsuchiya Y, Yamazoe
Y and Yoshinari K: Dual roles of nuclear receptor liver X receptor
α (LXRα) in the CYP3A4 expression in human hepatocytes as a
positive and negative regulator. Biochem Pharmacol. 86:428–436.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Robey RW, Chakraborty AR, Basseville A, et
al: Histone deacetylase inhibitors: emerging mechanisms of
resistance. Mol Pharm. 8:2021–2031. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hooven LA, Mahadevan B, Keshava C, et al:
Effects of suberoylanilide hydroxamic acid and trichostatin A on
induction of cytochrome P450 enzymes and benzo[a]pyrene DNA adduct
formation in human cells. Bioorg Med Chem Lett. 15:1283–1287. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Nakajima M, Iwanari M and Yokoi T: Effects
of histone deacetylation and DNA methylation on the constitutive
and TCDD-inducible expressions of the human CYP1 family in MCF-7
and HeLa cells. Toxicol Lett. 144:247–256. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Takizawa D, Kakizaki S, Horiguchi N, et
al: Histone deacetylase inhibitors induce cytochrome P450 2B by
activating nuclear receptor constitutive androstane receptor. Drug
Metab Dispos. 38:1493–1498. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen K, Huang YH and Chen JL:
Understanding and targeting cancer stem cells: therapeutic
implications and challenges. Acta Pharmacol Sin. 34:732–740. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Haenisch S and Cascorbi I: miRNAs as
mediators of drug resistance. Epigenomics. 4:369–381. 2012.
View Article : Google Scholar : PubMed/NCBI
|