|
1
|
Narita Y and Shibui S: Committee of Brain
Tumor Registry of Japan Supported by the Japan Neurosurgical
Society: Trends and outcomes in the treatment of gliomas based on
data during 2001–2004 from the Brain Tumor Registry of Japan.
Neurol Med Chir (Tokyo). (55 Suppl)1:286–295. 2015. View Article : Google Scholar
|
|
2
|
Stupp R, Hegi M, Mason W, van den Bent MJ,
Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger
K, et al: Effects of radiotherapy with concomitant and adjuvant
temozolomide versus radiotherapy alone on survival in glioblastoma
in a randomised phase III study: 5-year analysis of the EORTC-NCIC
trial. Lancet Oncol. 10:459–466. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Stupp R, Mason WP, ven den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hochberg F and Pruitt A: Assumptions in
the radiotherapy of glioblastoma. Neurology. 30:907–911. 1980.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Okamoto Y, Di Patre P, Burkhard C, et al:
Population-based study on incidence, survival rates and genetic
alterations of low-grade diffuse astrocytomas and
oligodendrogliomas. Acta Neuropathol. 108:49–56. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wen P and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bonavia R, Inda MM, Cavenee WK and Furnari
FB: Heterogeneity maintenance in glioblastoma: A social network.
Cancer Res. 71:4055–4060. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kesari S: Understanding glioblastoma tumor
biology: The potential to improve current diagnosis and treatments.
Semin Oncol. 38(Suppl 4): S2–S10. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rich J and Bigner DD: Development of novel
targeted therapies in the treatment of malignant glioma. Nat Rev
Drug Discov. 3:430–446. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rainov NG: A phase III clinical evaluation
of herpes simplex virus type 1 thymidine kinase and ganciclovir
gene therapy as an adjuvant to surgical resection and radiation in
adults with previously untreated glioblastoma multiforme. Hum Gene
Ther. 11:2389–2401. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lawler SE, Peruzzi PP and Chiocca EA:
Genetic strategies for brain tumor therapy. Cancer Gene Ther.
13:225–233. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pulkkanen KJ and Yla-Herttuala S: Gene
therapy for malignant glioma: Current clinical status. Mol Ther.
12:585–598. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Aboody KS, Brown A, Rainov NG, Bower KA,
Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al:
Neural stem cells display extensive tropism for pathology in adult
brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA.
97:12846–12851. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nakamizo A, Marini F, Amano T, Khan A,
Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, et
al: Human bone marrow-derived mesenchymal stem cells in the
treatment of gliomas. Cancer Res. 65:3307–3318. 2005.PubMed/NCBI
|
|
15
|
Nakamura K, Ito Y, Kawano Y, Kurozumi K,
Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y and Hamada H:
Antitumor effect of genetically engineered mesenchymal stem cells
in a rat glioma model. Gene Ther. 11:1155–1164. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bexell D, Gunnarsson S, Tormin A, Darabi
A, Gisselsson D, Roybon L, Scheding S and Bengzon J: Bone marrow
multipotent mesenchymal stroma cells act as pericyte-like migratory
vehicles in experimental gliomas. Mol Ther. 17:183–190. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li S, Tokuyama T, Yamamoto J, Koide M,
Yokota N and Namba H: Bystander effect-mediated gene therapy of
gliomas using genetically engineered neural stem cells. Cancer Gene
Ther. 12:600–607. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Aboody KS, Najbauer J and Danks MK: Stem
and progenitor cell-mediated tumor selective gene therapy. Gene
Ther. 15:739–752. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dvorak HF: Tumors: Wounds that do not
heal. Similarities between tumor stroma generation and wound
healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Einstein O and Ben-Hur T: The changing
face of neural stem cell therapy in neurologic diseases. Arch
Neurol. 65:452–456. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
English K and Wood K: Immunogenicity of
embryonic stem cell-derived progenitors after transplantation. Curr
Opin Organ Transplant. 16:90–95. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jones BJ and McTaggart SJ:
Immunosuppression by mesenchymal stromal cells: From culture to
clinic. Exp Hematol. 36:733–741. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Power AT and Bell JC: Cell-based delivery
of oncolytic viruses: A new strategic alliance for a biological
strike against cancer. Mol Ther. 15:660–665. 2007.PubMed/NCBI
|
|
24
|
Engelhorn T, Savaskan NE, Schwarz MA,
Kreutzer J, Meyer EP, Hahnen E, Ganslandt O, Dörfler A, Nimsky C,
Buchfelder M and Eyüpoglu IY: Cellular characterization of the
peritumoral edema zone in malignant brain tumors. Cancer Sci.
100:1856–1862. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Spaeth E, Klopp A, Dembinski J, Andreeff M
and Marini F: Inflammation and tumor microenvironments: Defining
the migratory itinerary of mesenchymal stem cells. Gene Ther.
15:730–738. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kim DS, Kim JH, Lee JK, Choi SJ, Kim JS,
Jeun SS, Oh W, Yang YS and Chang JW: Overexpression of CXC
chemokine receptors is required for the superior glioma-tracking
property of umbilical cord blood-derived mesenchymal stem cells.
Stem Cells Dev. 18:511–519. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Dwyer RM, Potter-Beirne SM, Harrington KA,
et al: Monocyte chemotactic protein-1 secreted by primary breast
tumors stimulates migration of mesenchymal stem cells. Clin Cancer
Res. 13:5020–5027. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Menon LG, Picinich S, Koneru R, et al:
Differential gene expression associated with migration of
mesenchymal stem cells to conditioned medium from tumor cells or
bone marrow cells. Stem Cells. 25:520–528. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Egea V, von Baumgarten L, Schichor C, et
al: TNF-α respecifies human mesenchymal stem cells to a neural fate
and promotes migration toward experimental glioma. Cell Death
Differ. 18:853–863. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Koizumi S, Gu C, Amano S, Yamamoto S,
Ihara H, Tokuyama T and Namba H: Migration of mouse-induced
pluripotent stem cells to glioma-conditioned medium is mediated by
tumor-associated specific growth factors. Oncol Lett. 2:283–288.
2011.PubMed/NCBI
|
|
31
|
Yamazoe T, Koizumi S, Yamasaki T, Amano S,
Tokuyama T and Namba H: Potent tumor tropism of induced pluripotent
stem cells and induced pluripotent stem cell-derived neural stem
cells in the mouse intracerebral glioma model. Int J Oncol.
46:147–152. 2015.PubMed/NCBI
|
|
32
|
Magge SN, Malik SZ, Royo NC, Chen HI, Yu
L, Snyder EY, O'Rourke DM and Watson DJ: Role of monocyte
chemoattractant protein-1 (MCP-1/CCL2) in migration of neural
progenitor cells toward glial tumors. J Neurosci Res. 87:1547–1555.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kim SM, Oh JH, Park SA, Ryu CH, Lim JY,
Kim DS, Chang JW, Oh W and Jeun SS: Irradiation enhances the tumor
tropism and therapeutic potential of tumor necrosis factor-related
apoptosis-inducing ligand-secreting human umbilical cord
blood-derived mesenchymal stem cells in glioma therapy. Stem Cells.
28:2217–2228. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Klopp AH, Spaeth EL, Dembinski JL,
Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M and Marini FC:
Tumor irradiation increases the recruitment of circulating
mesenchymal stem cells into the tumor microenvironment. Cancer Res.
67:11687–11695. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Birnbaum T, Roider J, Schankin CJ, Padovan
CS, Schichor C, Goldbrunner R and Straube A: Malignant gliomas
actively recruit bone marrow stromal cells by secreting angiogenic
cytokines. J Neurooncol. 83:241–247. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schichor C, Birnbaum T, Etminan N, Schnell
O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn JC and
Goldbrunner R: Vascular endothelial growth factor A contributes to
glioma-induced migration of human marrow stromal cells (hMSC). Exp
Neurol. 199:301–310. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Schmidt NO, Przylecki W, Yang W, Ziu M,
Teng Y, Kim SU, Black PM, Aboody KS and Carroll RS: Brain tumor
tropism of transplanted human neural stem cells is induced by
vascular endothelial growth factor. Neoplasia. 7:623–629. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhao D, Najbauer J, Garcia E, Metz MZ,
Gutova M, Glackin CA, Kim SU and Aboody KS: Neural stem cell
tropism to glioma: Critical role of tumor hypoxia. Mol Cancer Res.
6:1819–1829. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ho IA, Chan KY, Ng WH, Guo CM, Hui KM,
Cheang P and Lam PY: Matrix metalloproteinase 1 is necessary for
the migration of human bone marrow-derived mesenchymal stem cells
toward human glioma. Stem Cells. 27:1366–1375. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Martinez-Quintanilla J, Bhere D, Heidari
P, He D, Mahmood U and Shah K: Therapeutic efficacy and fate of
bimodal engineered stem cells in malignant brain tumors. Stem
Cells. 31:1706–1714. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gage FH: Mammalian neural stem cells.
Science. 287:1433–1438. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Benedetti S, Pirola B, Pollo B, Magrassi
L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di Meco F, De
Fraja C, et al: Gene therapy of experimental brain tumors using
neural progenitor cells. Nat Med. 6:447–450. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ehtesham M, Kabos P, Kabosova A, Neuman T,
Black KL and Yu JS: The use of interleukin 12-secreting neural stem
cells for the treatment of intracranial glioma. Cancer Res.
62:5657–5663. 2002.PubMed/NCBI
|
|
44
|
Kim SK, Cargioli TG, Machluf M, Yang W,
Sun Y, Al-Hashem R, Kim SU, Black PM and Carroll RS: PEX-producing
human neural stem cells inhibit tumor growth in a mouse glioma
model. Clin Cancer Res. 11:5965–5970. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li S, Gao Y, Tokuyama T, Yamamoto J,
Yokota N, Yamamoto S, Terakawa S, Kitagawa M and Namba H:
Genetically engineered neural stem cells migrate and suppress
glioma cell growth at distant intracranial sites. Cancer Lett.
251:220–227. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mercapide J, Rappa G, Anzanello F, King J,
Fodstad O and Lorico A: Primary gene-engineered neural
stem/progenitor cells demonstrate tumor-selective migration and
antitumor effects in glioma. Int J Cancer. 126:1206–1215.
2010.PubMed/NCBI
|
|
47
|
Shah K, Hingtgen S, Kasmieh R, Figueiredo
JL, Garcia-Garcia E, Martinez-Serrano A, Breakefield X and
Weissleder R: Bimodal viral vectors and in vivo imaging
reveal the fate of human neural stem cells in experimental glioma
model. J Neurosci. 28:4406–4413. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Thu MS, Najbauer J, Kendall SE,
Harutyunyan I, Sangalang N, Gutova M, Metz MZ, Garcia E, Frank RT,
Kim SU, et al: Iron labeling and pre-clinical MRI visualization of
therapeutic human neural stem cells in a murine glioma model. PLoS
One. 4:e72182009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tyler MA, Ulasov IV, Sonabend AM, Nandi S,
Han Y, Marler S, Roth J and Lesniak MS: Neural stem cells target
intracranial glioma to deliver an oncolytic adenovirus in
vivo. Gene Ther. 16:262–278. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Staflin K, Honeth G, Kalliomäki S,
Kjellman C, Edvardsen K and Lindvall M: Neural progenitor cell
lines inhibit rat tumor growth in vivo. Cancer Res.
64:5347–5354. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Picinich SC, Mishra PJ, Mishra PJ, Glod J
and Banerjee D: The therapeutic potential of mesenchymal stem
cells. Cell- & tissue-based therapy. Expert Opin Biol Ther.
7:965–973. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Caplan Al: Why are MSCs therapeutic? New
data: New insight. J Pathol. 217:318–324. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Djouad F, Plence P, Bony C, Tropel P,
Apparailly F, Sany J, Noël D and Jorgensen C: Immunosuppressive
effect of mesenchymal stem cells favors tumor growth in allogeneic
animals. Blood. 102:3837–3844. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Beckermann B, Kallifatidis G, Groth A, et
al: VEGF expression by mesenchymal stem cells contributes to
angiogenesis in pancreatic carcinoma. Br J Cancer. 99:622–631.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Coffelt SB, Marini FC, Watson K, Zwezdaryk
KJ, Dembinski JL, LaMarca HL, Tomchuck SL, Bentrup Honer Zu K,
Danka ES, Henkle SL and Scandurro AB: The pro-inflammatory peptide
LL-37 promotes ovarian tumor progression through recruitment of
multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA.
106:3806–3811. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Houghton J, Stoicov C, Nomura S, et al:
Gastric cancer originating from bone marrow-derived cells. Science.
306:1568–1571. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Spaeth EL, Dembinski JL, Sasser AK, Watson
K, Klopp A, Hall B, Andreeff M and Marini F: Mesenchymal stem cell
transition to tumor-associated fibroblasts contributes to
fibrovascular network expansion and tumor progression. PLoS One.
4:e49922009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Klopp AH, Gupta A, Spaeth E, Andreeff M
and Marini F III: Concise review: Dissecting a discrepancy in the
literature: Do mesenchymal stem cells support or suppress tumor
growth? Stem Cells. 29:11–19. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Prockop DJ, Brenner M, Fibbe WE, Horwitz
E, Le Blanc K, Phinney DG, Simmons PJ, Sensebe L and Keating A:
Defining the risks of mesenchymal stromal cell therapy.
Cytotherapy. 12:576–578. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rubio D, Garcia-Castro J, Martín MC, de la
Fuente R, Cigudosa JC, Lloyd AC and Bernad A: Spontaneous human
adult stem cell transformation. Cancer Res. 65:3035–3039.
2005.PubMed/NCBI
|
|
61
|
Ahmed AU, Tyler MA, Thaci B, Alexiades NG,
Han Y, Ulasov IV and Lesniak MS: A comparative study of neural and
mesenchymal stem cell-based carriers for oncolytic adenovirus in a
model of malignant glioma. Mol Pharm. 8:1559–1572. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tabatabai G, Bähr O, Möhle R, Eyüpoglu IY,
Boehmler AM, Wischhusen J, Rieger J, Blümcke I, Weller M and Wick
W: Lessons from the bone marrow: How malignant glioma cells attract
adult haematopoietic progenitor cells. Brain. 128:2200–2211. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tabatabai G, Wick W and Weller M: Stem
cell-mediated gene therapies for malignant gliomas: A promising
targeted therapeutic approach? Discov Med. 11:529–536.
2011.PubMed/NCBI
|
|
64
|
Pisati F, Belicchi M, Acerbi F, Marchesi
C, Giussani C, Gavina M, Javerzat S, Hagedorn M, Carrabba G, Lucini
V, et al: Effect of human skin-derived stem cells on vessel
architecture, tumor growth and tumor invasion in brain tumor animal
models. Cancer Res. 67:3054–3063. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ferrari N, Glod J, Lee J, Kobiler D and
Fine HA: Bone marrow-derived, endothelial progenitor-like cells as
angiogenesis-selective gene-targeting vectors. Gene Ther.
10:647–656. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Moore XL, Lu J, Sun L, Zhu CJ, Tan P and
Wong MC: Endothelial progenitor cells' ‘homing’ specificity to
brain tumors. Gene Ther. 11:811–818. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wei J, Wahl J, Nakamura T, et al: Targeted
release of oncolytic measles virus by blood outgrowth endothelial
cells in situ inhibits orthotopic gliomas. Gene Ther. 14:1573–1586.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Uzzaman M, Keller G and Germano IM: In
vivo gene delivery by embryonic-stem-cell-derived astrocytes
for malignant gliomas. Neuro Oncol. 11:102–108. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lee EX, Lam DH, Wu C, Yang J, Tham CK, Ng
WH and Wang S: Glioma gene therapy using induced pluripotent stem
cell derived neural stem cells. Mol Pharm. 8:1515–1524. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gunnarsson S, Bexell D, Svensson A, Siesjö
P, Darabi A and Bengzon J: Intratumoral IL-7 delivery by
mesenchymal stromal cells potentiates IFNgamma-transduced tumor
cell immunotherapy of experimental glioma. J Neuroimmunol.
218:140–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yuan X, Hu J, Belladonna ML, Black KL and
Yu JS: Interleukin-23-expressing bone marrow-derived neural
stem-like cells exhibit antitumor activity against intracranial
glioma. Cancer Res. 66:2630–2638. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Stagg J, Lejeune L, Paquin A and Galipeau
J: Marrow stromal cells for interleukin-2 delivery in cancer
immunotherapy. Hum Gene Ther. 15:597–608. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xu G, Jiang XD, Xu Y, Zhang J, Huang FH,
Chen ZZ, Zhou DX, Shang JH, Zou YX, Cai YQ, et al:
Adenoviral-mediated interleukin-18 expression in mesenchymal stem
cells effectively suppresses the growth of glioma in rats. Cell
Biol Int. 33:466–474. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kelley SK and Ashkenazi A: Targeting death
receptors in cancer with Apo2 L/TRAIL. Curr Opin Pharmacol.
4:333–339. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Almasan A and Ashkenazi A: Apo2 L/TRAIL:
Apoptosis signaling, biology and potential for cancer therapy.
Cytokine Growth Factor Rev. 14:337–348. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sasportas LS, Kasmieh R, Wakimoto H,
Hingtgen S, van de Water JA, Mohapatra G, Figueiredo JL, Martuza
RL, Weissleder R and Shah K: Assessment of therapeutic efficacy and
fate of engineered human mesenchymal stem cells for cancer therapy.
Proc Natl Acad Sci USA. 106:4822–4827. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kim SM, Lim JY, Park SI, Jeong CH, Oh JH,
Jeong M, Oh W, Park SH, Sung YC and Jeun SS: Gene therapy using
TRAIL-secreting human umbilical cord blood-derived mesenchymal stem
cells against intracranial glioma. Cancer Res. 68:9614–9623. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Menon LG, Kelly K, Yang HW, Kim SK, Black
PM and Carroll RS: Human bone marrow-derived mesenchymal stromal
cells expressing S-TRAIL as a cellular delivery vehicle for human
glioma therapy. Stem Cells. 27:2320–2330. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Choi SA, Hwang SK, Wang KC, Cho BK, Phi
JH, Lee JY, Jung HW, Lee DH and Kim SK: Therapeutic efficacy and
safety of TRAIL-producing human adipose tissue-derived mesenchymal
stem cells against experimental brainstem glioma. Neuro Oncol.
13:61–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kauer TM, Figueiredo JL, Hingtgen S and
Shah K: Encapsulated therapeutic stem cells implanted in the tumor
resection cavity induce cell death in gliomas. Nat Neurosci.
15:197–204. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Matuskova M, Hlubinova K, Pastorakova A,
Hunakova L, Altanerova V, Altaner C and Kucerova L: HSV-tk
expressing mesenchymal stem cells exert bystander effect on human
glioblastoma cells. Cancer Lett. 290:58–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Namba H, Iwadate Y, Kawamura K, Sakiyama S
and Tagawa M: Efficacy of the bystander effect in the herpes
simplex virus thymidine kinase-mediated gene therapy is influenced
by the expression of connexin43 in the target cells. Cancer Gene
Ther. 8:414–420. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Uhl M, Weiler M, Wick W, Jacobs AH, Weller
M and Herrlinger U: Migratory neural stem cells for improved
thymidine kinase-based gene therapy of malignant gliomas. Biochem
Biophys Res Commun. 328:125–129. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Miletic H, Fischer Y, Litwak S, Giroglou
T, Waerzeggers Y, Winkeler A, Li H, Himmelreich U, Lange C, Stenzel
W, et al: Bystander killing of malignant glioma by bone
marrow-derived tumor-infiltrating progenitor cells expressing a
suicide gene. Mol Ther. 15:1373–1381. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Uchibori R, Okada T, Ito T, Urabe M,
Mizukami H, Kume A and Ozawa K: Retroviral vector-producing
mesenchymal stem cells for targeted suicide cancer gene therapy. J
Gene Med. 11:373–381. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Amano S, Li S, Gu C, Gao Y, Koizumi S,
Yamamoto S, Terakawa S and Namba H: Use of genetically engineered
bone marrow-derived mesenchymal stem cells for glioma gene therapy.
Int J Oncol. 35:1265–1270. 2009.PubMed/NCBI
|
|
87
|
Song C, Xiang J, Tang J, Hirst DG, Zhou J,
Chan KM and Li G: Thymidine kinase gene modified bone marrow
mesenchymal stem cells as vehicles for antitumor therapy. Hum Gene
Ther. 22:439–449. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mori K, Iwata J, Miyazaki M, Osada H,
Tange Y, Yamamoto T, Aiko Y, Tamura M and Shiroishi T: Bystander
killing effect of tymidine kinase gene-transduced adult bone marrow
stromal cells with ganciclovir on malignant glioma cells. Neurol
Med Chir (Tokyo). 50:545–553. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Bak XY, Yang J and Wang S:
Baculovirus-transduced bone marrow mesenchymal stem cells for
systemic cancer therapy. Cancer Gene Ther. 17:721–729. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li S, Gu C, Gao Y, Amano S, Koizumi S,
Tokuyama T and Namba H: Bystander effect in glioma suicide gene
therapy using bone marrow stromal cells. Stem Cell Res. 9:270–276.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Amano S, Gu C, Koizumi S, Tokuyama T and
Namba H: Tumoricidal bystander effect in the suicide gene therapy
using mesenchymal stem cells does not injure normal brain tissues.
Cancer Lett. 306:99–105. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Fischer U, Steffens S, Frank S, Rainov NG,
Schulze-Osthoff K and Kramm CM: Mechanisms of thymidine
kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide
gene therapy-induced cell death in glioma cells. Oncogene.
24:1231–1243. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ichikawa T, Tamiya T, Adachi Y, Ono Y,
Matsumoto K, Furuta T, Yoshida Y, Hamada H and Ohmoto T: In
vivo efficacy and toxicity of 5-fluorocytosine/cytosine
deaminase gene therapy for malignant gliomas mediated by
adenovirus. Cancer Gene Ther. 7:74–82. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Barresi V, Belluardo N, Sipione S, Mudò G,
Cattaneo E and Condorelli DF: Transplantation of prodrug-converting
neural progenitor cells for brain tumor therapy. Cancer Gene Ther.
10:396–402. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Shimato S, Natsume A, Takeuchi H,
Wakabayashi T, Fujii M, Ito M, Ito S, Park IH, Bang JH, Kim SU and
Yoshida J: Human neural stem cells target and deliver therapeutic
gene to experimental leptomeningeal medulloblastoma. Gene Ther.
14:1132–1142. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kucerova L, Altanerova V, Matuskova M,
Tyciakova S and Altaner C: Adipose tissue-derived human mesenchymal
stem cells mediated prodrug cancer gene therapy. Cancer Res.
67:6304–6313. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Altanerova V, Cihova M, Babic M, Rychly B,
Ondicova K, Mravec B and Altaner C: Human adipose tissue-derived
mesenchymal stem cells expressing yeast cytosinedeaminase::uracil
phosphoribosyltransferase inhibit intracerebral rat glioblastoma.
Int J Cancer. 130:2455–2463. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kosaka H, Ichikawa T, Kurozumi K, Kambara
H, Inoue S, Maruo T, Nakamura K, Hamada H and Date I: Therapeutic
effect of suicide gene-transferred mesenchymal stem cells in a rat
model of glioma. Cancer Gene Ther. 19:572–578. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wierdl M, Morton CL, Weeks JK, Danks MK,
Harris LC and Potter PM: Sensitization of human tumor cells to
CPT-11 via adenoviral-mediated delivery of a rabbit liver
carboxylesterase. Cancer Res. 61:5078–5082. 2001.PubMed/NCBI
|
|
100
|
Danks MK, Yoon KJ, Bush RA, Remack JS,
Wierdl M, Tsurkan L, Kim SU, Garcia E, Metz MZ, Najbauer J, et al:
Tumor-targeted enzyme/prodrug therapy mediates long-term
disease-free survival of mice bearing disseminated neuroblastoma.
Cancer Res. 67:22–25. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Choi SA, Lee JY, Wang KC, Phi JH, Song SH,
Song J and Kim SK: Human adipose tissue-derived mesenchymal stem
cells: Characteristics and therapeutic potential as cellular
vehicles for prodrug gene therapy against brainstem gliomas. Eur J
Cancer. 48:129–137. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lorico A, Mercapide J, Solodushko V,
Alexeyev M, Fodstad O and Rappa G: Primary neural stem/progenitor
cells expressing endostatin or cytochrome P450 for gene therapy of
glioblastoma. Cancer Gene Ther. 15:605–615. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yamamoto M and Curiel DT: Current issues
and future directions of oncolytic adenoviruses. Mol Ther.
18:243–250. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Herrlinger U, Woiciechowski C,
Sena-Esteves M, Aboody KS, Jacobs AH, Rainov NG, Snyder EY and
Breakefield XO: Neural precursor cells for delivery of
replication-conditional HSV-1 vectors to intracerebral gliomas. Mol
Ther. 1:347–357. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ahmed AU, Thaci B, Alexiades NG, Han Y,
Qian S, Liu F, Balyasnikova IV, Ulasov IY, Aboody KS and Lesniak
MS: Neural stem cell-based cell carriers enhance therapeutic
efficacy of an oncolytic adenovirus in an orthotopic mouse model of
human glioblastoma. Mol Ther. 19:1714–1726. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Sonabend AM, Ulasov IV, Tyler MA, Rivera
AA, Mathis JM and Lesniak MS: Mesenchymal stem cells effectively
deliver an oncolytic adenovirus to intracranial glioma. Stem Cells.
26:831–841. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yong RL, Shinojima N, Fueyo J, Gumin J,
Vecil GG, Marini FC, Bogler O, Andreeff M and Lang FF: Human bone
marrow-derived mesenchymal stem cells for intravascular delivery of
oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res.
69:8932–8940. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Josiah DT, Zhu D, Dreher F, Olson J,
McFadden G and Caldas H: Adipose-derived stem cells as therapeutic
delivery vehicles of an oncolytic virus for glioblastoma. Mol Ther.
18:377–385. 2010. View Article : Google Scholar : PubMed/NCBI
|