|
1
|
Forner A, Llovet JM and Bruix J:
Hepatocellular carcinoma. Lancet. 379:1245–1255. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lai EC and Lau WY: The continuing
challenge of hepatic cancer in Asia. Surgeon. 3:210–215. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sotillo E and Thomas-Tikhonenko A:
Shielding the messenger (RNA): microRNA-based anticancer therapies.
Pharmacol Ther. 131:18–32. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Li Y and Kowdley KV: Cellular microRNA and
the tumorigenesis of hepatocellular carcinoma. Ann Hepatol.
11:272–274. 2012.PubMed/NCBI
|
|
7
|
Pauli A, Rinn JL and Schier AF: Non-coding
RNAs as regulators of embryogenesis. Nat Rev Genet. 12:136–149.
2011. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Poy MN, Eliasson L, Krutzfeldt J, et al: A
pancreatic islet-specific microRNA regulates insulin secretion.
Nature. 432:226–230. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen CZ: MicroRNAs as oncogenes and tumor
suppressors. N Engl J Med. 353:1768–1771. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hammond SM: MicroRNAs as tumor
suppressors. Nat Genet. 39:582–583. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Iorio MV and Croce CM: MicroRNA
dysregulation in cancer: diagnostics, monitoring and therapeutics.
A comprehensive review. EMBO Mol Med. 4:143–159. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Reinhart BJ, Slack FJ, Basson M, et al:
The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fabian MR and Sonenberg N: The mechanics
of miRNA-mediated gene silencing: a look under the hood of miRISC.
Nat Struct Mol Biol. 19:586–593. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: are the answers in sight? Nat Rev Genet. 9:102–114.
2008. View
Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rinn JL and Chang HY: Genome regulation by
long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Garzon R, Calin GA and Croce CM: MicroRNAs
in cancer. Annu Rev Med. 60:167–179. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Borchert GM, Lanier W and Davidson BL: RNA
polymerase III transcribes human microRNAs. Nat Struct Mol Biol.
13:1097–1101. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cai X, Hagedorn CH and Cullen BR: Human
microRNAs are processed from capped, polyadenylated transcripts
that can also function as mRNAs. RNA. 10:1957–1966. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lee Y, Kim M, Han J, et al: MicroRNA genes
are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kim VN, Han J and Siomi MC: Biogenesis of
small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Berezikov E, Chung WJ, Willis J, Cuppen E
and Lai EC: Mammalian mirtron genes. Mol Cell. 28:328–336. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lee Y, Ahn C, Han J, et al: The nuclear
RNase III Drosha initiates microRNA processing. Nature.
425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ruby JG, Jan CH and Bartel DP: Intronic
microRNA precursors that bypass Drosha processing. Nature.
448:83–86. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Berezikov E, Guryev V and Cuppen E:
Exploring conservation of transcription factor binding sites with
CONREAL. Methods Mol Biol. 395:437–448. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hinton A, Afrikanova I, Wilson M, et al: A
distinct microRNA signature for definitive endoderm derived from
human embryonic stem cells. Stem Cells Dev. 19:797–807. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim Y and Kim VN: MicroRNA factory: RISC
assembly from precursor microRNAs. Mol Cell. 46:384–386. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Si-Tayeb K, Lemaigre FP and Duncan SA:
Organogenesis and development of the liver. Dev Cell. 18:175–189.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen Y and Verfaillie CM: MicroRNAs: the
fine modulators of liver development and function. Liver Int.
34:976–990. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Fu S, Fei Q, Jiang H, et al: Involvement
of histone acetylation of Sox17 and Foxa2 promoters during mouse
definitive endoderm differentiation revealed by microRNA profiling.
PLoS One. 6:e279652011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim N, Kim H, Jung I, Kim Y, Kim D and Han
YM: Expression profiles of miRNAs in human embryonic stem cells
during hepatocyte differentiation. Hepatol Res. 41:170–183. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Laudadio I, Manfroid I, Achouri Y, et al:
A feedback loop between the liver-enriched transcription factor
network and miR-122 controls hepatocyte differentiation.
Gastroenterology. 142:119–129. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xu H, He JH, Xiao ZD, et al:
Liver-enriched transcription factors regulate microRNA-122 that
targets CUTL1 during liver development. Hepatology. 52:1431–1442.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gailhouste L, Gomez-Santos L, Hagiwara K,
et al: miR-148a plays a pivotal role in the liver by promoting the
hepatospecific phenotype and suppressing the invasiveness of
transformed cells. Hepatology. 58:1153–1165. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Allen RM, Marquart TJ, Albert CJ, et al:
miR-33 controls the expression of biliary transporters, and
mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med.
4:882–895. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hand NJ, Master ZR, Le Lay J and Friedman
JR: Hepatic function is preserved in the absence of mature
microRNAs. Hepatology. 49:618–626. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang YM, Seo SY, Kim TH and Kim SG:
Decrease of microRNA-122 causes hepatic insulin resistance by
inducing protein tyrosine phosphatase 1B, which is reversed by
licorice flavonoid. Hepatology. 56:2209–2220. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rieger JK, Klein K, Winter S and Zanger
UM: Expression variability of absorption, distribution, metabolism,
excretion-related microRNAs in human liver: influence of nongenetic
factors and association with gene expression. Drug Metab Dispos.
41:1752–1762. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chai ZT, Kong J, Zhu XD, Zhang YY, Lu L,
Zhou JM, Wang LR, Zhang KZ, Zhang QB, Ao JY, et al: MicroRNA-26a
inhibits angiogenesis by down-regulating VEGFA through the
PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma. PLoS One.
8:e779572013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato
JM and Lu SC: MicroRNAs regulate methionine adenosyltransferase 1A
expression in hepatocellular carcinoma. J Clin Invest. 123:285–98.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang Y, Yang P and Wang XF:
Microenvironmental regulation of cancer metastasis by miRNAs.
Trends Cell Biol. 24:153–60. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang S and He X: The role of microRNAs in
liver cancer progression. Br J Cancer. 104:235–240. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
El-Serag HB and Rudolph KL: Hepatocellular
carcinoma: epidemiology and molecular carcinogenesis.
Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Park EJ, Lee JH, Yu GY, et al: Dietary and
genetic obesity promote liver inflammation and tumorigenesis by
enhancing IL-6 and TNF expression. Cell. 140:197–208. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hatziapostolou M, Polytarchou C, Aggelidou
E, et al: An HNF4α-miRNA inflammatory feedback circuit regulates
hepatocellular oncogenesis. Cell. 147:1233–1247. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ma S, Chan KW, Hu L, et al: Identification
and characterization of tumorigenic liver cancer stem/progenitor
cells. Gastroenterology. 132:2542–2556. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ma S, Lee TK, Zheng BJ, Chan KW and Guan
XY: CD133+ HCC cancer stem cells confer chemoresistance
by preferential expression of the Akt/PKB survival pathway.
Oncogene. 27:1749–1758. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang Y, Yu Y, Tsuyada A, et al:
Transforming growth factor-β regulates the sphere-initiating stem
cell-like feature in breast cancer through miRNA-181 and ATM.
Oncogene. 30:1470–1480. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gupta PB, Onder TT, Jiang G, et al:
Identification of selective inhibitors of cancer stem cells by
high-throughput screening. Cell. 138:645–659. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Morrison R, Schleicher SM, Sun Y, et al:
Targeting the mechanisms of resistance to chemotherapy and
radiotherapy with the cancer stem cell hypothesis. J Oncol.
2011:9418762011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Pardal R, Clarke MF and Morrison SJ:
Applying the principles of stem-cell biology to cancer. Nat Rev
Cancer. 3:895–902. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Oishi N and Wang XW: Novel therapeutic
strategies for targeting liver cancer stem cells. Int J Biol Sci.
7:517–535. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ji J, Yamashita T, Budhu A, et al:
Identification of microRNA-181 by genome-wide screening as a
critical player in EpCAM-positive hepatic cancer stem cells.
Hepatology. 50:472–480. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kota J, Chivukula RR, O'Donnell KA, et al:
Therapeutic microRNA delivery suppresses tumorigenesis in a murine
liver cancer model. Cell. 137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gramantieri L, Ferracin M, Fornari F, et
al: Cyclin G1 is a target of miR-122a, a microRNA frequently
down-regulated in human hepatocellular carcinoma. Cancer Res.
67:6092–6099. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Fornari F, Gramantieri L, Giovannini C, et
al: MiR-122/cyclin G1 interaction modulates p53 activity and
affects doxorubicin sensitivity of human hepatocarcinoma cells.
Cancer Res. 69:5761–5767. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Furuta M, Kozaki KI, Tanaka S, Arii S,
Imoto I and Inazawa J: miR-124 and miR-203 are epigenetically
silenced tumor-suppressive microRNAs in hepatocellular carcinoma.
Carcinogenesis. 31:766–776. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shimizu S, Takehara T, Hikita H, et al:
The let-7 family of microRNAs inhibits Bcl-xL expression and
potentiates sorafenib-induced apoptosis in human hepatocellular
carcinoma. J Hepatol. 52:698–704. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xiong Y, Fang JH, Yun JP, et al: Effects
of microRNA-29 on apoptosis, tumorigenicity, and prognosis of
hepatocellular carcinoma. Hepatology. 51:836–845. 2010.PubMed/NCBI
|
|
62
|
Gramantieri L, Fornari F, Ferracin M, et
al: MicroRNA-221 targets Bmf in hepatocellular carcinoma and
correlates with tumor multifocality. Clin Cancer Res. 15:5073–5081.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li Y, Tan W, Neo TW, et al: Role of the
miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer
Sci. 100:1234–1242. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yang L, Ma Z, Wang D, Zhao W, Chen L and
Wang G: MicroRNA-602 regulating tumor suppressive gene RASSF1A is
overexpressed in hepatitis B virus-infected liver and
hepatocellular carcinoma. Cancer Biol Ther. 9:803–808. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Garofalo M, Di Leva G, Romano G, et al:
miR-221&222 regulate TRAIL resistance and enhance
tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell.
16:498–509. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gramantieri L, Fornari F, Callegari E, et
al: MicroRNA involvement in hepatocellular carcinoma. J Cell Mol
Med. 12:2189–2204. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Coulouarn C, Factor VM, Andersen JB,
Durkin ME and Thorgeirsson SS: Loss of miR-122 expression in liver
cancer correlates with suppression of the hepatic phenotype and
gain of metastatic properties. Oncogene. 28:3526–3536. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li N, Fu H, Tie Y, et al: miR-34a inhibits
migration and invasion by down-regulation of c-Met expression in
human hepatocellular carcinoma cells. Cancer Lett. 275:44–53. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Meng F, Henson R, Wehbe-Janek H, Ghoshal
K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the
PTEN tumor suppressor gene in human hepatocellular cancer.
Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lin SL, Miller JD and Ying SY: Intronic
microRNA (miRNA). J Biomed Biotechnol. 2006:268182006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li Q, Ding C, Chen C, et al: miR-224
promotes cell migration and invasion by targeting Homeobox D 10
gene in human hepatocellular carcinoma. J Gastroenterol Hepatol.
29:835–842. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Varnholt H, Drebber U, Schulze F, et al:
MicroRNA gene expression profile of hepatitis C virus-associated
hepatocellular carcinoma. Hepatology. 47:1223–1232. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ladeiro Y, Couchy G, Balabaud C, et al:
MicroRNA profiling in hepatocellular tumors is associated with
clinical features and oncogene/tumor suppressor gene mutations.
Hepatology. 47:1955–1963. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang F, Yin Y, Wang F, et al: miR-17-5p
Promotes migration of human hepatocellular carcinoma cells through
the p38 mitogen-activated protein kinase-heat shock protein 27
pathway. Hepatology. 51:1614–1623. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ding J, Huang S, Wu S, et al: Gain of
miR-151 on chromosome 8q24.3 facilitates tumour cell migration and
spreading through downregulating RhoGDIA. Nat Cell Biol.
12:390–399. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yao J, Liang L, Huang S, et al:
MicroRNA-30d promotes tumor invasion and metastasis by targeting
Galphai2 in hepatocellular carcinoma. Hepatology. 51:846–856.
2010.PubMed/NCBI
|
|
77
|
Sato M, Tateishi R, Yasunaga H, et al:
Mortality and morbidity of hepatectomy, radiofrequency ablation,
and embolization for hepatocellular carcinoma: a national survey of
54,145 patients. J Gastroenterol. 47:1125–1133. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ray K: Liver cancer: The promise of new
approaches in the management of hepatocellular carcinoma - adding
to the toolbox? Nat Rev Gastroenterol Hepatol. 10:1952013.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Qu KZ, Zhang K, Li H, Afdhal NH and
Albitar M: Circulating microRNAs as biomarkers for hepatocellular
carcinoma. J Clin Gastroenterol. 45:355–360. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen X, Ba Y, Ma L, et al:
Characterization of microRNAs in serum: a novel class of biomarkers
for diagnosis of cancer and other diseases. Cell Res. 18:997–1006.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ji F, Yang B, Peng X, Ding H, You H and
Tien P: Circulating microRNAs in hepatitis B virus-infected
patients. J Viral Hepat. 18:e242–e251. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mitchell PS, Parkin RK, Kroh EM, et al:
Circulating microRNAs as stable blood-based markers for cancer
detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li LM, Hu ZB, Zhou ZX, et al: Serum
microRNA profiles serve as novel biomarkers for HBV infection and
diagnosis of HBV-positive hepatocarcinoma. Cancer Res.
70:9798–9807. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhou J, Yu L, Gao X, et al: Plasma
microRNA panel to diagnose hepatitis B virus-related hepatocellular
carcinoma. J Clin Oncol. 29:4781–4788. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Niu D, Feng H and Chen WN: Proteomic
analysis of HBV-associated HCC: insights on mechanisms of disease
onset and biomarker discovery. J Proteomics. 73:1283–1290. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Aguirre-Gamboa R and Trevino V: SurvMicro:
assessment of miRNA-based prognostic signatures for cancer clinical
outcomes by multivariate survival analysis. Bioinformatics.
30:1630–1632. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhu HT, Dong QZ, Sheng YY, et al:
MicroRNA-29a-5p is a novel predictor for early recurrence of
hepatitis B virus-related hepatocellular carcinoma after surgical
resection. PLoS One. 7:e523932012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hoshida Y, Villanueva A, Kobayashi M, et
al: Gene expression in fixed tissues and outcome in hepatocellular
carcinoma. N Engl J Med. 359:1995–2004. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sherman M: Recurrence of hepatocellular
carcinoma. N Engl J Med. 359:2045–2047. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tomimaru Y, Eguchi H, Nagano H, et al:
MicroRNA-21 induces resistance to the anti-tumour effect of
interferon-α/5-fluorouracil in hepatocellular carcinoma cells. Br J
Cancer. 103:1617–1626. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Pineau P, Volinia S, McJunkin K, et al:
miR-221 overexpression contributes to liver tumorigenesis. Proc
Natl Acad Sci USA. 107:264–269. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Xu Y, Xia F, Ma L, et al: MicroRNA-122
sensitizes HCC cancer cells to adriamycin and vincristine through
modulating expression of MDR and inducing cell cycle arrest. Cancer
Lett. 310:160–169. 2011.PubMed/NCBI
|
|
93
|
Ma K, He Y, Zhang H, et al: DNA
methylation-regulated miR-193a-3p dictates resistance of
hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2
expression. J Biol Chem. 287:5639–5649. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tomokuni A, Eguchi H, Tomimaru Y, et al:
miR-146a suppresses the sensitivity to interferon-α in
hepatocellular carcinoma cells. Biochem Biophys Res Commun.
414:675–680. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Weidhaas JB, Babar I, Nallur SM, et al:
MicroRNAs as potential agents to alter resistance to cytotoxic
anticancer therapy. Cancer Res. 67:11111–11116. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Mutharasan RK, Nagpal V, Ichikawa Y and
Ardehali H: microRNA-210 is upregulated in hypoxic cardiomyocytes
through Akt- and p53-dependent pathways and exerts cytoprotective
effects. Am J Physiol Heart Circ Physiol. 301:H1519–1530. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xie Q, Lin T, Zhang Y, Zheng J and Bonanno
JA: Molecular cloning and characterization of a human AIF-like gene
with ability to induce apoptosis. J Biol Chem. 280:19673–19681.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kumar MS, Erkeland SJ, Pester RE, et al:
Suppression of non-small cell lung tumor development by the let-7
microRNA family. Proc Natl Acad Sci USA. 105:3903–3908. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Choi WY, Giraldez AJ and Schier AF: Target
protectors reveal dampening and balancing of Nodal agonist and
antagonist by miR-430. Science. 318:271–274. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Hatakeyama H, Murata M, Sato Y, et al: The
systemic administration of an anti-miRNA oligonucleotide
encapsulated pH-sensitive liposome results in reduced level of
hepatic microRNA-122 in mice. J Controlled Release. 173:43–50.
2014. View Article : Google Scholar
|
|
101
|
El Tayebi HM, Hosny KA, Esmat G, Breuhahn
K and Abdelaziz AI: miR-615-5p is restrictedly expressed in
cirrhotic and cancerous liver tissues and its overexpression
alleviates the tumorigenic effects in hepatocellular carcinoma.
FEBS Lett. 586:3309–3316. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fornari F, Milazzo M, Chieco P, et al: In
hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA
hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J
Pathol. 227:275–285. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jiang X, Xiang G, Wang Y, et al:
MicroRNA-590-5p regulates proliferation and invasion in human
hepatocellular carcinoma cells by targeting TGF-β RII. Mol Cells.
33:545–551. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu WH, Yeh SH, Lu CC, et al: MicroRNA-18a
prevents estrogen receptor-alpha expression, promoting
proliferation of hepatocellular carcinoma cells. Gastroenterology.
136:683–693. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Notarbartolo M, Giannitrapani L, Vivona N,
et al: Frequent alteration of the Yin Yang 1/Raf-1 kinase
inhibitory protein ratio in hepatocellular carcinoma. OMOICS.
15:267–272. 2011. View Article : Google Scholar
|
|
106
|
Santhekadur PK, Das SK, Gredler R, et al:
Multifunction protein staphylococcal nuclease domain containing 1
(SND1) promotes tumor angiogenesis in human hepatocellular
carcinoma through novel pathway that involves nuclear factor κB and
miR-221. J Biol Chem. 287:13952–13958. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yang W, Sun T, Cao J, Liu F, Tian Y and
Zhu W: Downregulation of miR-210 expression inhibits proliferation,
induces apoptosis and enhances radiosensitivity in hypoxic human
hepatoma cells in vitro. Exp Cell Res. 318:944–954. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang Y, Wei W, Cheng N, et al: Hepatitis
C virus-induced up-regulation of microRNA-155 promotes
hepatocarcinogenesis by activating Wnt signaling. Hepatology.
56:1631–1640. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Au SL, Wong CC, Lee JM, et al: Enhancer of
zeste homolog 2 epigenetically silences multiple tumor suppressor
microRNAs to promote liver cancer metastasis. Hepatology.
56:622–631. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Buurman R, Gurlevik E, Schaffer V, et al:
Histone deacetylases activate hepatocyte growth factor signaling by
repressing microRNA-449 in hepatocellular carcinoma cells.
Gastroenterol. 143:811–820. 2012. View Article : Google Scholar
|
|
111
|
Di Fazio P, Montalbano R, Neureiter D, et
al: Downregulation of HMGA2 by the pan-deacetylase inhibitor
panobinostat is dependent on hsa-let-7b expression in liver cancer
cell lines. Exp Cell Res. 318:1832–1843. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Huang N, Lin J, Ruan J, et al: MiR-219-5p
inhibits hepatocellular carcinoma cell proliferation by targeting
glypican-3. FEBS Lett. 586:884–891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lang Q and Ling C: MiR-124 suppresses cell
proliferation in hepatocellular carcinoma by targeting PIK3CA.
Biochem Biophys Res Commun. 426:247–252. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Li D, Yang P, Li H, et al: MicroRNA-1
inhibits proliferation of hepatocarcinoma cells by targeting
endothelin-1. Life Sci. 91:440–447. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Shah YM, Morimura K, Yang Q, Tanabe T,
Takagi M and Gonzalez FJ: Peroxisome proliferator-activated
receptor alpha regulates a microRNA-mediated signaling cascade
responsible for hepatocellular proliferation. Mol Cell Biol.
27:4238–4247. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Tsang WP and Kwok TT: Let-7a microRNA
suppresses therapeutics-induced cancer cell death by targeting
caspase-3. Apoptosis. 13:1215–1222. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang Z, Lin S, Li JJ, et al: MYC protein
inhibits transcription of the microRNA cluster MC-let-7a-1~let-7d
via noncanonical E-box. J Biol Chem. 286:39703–39714. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wei W, Wanjun L, Hui S, Dongyue C, Xinjun
Y and Jisheng Z: miR-203 inhibits proliferation of HCC cells by
targeting survivin. Cell Biochem Funct. 31:82–85. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wong QW, Lung RW, Law PT, et al:
MicroRNA-223 is commonly repressed in hepatocellular carcinoma and
potentiates expression of Stathmin1. Gastroenterology. 135:257–269.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Yuan JH, Yang F, Chen BF, et al: The
histone deacetylase 4/SP1/microrna-200a regulatory network
contributes to aberrant histone acetylation in hepatocellular
carcinoma. Hepatology. 54:2025–2035. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zheng Y, Yin L, Chen H, et al: miR-376a
suppresses proliferation and induces apoptosis in hepatocellular
carcinoma. FEBS Lett. 586:2396–2403. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhu XM, Wu LJ, Xu J, Yang R and Wu FS:
Let-7c microRNA expression and clinical significance in
hepatocellular carcinoma. J Int Med Res. 39:2323–2329. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang Y, Lee AT, Ma JZ, et al: Profiling
microRNA expression in hepatocellular carcinoma reveals
microRNA-224 up-regulation and apoptosis inhibitor-5 as a
microRNA-224-specific target. J Biol Chem. 283:13205–13215. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Wang Y, Toh HC, Chow P, et al:
MicroRNA-224 is up-regulated in hepatocellular carcinoma through
epigenetic mechanisms. FASEB J. 26:3032–3041. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Alpini G, Glaser SS, Zhang JP, et al:
Regulation of placenta growth factor by microRNA-125b in
hepatocellular cancer. J Hepatol. 55:1339–1345. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Fan DN, Tsang FH, Tam AH, et al: Histone
lysine methyltransferase, suppressor of variegation 3-9 homolog 1,
promotes hepatocellular carcinoma progression and is negatively
regulated by microRNA-125b. Hepatology. 57:637–647. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Ji J, Zhao L, Budhu A, et al: Let-7g
targets collagen type I alpha2 and inhibits cell migration in
hepatocellular carcinoma. J Hepatol. 52:690–697. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lan FF, Wang H, Chen YC, et al: Hsa-let-7g
inhibits proliferation of hepatocellular carcinoma cells by
downregulation of c-Myc and upregulation of p16 (INK4A). Int J
cancer. 128:319–331. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Lin CJ, Gong HY, Tseng HC, Wang WL and Wu
JL: miR-122 targets an anti-apoptotic gene, Bcl-w, in human
hepatocellular carcinoma cell lines. Biochem Biophys Res Commun.
375:315–320. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Reddi HV, Madde P, Milosevic D, et al: The
putative PAX8/PPARγ fusion oncoprotein exhibits partial tumor
suppressor activity through up-regulation of micro-RNA-122 and
dominant-negative PPARγ activity. Genes Cancer. 2:46–55. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Su H, Yang JR, Xu T, et al: MicroRNA-101,
down-regulated in hepatocellular carcinoma, promotes apoptosis and
suppresses tumorigenicity. Cancer Res. 69:1135–1142. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Tsai WC, Hsu PW, Lai TC, et al:
MicroRNA-122, a tumor suppressor microRNA that regulates
intrahepatic metastasis of hepatocellular carcinoma. Hepatology.
49:1571–1582. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Xu J, Zhu X, Wu L, et al: MicroRNA-122
suppresses cell proliferation and induces cell apoptosis in
hepatocellular carcinoma by directly targeting Wnt/β-catenin
pathway. Liver Int. 32:752–760. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP and
Zhuang SM: MicroRNA-195 suppresses tumorigenicity and regulates
G1/S transition of human hepatocellular carcinoma cells.
Hepatology. 50:113–121. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Yang X, Yu J, Yin J, Xiang Q, Tang H and
Lei X: MiR-195 regulates cell apoptosis of human hepatocellular
carcinoma cells by targeting LATS2. Pharmazie. 67:645–651.
2012.PubMed/NCBI
|
|
136
|
Zhang Y, Guo X, Xiong L, et al:
MicroRNA-101 suppresses SOX9-dependent tumorigenicity and promotes
favorable prognosis of human hepatocellular carcinoma. FEBS Lett.
586:4362–4370. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zhao A, Zeng Q, Xie X, et al:
MicroRNA-125b induces cancer cell apoptosis through suppression of
Bcl-2 expression. J Genet Genomics. 39:29–35. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Wang W, Zhao LJ, Tan YX, Ren H and Qi ZT:
MiR-138 induces cell cycle arrest by targeting cyclin D3 in
hepatocellular carcinoma. Carcinogenesis. 33:1113–1120. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Wang X, Wang J, Ma H, Zhang J and Zhou X:
Downregulation of miR-195 correlates with lymph node metastasis and
poor prognosis in colorectal cancer. Med Oncol. 29:919–927. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Wu N, Liu X, Xu X, et al: MicroRNA-373, a
new regulator of protein phosphatase 6, functions as an oncogene in
hepatocellular carcinoma. FEBS J. 278:2044–2054. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Odar K, Boštjančič E, Gale N, Glavač D and
Zidar N: Differential expression of microRNAs miR-21, miR-31,
miR-203, miR-125a-5p and miR-125b and proteins PTEN and p63 in
verrucous carcinoma of the head and neck. Histopathology.
61:257–265. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Fan Q, He M, Deng X, et al: Derepression
of c-Fos caused by microRNA-139 down-regulation contributes to the
metastasis of human hepatocellular carcinoma. Cell Biochem Funct.
31:319–324. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Wong CC, Wong CM, Tung EK, et al: The
microRNA miR-139 suppresses metastasis and progression of
hepatocellular carcinoma by down-regulating Rho-kinase 2.
Gastroenterology. 140:322–331. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Wang X, Chen J, Li F, et al: miR-214
inhibits cell growth in hepatocellular carcinoma through
suppression of β-catenin. Biochem Biophys Res Commun. 428:525–531.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Xia H, Ooi LL and Hui KM: miR-214 targets
β-catenin pathway to suppress invasion, stem-like traits and
recurrence of human hepatocellular carcinoma. PLoS One.
7:e442062012. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Fang Y, Xue JL, Shen Q, Chen J and Tian L:
MicroRNA-7 inhibits tumor growth and metastasis by targeting the
phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma.
Hepatology. 55:1852–1862. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Yang P, Li QJ, Feng Y, et al:
TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment
promotes venous metastases of HBV-positive hepatocellular
carcinoma. Cancer Cell. 22:291–303. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Jiang C, Pecha J, Hoshino I, Ankrapp D and
Xiao H: TIP30 mutant derived from hepatocellular carcinoma
specimens promotes growth of HepG2 cells through up-regulation of
N-cadherin. Cancer Res. 67:3574–3582. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Tian Q, Liang L, Ding J, et al:
MicroRNA-550a acts as a pro-metastatic gene and directly targets
cytoplasmic polyadenylation element-binding protein 4 in
hepatocellular carcinoma. PLoS One. 7:e489582012. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Zhou P, Jiang W, Wu L, Chang R, Wu K and
Wang Z: miR-301a is a candidate oncogene that targets the homeobox
gene Gax in human hepatocellular carcinoma. Dig Dis Sci.
57:1171–1180. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Zhu Q, Wang Z, Hu Y, et al: miR-21
promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback
loop in human hepatocellular carcinoma. Oncol Rep. 27:1660–1668.
2012.PubMed/NCBI
|
|
152
|
Li QJ, Zhou L, Yang F, et al: MicroRNA-10b
promotes migration and invasion through CADM1 in human
hepatocellular carcinoma cells. Tumour Biol. 33:1455–1465. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Liu S, Guo W, Shi J, et al: MicroRNA-135a
contributes to the development of portal vein tumor thrombus by
promoting metastasis in hepatocellular carcinoma. J Hepatol.
56:389–396. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Long MJ, Wu FX, Li P, Liu M, Li X and Tang
H: MicroRNA-10a targets CHL1 and promotes cell growth, migration
and invasion in human cervical cancer cells. Cancer Lett.
324:186–196. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Wang B, Hsu SH, Majumder S, et al:
TGFbeta-mediated upregulation of hepatic miR-181b promotes
hepatocarcinogenesis by targeting TIMP3. Oncogene. 29:1787–1797.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Wang J, Li J, Shen J, Wang C, Yang L and
Zhang X: MicroRNA-182 downregulates metastasis suppressor 1 and
contributes to metastasis of hepatocellular carcinoma. BMC Cancer.
12:2272012. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Zhang X, Liu S, Hu T, Liu S, He Y and Sun
S: Up-regulated microRNA-143 transcribed by nuclear factor kappa B
enhances hepatocarcinoma metastasis by repressing fibronectin
expression. Hepatology. 50:490–499. 2009. View Article : Google Scholar : PubMed/NCBI
|