Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2015 Volume 10 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2015 Volume 10 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review)

  • Authors:
    • Ming‑Ming Yan
    • Jiang‑Dong Ni
    • Deye Song
    • Muliang Ding
    • Jun Huang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
    Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1959-1969
    |
    Published online on: July 17, 2015
       https://doi.org/10.3892/ol.2015.3508
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The endoplasmic reticulum (ER) is involved in the quality control of secreted protein via promoting the correct folding of nascent protein and mediating the degradation of unfolded or misfolded protein, namely ER‑associated degradation. When the unfolded or misfolded proteins are abundant, the unfolded protein response (UPR) is elicited, an adaptive signaling cascade from the ER to the nucleus, which restores the homeostatic functions of the ER. Autophagy is a conserved catabolic process where cellular long‑lived proteins and damaged organelles are engulfed and degraded for recycling to maintain homeostasis. The UPR and autophagy occur simultaneously and are involved in pathological processes, including tumorigenesis, chemoresistance of malignancies and neurodegeneration. Accumulative data has indicated that the UPR may induce autophagy and that autophagy is able to alleviate the UPR. However, the detailed mechanism of interplay between autophagy and UPR remains to be fully understood. The present review aimed to depict the core pathways of the two processes and to elucidate how autophagy and UPR are regulated. Moreover, the review also discusses the molecular mechanism of crosstalk between the UPR and autophagy and their roles in malignant survival and drug resistance.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Mei Y, Thompson MD, Cohen RA and Tong X: Endoplasmic reticulum stress and related pathological processes. J Pharmacol Biomed Anal. 1:10001072013.PubMed/NCBI

2 

Kroemer G, Mariño G and Levine B: Autophagy and the integrated stress response. Mol Cell. 40:280–293. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Yan F, Li J, Chen J, Hu Q, Gu C, Lin W and Chen G: Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci Lett. 563:160–165. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Shimodaira Y, Takahashi S, Kinouchi Y, Endo K, Shiga H, Kakuta Y, Kuroha M and Shimosegawa T: Modulation of endoplasmic reticulum (ER) stress-induced autophagy by C/EBP homologous protein (CHOP) and inositol-requiring enzyme 1α (IRE1α) in human colon cancer cells. Biochem Biophys Res Commun. 445:524–533. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Rubiolo JA, López-Alonso H, Martínez P, Millán A, Cagide E, Vieytes MR, Vega FV and Botana LM: Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3. Cell Signal. 26:419–432. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Vandewynckel YP, Laukens D, Geerts A, Bogaerts E, Paridaens A, Verhelst X, Janssens S, Heindryckx F and Van Vlierberghe H: The paradox of the unfolded protein response in cancer. Anticancer Res. 33:4683–4694. 2013.PubMed/NCBI

8 

Lorin S, Hamaï A, Mehrpour M and Codogno P: Autophagy regulation and its role in cancer. Semin Cancer Biol. 23:361–379. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Nguyen HG, Yang JC, Kung H, Shi X, Tilki D, Lara PN Jr, De Vere White RW, Gao AC and Evans CP: Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 33:4521–4530. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Klionsky DJ: Autophagy revisited: A conversation with Christian de Duve. Autophagy. 4:740–743. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI

12 

MartinezBorra J and López-Larrea C: Autophagy and self-defense. Adv Exp Med Biol. 738:169–184. 2012. View Article : Google Scholar : PubMed/NCBI

13 

He C and Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 43:67–93. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Yang Z and Klionsky DJ: Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M and Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 20:1992–2003. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Mizushima N: The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol. 22:132–139. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Fader CM, Aguilera MO and Colombo MI: Autophagy response: Manipulating the mTOR-controlled machinery by amino acids and pathogens. Amino Acids. Sep 19–2014.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

18 

Simonsen A and Tooze SA: Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol. 186:773–782. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Song Z, An L, Ye Y, Wu J, Zou Y, He L and Zhu H: Essential role for UVRAG in autophagy and maintenance of cardiac function. Cardiovasc Res. 101:48–56. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Sun Q, Zhang J, Fan W, Wong KN, Ding X, Chen S and Zhong Q: The RUN domain of rubicon is important for hVps34 binding, lipid kinase inhibition and autophagy suppression. J Biol Chem. 286:185–191. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, et al: Functional and physical interaction between Bcl-X (L) and a BH3-like domain in Beclin-1. EMBO J. 26:2527–2539. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Nakatogawa H, Ichimura Y and Ohsumi Y: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. 130:165–178. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y and Shimizu S: Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 461:654–658. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Matsumoto G, Wada K, Okuno M, Kurosawa M and Nukina N: Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell. 44:279–289. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Rogov V, Dötsch V, Johansen T and Kirkin V: Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 53:167–178. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Eskelinen EL: Maturation of autophagic vacuoles in Mammalian cells. Autophagy. 1:1–10. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Braakman I and Bulleid NJ: Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 80:71–99. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Chistiakov DA, Sobenin IA, Orekhov AN and Bobryshev YV: Role of endoplasmic reticulum stress in atherosclerosis and diabetic macrovascular complications. Biomed Res Int. 2014:6101402014. View Article : Google Scholar : PubMed/NCBI

30 

Beard NA, Laver DR and Dulhunty AF: Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol. 85:33–69. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Aebi M, Bernasconi R, Clerc S and Molinari M: N-glycan structures: Recognition and processing in the ER. Trends Biochem Sci. 35:74–82. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Hiramatsu N, Joseph VT and Lin JH: Monitoring and manipulating mammalian unfolded protein response. Methods Enzymol. 491:183–198. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Hetz C: The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 13:89–102. 2012.PubMed/NCBI

34 

Schroder M and Kaufman RJ: The mammalian unfolded protein response. Annu Rev Biochem. 74:739–789. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Iwawaki T, Hosoda A, Okuda T, Kamigori Y, NomuraFuruwatari C, Kimata Y, Tsuru A and Kohno K: Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol. 3:158–164. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Chen Y and Brandizzi F: IRE1: ER stress sensor and cell fate executor. Trends Cell Biol. 23:547–555. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S and Lee AS: ATF6 as a transcription activator of the endoplasmic reticulum stress element: Thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol. 20:5096–5106. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Maurel M, Chevet E, Tavernier J and Gerlo S: Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 39:245–254. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Chow SE, Kao CH, Liu YT, Cheng ML, Yang YW, Huang YK, Hsu CC and Wang JS: Resveratrol induced ER expansion and ER caspase-mediated apoptosis in human nasopharyngeal carcinoma cells. Apoptosis. 19:527–541. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Hetz C: The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 13:89–102. 2012.PubMed/NCBI

41 

Kim R, Emi M, Tanabe K and Murakami S: Role of the unfolded protein response in cell death. Apoptosis. 11:5–13. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Jäger R, Bertrand MJ, Gorman AM, Vandenabeele P and Samali A: The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biology of the Cell. 104:259–270. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Hetz C, Martinon F, Rodriguez D and Glimcher LH: The unfolded protein response: Integrating stress signals through the stress sensor IRE1α. Physiol Rev. 91:1219–1243. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Shajahan AN, Riggins RB and Clarke R: The role of X-box binding protein-1 in tumorigenicity. Drug News Perspect. 22:241–246. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG and Ron D: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 415:92–96. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891. 2001. View Article : Google Scholar : PubMed/NCBI

47 

Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC, Zhu Y, Zwart A, Wang M and Clarke R: Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 21:4013–4027. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Margariti A, Li H, Chen T, Martin D, VizcayBarrena G, Alam S, Karamariti E, Xiao Q, Zampetaki A, Zhang Z, et al: XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem. 288:859–872. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Suzuki H, Kanekura K, Levine TP, Kohno K, Olkkonen VM, Aiso S and Matsuoka M: ALS-linked P56S-VAPB, an aggregated loss-of-function mutant of VAPB, predisposes motor neurons to ER stress-related death by inducing aggregation of co-expressed wild-type VAPB. J Neurochem. 108:973–985. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R, SeguraAguilar J, Cuervo AM, et al: Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum Mol Genet. 21:2245–2262. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Tabas I and Ron D: Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 13:184–190. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Li D, Wang L, Deng R, Tang J, Shen Y, Guo J, Wang Y, Xia LP, Feng GK, Liu QQ, et al: The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene. 28:886–898. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP and Ron D: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 287:664–666. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A and Ichijo H: ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16:1345–1355. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Ogata M, Hino SI, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, et al: Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 26:9220–9231. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Wei Y, Pattingre S, Sinha S, Bassik M and Levine B: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell. 30:678–688. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Jiang LC, Xin ZY, Deborah B, Zhang JS, Yuan DY, Xu K, Liu XB, Jiang HQ, Fan QC, Zhang B and Li KY: Inhibition of autophagy augments apoptosis in human oral squamous cell carcinoma under nutrient depletion. J Oral Pathol Med. 44:361–366. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Zhang MZ, Wang Y, Paueksakon P and Harris RC: Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes. 63:2063–2072. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Harding HP, Zhang Y, Bertolotti A, Zeng H and Ron D: Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 5:897–904. 2000. View Article : Google Scholar : PubMed/NCBI

60 

Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L and Wek RC: Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol. 18:7499–7509. 1998.PubMed/NCBI

61 

Lu PD, Jousse C, Marciniak SJ, Zhang Y, Novoa I, Scheuner D, Kaufman RJ, Ron D and Harding HP: Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 23:169–179. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Teske BF, Baird TD and Wek RC: Methods for analyzing eIF2 kinases and translational control in the unfolded protein response. Methods Enzymol. 490:333–356. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Wek RC and Cavener DR: Translational control and the unfolded protein response. Antioxid Redox Signal. 9:2357–2371. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Li Y, Guo Y, Tang J, Jiang J and Chen Z: New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai). 46:629–640. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Palam LR, Baird TD and Wek RC: Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem. 286:10939–10949. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E and Momoi T: ER stress (PERK/eIF2alplha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14:230–239. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Wang J, Kang R, Huang H, Xi X, Wang B, Wang J and Zhao Z: Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy. 10:766–784. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Ma X, Piao S, Dey S, Mcafee Q, Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, et al: Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest. 124:1406–1417. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L, Pires I, Hammond E, Ragoussis I and Harris AL: Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene. 29:4424–4435. 2010. View Article : Google Scholar : PubMed/NCBI

70 

B'Chir W, Chaveroux C, Carraro V, Averous J, Maurin AC, Jousse C, Muranishi Y, Parry L, Fafournoux P and Bruhat A: Dual role for CHOP in the crosstalk between autophagy and apoptosis to determine cell fate in response to amino acid deprivation. Cell Signal. 26:1385–1391. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Li Y, Guo Y, Tang J, Jiang J and Chen Z: New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai). 46:629–640. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Liu K, Shi Y, Guo X, Wang S, Ouyang Y, Hao M, Liu D, Qiao L, Li N, Zheng J and Chen D: CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell Death Dis. 5:e13232014. View Article : Google Scholar : PubMed/NCBI

73 

Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 120:127–141. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, et al: ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 129:1337–1349. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Gorman AM, Healy SJ, Jager R and Samali A: Stress management at the ER: Regulators of ER stress-induced apoptosis. Pharmacol Ther. 134:306–316. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Ohoka N, Yoshii S, Hattori T, Onozaki K and Hayashi H: TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 24:1243–1255. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Du K, Herzig S, Kulkarni RN and Montminy M: TRB3: A tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science. 300:1574–1577. 2003. View Article : Google Scholar : PubMed/NCBI

78 

B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P and Bruhat A: The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41:7683–7699. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Shen J, Chen X, Hendershot L and Prywes R: ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 3:99–111. 2002. View Article : Google Scholar : PubMed/NCBI

80 

Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS and Goldstein JL: ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 6:1355–1364. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Bommiasamy H, Back SH, Fagone P, Lee K, Meshinchi S, Vink E, Sriburi R, Frank M, Jackowski S, Kaufman RJ and Brewer JW: ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci. 122:1626–1636. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891. 2001. View Article : Google Scholar : PubMed/NCBI

83 

Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A and Mori K: ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct. 33:75–89. 2008. View Article : Google Scholar : PubMed/NCBI

84 

Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, Cross AS, Mori K and Kalvakolanu DV: An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. Proc Natl Acad Sci USA. 109:10316–10321. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, PinkasKramarski R and Kimchi A: DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10:285–292. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Li J, Ni M, Lee B, Barron E, Hinton DR and Lee AS: The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 15:1460–1471. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Cook KL, Shajahan AN, Wärri A, Jin L, HilakiviClarke LA and Clarke R: Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 72:3337–3349. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Shimada Y, Kobayashi H, Kawagoe S, Aoki K, Kaneshiro E, Shimizu H, Eto Y, Ida H and Ohashi T: Endoplasmic reticulum stress induces autophagy through activation of p38 MAPK in fibroblasts from Pompe disease patients carrying c.546G>T mutation. Mol Genet Metab. 104:566–573. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Kim DS, Kim JH, Lee GH, Kim HT, Lim JM, Chae SW, Chae HJ and Kim HR: p38 Mitogen-activated protein kinase is involved in endoplasmic reticulum stress-induced cell death and autophagy in human gingival fibroblasts. Biol Pharm Bull. 33:545–549. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Carloni S, Albertini MC, Galluzzi L, Buonocore G, Proietti F and Balduini W: Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: Role of protein synthesis and autophagic pathways. Exp Neurol. 255:103–112. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Verchot J: The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. Front Plant Sci. 5:662014. View Article : Google Scholar : PubMed/NCBI

92 

Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X, Stolz DB, Shao ZM and Yin XM: Differential Effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 282:4702–4710. 2007. View Article : Google Scholar : PubMed/NCBI

93 

JoshiBarr S, Bett C, Chiang WC, Trejo M, Goebel HH, Sikorska B, Liberski P, Raeber A, Lin JH, Masliah E and Sigurdson CJ: De novo prion aggregates trigger autophagy in skeletal muscle. J Virol. 88:2071–2082. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Bernales S, McDonald KL and Walter P: Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4:e4232006. View Article : Google Scholar : PubMed/NCBI

95 

Vincenz L, Jäger R, O'Dwyer M and Samali A: Endoplasmic reticulum stress and the unfolded protein response: Targeting the Achilles heel of multiple myeloma. Mol Cancer Ther. 12:831–843. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, Vernon P, Cao L and Tang D: HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 72:230–238. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Huang J, Liu K, Yu Y, Xie M, Kang R, Vernon P, Cao L, Tang D and Ni J: Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy. 8:275–277. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Yang L, Yang S, Liu J, Wang X, Ji J, Cao Y, Lu K, Wang J and Gao Y: Expression of GRP78 predicts taxane-based therapeutic resistance and recurrence of human gastric cancer. Exp Mol Pathol. 96:235–241. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Bifulco G, Miele C, Di Jeso B, Beguinot F, Nappi C, Di Carlo C, Capuozzo S, Terrazzano G, Insabato L and Ulianich L: Endoplasmic reticulum stress is activated in endometrial adenocarcinoma. Gynecol Oncol. 125:220–225. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Visioli F, Wang Y, Alam GN, Ning Y, Rados PV, Nör JE and Polverini PJ: Glucose-regulated protein 78 (Grp78) confers chemoresistance to tumor endothelial cells under acidic stress. PLoS ONE. 9:e1010532014. View Article : Google Scholar : PubMed/NCBI

101 

Lin JA, Fang SU, Su CL, Hsiao CJ, Chang CC, Lin YF and Cheng CW: Silencing glucose-regulated protein 78 induced renal cell carcinoma cell line G1 cell-cycle arrest and resistance to conventional chemotherapy. Urol Oncol. 32:29.e1–29.e11. 2014. View Article : Google Scholar

102 

KosakowskaCholody T, Lin J, Srideshikan SM, Scheffer L, Tarasova NI and Acharya JK: HKH40A downregulates GRP78/BiP expression in cancer cells. Cell Death Dis. 5:e12402014. View Article : Google Scholar : PubMed/NCBI

103 

Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ and Lee AS: Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: Role of ATP binding site in suppression of caspase-7 activation. J Biol Chem. 278:20915–20924. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Fu Y, Li J and Lee AS: GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 67:3734–3740. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Zhou H, Zhang Y, Fu Y, Chan L and Lee AS: Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78): Endocrine resistance factor in breast cancer, through release of B-cell lymphoma 2 (BCL-2) from BCL-2-interacting killer (BIK). J Biol Chem. 286:25687–25696. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Shani G, Fischer WH, Justice NJ, Kelber JA, Vale W and Gray PC: GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol. 28:666–677. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Lee E, Nichols P, Spicer D, Groshen S, Yu MC and Lee AS: GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 66:7849–7853. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Suyama K, Watanabe M, Sakabe K, Okada Y, Matsuyama D, Kuroiwa M and Mochida J: Overexpression of GRP78 protects glial cells from endoplasmic reticulum stress. Neurosci Lett. 504:271–276. 2011. View Article : Google Scholar : PubMed/NCBI

109 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Li Z, Wang Y, Wu H, Zhang L, Yang P and Li Z: GRP78 enhances the glutamine metabolism to support cell survival from glucose deficiency by modulating the β-catenin signaling. Oncotarget. 5:5369–5380. 2014.PubMed/NCBI

112 

Li W, Wang W, Dong H, Li Y, Li L, Han L, Han Z, Wang S, Ma D and Wang H: Cisplatin-induced senescence in ovarian cancer cells is mediated by GRP78. Oncol Rep. 31:2525–2534. 2014.PubMed/NCBI

113 

Auf G, Jabouille A, Delugin M, Guerit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, et al: High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer. 13:5972013. View Article : Google Scholar : PubMed/NCBI

114 

Auf G, Jabouille A, Guérit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, et al: Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A. 107:15553–15558. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Tay KH, Luan Q, Croft A, Jiang CC, Jin L, Zhang XD and Tseng HY: Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell Signal. 26:287–294. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Thorpe JA and Schwarze SR: IRE1alpha controls cyclin A1 expression and promotes cell proliferation through XBP-1. Cell Stress Chaperones. 15:497–508. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Gambella M, Rocci A, Passera R, Gay F, Omedè P, Crippa C, Corradini P, Romano A, Rossi D, Ladetto M, et al: High XBP1 expression is a marker of better outcome in multiple myeloma patients treated with bortezomib. Haematologica. 99:e14–e16. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Bagratuni T, Wu P, Gonzalez de Castro D, Davenport EL, Dickens NJ, Walker BA, Boyd K, Johnson DC, Gregory W, Morgan GJ and Davies FE: XBP1s levels are implicated in the biology and outcome of myeloma mediating different clinical outcomes to thalidomide-based treatments. Blood. 116:250–253. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, et al: XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature. 508:103–107. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D, Santo L, Hu Y, Fabre C, Minami J, Ohguchi H, et al: Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood. 119:5772–5781. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Schroder M and Kaufman RJ: Divergent roles of IRE1alpha and PERK in the unfolded protein response. Curr Mol Med. 6:5–36. 2006. View Article : Google Scholar : PubMed/NCBI

122 

Cullinan SB and Diehl JA: PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem. 279:20108–20117. 2004. View Article : Google Scholar : PubMed/NCBI

123 

BobrovnikovaMarjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, Cavener D and Diehl JA: PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene. 29:3881–3895. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Krishnamoorthy J, Rajesh K, Mirzajani F, Kesoglidou P, Papadakis AI and Koromilas AE: Evidence for eIF2α phosphorylation-independent effects of GSK2656157, a novel catalytic inhibitor of PERK with clinical implications. Cell Cycle. 13:801–806. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Milani M, Rzymski T, Mellor HR, Pike L, Bottini A, Generali D and Harris AL: The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with bortezomib. Cancer Research. 69:4415–4423. 2009. View Article : Google Scholar : PubMed/NCBI

126 

Hamanaka RB, BobrovnikovaMarjon E, Ji X, Liebhaber SA and Diehl JA: PERK-dependent regulation of IAP translation during ER stress. Oncogene. 28:910–920. 2009. View Article : Google Scholar : PubMed/NCBI

127 

KusioKobialka M, PodszywalowBartnicka P, Peidis P, GlodkowskaMrowka E, Wolanin K, Leszak G, Seferynska I, Stoklosa T, Koromilas AE and Piwocka K: The PERK-eIF2α phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle. 11:4069–4078. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Higa A, Taouji S, Lhomond S, Jensen D, FernandezZapico ME, Simpson JC, Pasquet JM, Schekman R and Chevet E: Endoplasmic reticulum stress-activated transcription factor ATF6α requires the disulfide isomerase PDIA5 to modulate chemoresistance. Mol Cell Biol. 34:1839–1849. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Schewe DM and Aguirre-Ghiso JA: ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci U S A. 105:10519–10524. 2008. View Article : Google Scholar : PubMed/NCBI

130 

White E and DiPaola RS: The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 15:5308–5316. 2009. View Article : Google Scholar : PubMed/NCBI

131 

Shimodaira Y, Takahashi S, Kinouchi Y, Endo K, Shiga H, Kakuta Y, Kuroha M and Shimosegawa T: Modulation of endoplasmic reticulum (ER) stress-induced autophagy by C/EBP homologous protein (CHOP) and inositol-requiring enzyme 1α (IRE1α) in human colon cancer cells. Biochem Biophys Res Commun. 445:524–533. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Mahoney E, Lucas DM, Gupta SV, Wagner AJ, Herman SE, Smith LL, Yeh YY, Andritsos L, Jones JA, Flynn JM, et al: ER stress and autophagy: New discoveries in the mechanism of action and drug resistance of the cyclin-dependent kinase inhibitor flavopiridol. Blood. 120:1262–1273. 2012. View Article : Google Scholar : PubMed/NCBI

133 

Dey S, Tameire F and Koumenis C: PERK-ing up autophagy during MYC-induced tumorigenesis. Autophagy. 9:612–614. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Ma X, Piao S, Dey S, Mcafee Q, Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, et al: Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest. 124:1406–1417. 2014. View Article : Google Scholar : PubMed/NCBI

135 

Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, et al: ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest. 122:4621–4634. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yan MM, Ni JD, Song D, Ding M and Huang J: Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review). Oncol Lett 10: 1959-1969, 2015.
APA
Yan, M., Ni, J., Song, D., Ding, M., & Huang, J. (2015). Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review). Oncology Letters, 10, 1959-1969. https://doi.org/10.3892/ol.2015.3508
MLA
Yan, M., Ni, J., Song, D., Ding, M., Huang, J."Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review)". Oncology Letters 10.4 (2015): 1959-1969.
Chicago
Yan, M., Ni, J., Song, D., Ding, M., Huang, J."Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review)". Oncology Letters 10, no. 4 (2015): 1959-1969. https://doi.org/10.3892/ol.2015.3508
Copy and paste a formatted citation
x
Spandidos Publications style
Yan MM, Ni JD, Song D, Ding M and Huang J: Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review). Oncol Lett 10: 1959-1969, 2015.
APA
Yan, M., Ni, J., Song, D., Ding, M., & Huang, J. (2015). Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review). Oncology Letters, 10, 1959-1969. https://doi.org/10.3892/ol.2015.3508
MLA
Yan, M., Ni, J., Song, D., Ding, M., Huang, J."Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review)". Oncology Letters 10.4 (2015): 1959-1969.
Chicago
Yan, M., Ni, J., Song, D., Ding, M., Huang, J."Interplay between unfolded protein response and autophagy promotes tumor drug resistance (Review)". Oncology Letters 10, no. 4 (2015): 1959-1969. https://doi.org/10.3892/ol.2015.3508
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team