|
1
|
Hoeijmakers JH: DNA damage, aging, and
cancer. N Engl J Med. 361:1475–1485. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Entschladen F, Drell TL IV, Lang K, Joseph
J and Zaenker KS: Tumour-cell migration, invasion, and metastasis:
Navigation by neurotransmitters. Lancet Oncol. 5:254–258. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Meacham CE and Morrison SJ: Tumour
heterogeneity and cancer cell plasticity. Nature. 501:328–337.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mok TS: Personalized medicine in lung
cancer: What we need to know. Nat Rev Clin Oncol. 8:661–668. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Diou O, Tsapis N and Fattal E: Targeted
nanotheranostics for personalized cancer therapy. Expert Opin Drug
Deliv. 9:1475–1487. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Croce CM: Oncogenes and cancer. N Engl J
Med. 358:502–511. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Esteller M: Epigenetics in cancer. N Engl
J Med. 358:1148–1159. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Berdasco M and Esteller M: Aberrant
epigenetic landscape in cancer: How cellular identity goes awry.
Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Esteller M: Cancer epigenomics: DNA
methylomes and histone-modification maps. Nat Rev Genet. 8:286–298.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jones PA and Baylin SB: The epigenomics of
cancer. Cell. 128:683–692. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Doroshow JH and Kummar S: Translational
research in oncology-10 years of progress and future prospects. Nat
Rev Clin Oncol. 11:649–662. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Negrini S, Gorgoulis VG and Halazonetis
TD: Genomic instability - an evolving hallmark of cancer. Nat Rev
Mol Cell Biol. 11:220–228. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tomita N: BCL2 and MYC dual-hit
lymphoma/leukemia. J Clin Exp Hematop. 51:7–12. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Maire CL and Ligon KL: Molecular
pathologic diagnosis of epidermal growth factor receptor. Neuro
Oncol. 16:viii1–6. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Demoulin JB and Essaghir A: PDGF receptor
signaling networks in normal and cancer cells. Cytokine Growth
Factor Rev. 25:273–283. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fearon AE, Gould CR and Grose RP: FGFR
signaling in women's cancers. Int J Biochem Cell Biol.
45:2832–2842. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Normanno N, De Luca A, Bianco C, Strizzi
L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F and
Salomon DS: Epidermal growth factor receptor (EGFR) signaling in
cancer. Gene. 366:2–16. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bishayee A, Beguinot L and Bishayee S:
Phosphorylation of tyrosine 992, 1068, and 1086 is required for
conformational change of the human epidermal growth factor receptor
c-terminal tail. Mol Biol Cell. 10:525–536. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Heng BC, Aubel D and Fussenegger M: An
overview of the diverse roles of G-protein coupled receptors
(GPCRs) in the pathophysiology of various human diseases.
Biotechnol Adv. 31:1676–1694. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Shaw RJ and Cantley LC: Ras, PI(3)K and
mTOR signaling controls tumour cell growth. Nature. 441:424–430.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Prior IA, Lewis PD and Mattos C: A
comprehensive survey of Ras mutations in cancer. Cancer Res.
72:2457–2467. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fernández-Medarde A and Santos E: Ras in
cancer and developmental diseases. Genes Cancer. 2:344–358. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ho CL, Kurman RJ, Dehari R, Wang TL and
Shih IeM: Mutations of BRAF and KRAS precede the development of
ovarian serous borderline tumors. Cancer Res. 64:6915–6918. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cantwell-Dorris ER, O'Leary JJ and Sheils
OM: BRAFV600E: Implications for carcinogenesis and molecular
therapy. Mol Cancer Ther. 10:385–394. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Eferl R and Wagner EF: AP-1: A
double-edged sword in tumorigenesis. Nat Rev Cancer. 3:859–868.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li Y, Casey SC and Felsher DW:
Inactivation of MYC reverses tumorigenesis. J Intern Med.
276:52–60. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Payne SR and Kemp CJ: Tumor suppressor
genetics. Carcinogenesis. 26:2031–2045. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Berger AH and Pandolfi PP:
Haplo-insufficiency: A driving force in cancer. J Pathol.
223:137–146. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Smith U: PTEN - linking metabolism, cell
growth, and cancer. N Engl J Med. 367:1061–1063. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chaudru V, Chompret A, Bressac-de
Paillerets B, Spatz A, Avril MF and Demenais F: Influence of genes,
nevi, and sun sensitivity on melanoma risk in a family sample
unselected by family history and in melanoma-prone families. J Natl
Cancer Inst. 96:785–795. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sugimura T and Ushijima T: Genetic and
epigenetic alterations in carcinogenesis. Mutat Res. 462:235–246.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Greger V, Debus N, Lohmann D, Höpping W,
Passarge E and Horsthemke B: Frequency and parental origin of
hypermethylated RB1 alleles in retinoblastoma. Hum Genet.
94:491–496. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Herman JG, Latif F, Weng Y, Lerman MI,
Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al:
Silencing of the VHL tumor-suppressor gene by DNA methylation in
renal carcinoma. Proc Natl Acad Sci USA. 91:9700–9704. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Dobrovic A and Simpfendorfer D:
Methylation of the BRCA1 gene in sporadic breast cancer. Cancer
Res. 57:3347–3350. 1997.PubMed/NCBI
|
|
36
|
Arnold CN, Goel A, Niedzwiecki D, Dowell
JM, Wasserman L, Compton C, Mayer RJ, Bertagnolli MM and Boland CR:
APC promoter hypermethylation contributes to the loss of APC
expression in colorectal cancers with allelic loss on 5q. Cancer
Biol Ther. 3:960–964. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Madhavan J, Ganesh A and Kumaramanickavel
G: Retinoblastoma: From disease to discovery. Ophthalmic Res.
40:221–226. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Guimaraes DP and Hainaut P: TP53: A key
gene in human cancer. Biochimie. 84:83–93. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lipinski MM and Jacks T: The
retinoblastoma gene family in differentiation and development.
Oncogene. 18:7873–7882. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Soussi T: The history of p53. A perfect
example of the drawbacks of scientific paradigms. EMBO Rep.
11:822–826. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ghebranious N and Donehower LA: Mouse
models in tumor suppression. Oncogene. 17:3385–3400. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Walerych D, Napoli M, Collavin L and Del
Sal G: The rebel angel: Mutant p53 as the driving oncogene in
breast cancer. Carcinogenesis. 33:2007–2017. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chalhoub N and Baker SJ: PTEN and the
PI3-kinase pathway in cancer. Annu Rev Pathol. 4:127–150. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jaiswal AS and Narayan S: A novel function
of adenomatous polyposis coli (APC) in regulating DNA repair.
Cancer Lett. 271:272–280. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tian M and Schiemann WP: The TGF-beta
paradox in human cancer: An update. Future Oncol. 5:259–271. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kong YW, Ferland-McCollough D, Jackson TJ
and Bushell M: microRNAs in cancer management. Lancet Oncol.
13:e249–258. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lu KH: Hereditary gynecologic cancers:
Differential diagnosis, surveillance, management and surgical
prophylaxis. Fam Cancer. 7:53–58. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Perea J, Rodríguez Y, Rueda D, Marín JC,
Díaz-Tasende J, Álvaro E, Alegre C, Osorio I, Colina F, Lomas M, et
al: Early-onset colorectal cancer is an easy and effective tool to
identify retrospectively Lynch syndrome. Ann Surg Oncol.
18:3285–3291. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Nieuwenhuis MH, Kets CM, Murphy-Ryan M,
Yntema HG, Evans DG, Colas C, Møller P, Hes FJ, Hodgson SV,
Olderode-Berends MJ, et al: Cancer risk and genotype-phenotype
correlations in PTEN hamartoma tumor syndrome. Fam Cancer.
13:57–63. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kobayashi H, Ohno S, Sasaki Y and Matsuura
M: Hereditary breast and ovarian cancer susceptibility genes
(review). Oncol Rep. 30:1019–1029. 2013.PubMed/NCBI
|
|
51
|
Rozen P and Macrae F: Familial adenomatous
polyposis: The practical applications of clinical and molecular
screening. Fam Cancer. 5:227–235. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vasen HF, Möslein G, Alonso A, et al:
Guidelines for the clinical management of Lynch syndrome
(hereditary non-polyposis cancer). J Med Genet. 44:353–362. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Harris SL and Levine AJ: The p53 pathway:
Positive and negative feedback loops. Oncogene. 24:2899–2908. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Collado M and Serrano M: Senescence in
tumours: Evidence from mice and humans. Nat Rev Cancer. 10:51–57.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Su Z, Yang Z, Xu Y, Chen Y and Yu Q:
Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol
Cancer. 14:482015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hensley P, Mishra M and Kyprianou N:
Targeting caspases in cancer therapeutics. Biol Chem. 394:831–843.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lowe SW, Cepero E and Evan G: Intrinsic
tumour suppression. Nature. 432:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Van den Berghe T, Linkermann A,
Jouan-Lanhouet S, Walczak H and Vandenabeele P: Regulated necrosis:
The expanding network of non-apoptotic cell death pathways. Nat Rev
Mol Cell Biol. 15:135–147. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chaabane W, User SD, El-Gazzah M, Jaksik
R, Sajjadi E, Rzeszowska-Wolny J and Los MJ: Autophagy, apoptosis,
mitoptosis and necrosis: Interdependence between those pathways and
effects on cancer. Arch Immunol Ther Exp (Warsz). 61:43–58. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
van Deursen JM: The role of senescent
cells in ageing. Nature. 509:439–446. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sakamoto M, Toyoizumi T, Kikuchi Y,
Okamoto A, Nakayama H, Aoki D, Yamamoto K, Hata H, Sugishita T and
Tenjin Y: Telomerase activity in gynecological tumors. Oncol Rep.
7:1003–1009. 2000.PubMed/NCBI
|
|
62
|
Nakashima M, Sonoda K and Watanabe T:
Inhibition of cell growth and induction of apoptotic cell death by
the human tumor-associated antigen RCAS1. Nat Med. 5:938–942. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Giaginis C, Giagini A and Theocharis S:
Receptor-binding cancer antigen expressed on SiSo cells (RCAS1): A
novel biomarker in the diagnosis and prognosis of human neoplasia.
Histol Histopathol. 24:761–776. 2009.PubMed/NCBI
|
|
64
|
Sonoda K, Miyamoto S, Hirakawa T, Yagi H,
Yotsumoto F, Nakashima M, Watanabe T and Nakano H: Association
between RCAS1 expression and microenvironmental immune cell death
in uterine cervical cancer. Gynecol Oncol. 97:772–779. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sonoda K: RCAS1 is a promising therapeutic
target against cancer: Its multifunctional bioactivities and
clinical significance. Expert Rev Obstet Gynecol. 7:261–267. 2012.
View Article : Google Scholar
|
|
66
|
Sonoda K, Miyamoto S, Nakashima M and Wake
N: The biological role of unique molecule RCAS1: A bioactive marker
that induces connective tissue remodeling and lymphocyte apoptosis.
Front Biosci. 13:1106–1116. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nishinakagawa T, Fujii S, Nozaki T, Maeda
T, Machida K, Enjoji M and Nakashima M: Analysis of cell cycle
arrest and apoptosis induced by RCAS1. Int J Mol Med. 25:717–722.
2010.PubMed/NCBI
|
|
68
|
Baeriswyl V and Christofori G: The
angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Burger RA, Brady MF, Bookman MA, et al:
Gynecologic Oncology Group: Incorporation of bevacizumab in the
primary treatment of ovarian cancer. N Engl J Med. 365:2473–2483.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chéreau E, Lambaudie E and Houvenaeghel G:
Morbidity of surgery after neoadjuvant chemotherapy including
bevacizumab for advanced ovarian cancer. Int J Gynecol Cancer.
23:1326–1330. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hua H, Li M, Luo T, Yin Y and Jiang Y:
Matrix metalloproteinases in tumorigenesis: An evolving paradigm.
Cell Mol Life Sci. 68:3853–3868. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Planagumà J, Liljeström M, Alameda F,
Bützow R, Virtanen I, Reventós J and Hukkanen M: Matrix
metalloproteinase-2 and matrix metalloproteinase-9 codistribute
with transcription factors RUNX1/AML1 and ETV5/ERM at the invasive
front of endometrial and ovarian carcinoma. Hum Pathol. 42:57–67.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yan L, Lin B, Gao L, Gao S, Liu C, Wang C,
Wang Y, Zhang S and Iwamori M: Lewis (y) antigen overexpression
increases the expression of MMP-2 and MMP-9 and invasion of human
ovarian cancer cells. Int J Mol Sci. 11:4441–4452. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kamat AA, Fletcher M, Gruman LM, Mueller
P, Lopez A, Landen CN Jr, Han L, Gershenson DM and Sood AK: The
clinical relevance of stromal matrix metalloproteinase expression
in ovarian cancer. Clin Cancer Res. 12:1707–1714. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sawada K, Mitra AK, Radjabi AR, Bhaskar V,
Kistner EO, Tretiakova M, Jagadeeswaran S, Montag A, Becker A,
Kenny HA, et al: Loss of E-cadherin promotes ovarian cancer
metastasis via alpha 5-integrin, which is a therapeutic target.
Cancer Res. 68:2329–2339. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Paget S: The distribution of secondary
growths in cancer of the breast. 1889. Cancer Metastasis Rev.
8:98–101. 1989.PubMed/NCBI
|
|
77
|
Zhang Y, Ma B and Fan Q: Mechanisms of
breast cancer bone metastasis. Cancer Lett. 292:1–7. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mukherjee D and Zhao J: The role of
chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer
Res. 3:46–57. 2013.PubMed/NCBI
|
|
79
|
Sonoda K: Novel therapeutic strategies to
target RCAS1, which induces apoptosis via ectodomain shedding.
Histol Histopathol. 26:1475–1486. 2011.PubMed/NCBI
|
|
80
|
Sonoda K, Miyamoto S, Hirakawa T, Yagi H,
Yotsumoto F, Nakashima M, Watanabe T and Nakano H: Invasive potency
related to RCAS1 expression in uterine cervical cancer. Gynecol
Oncol. 99:189–198. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Skyldberg B, Salo S, Eriksson E, Aspenblad
U, Moberger B, Tryggvason K and Auer G: Laminin-5 as a marker of
invasiveness in cervical lesions. J Natl Cancer Inst. 91:1882–1887.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Brinkerhoff CE, Rutter JL and Benbow U:
Interstitial collagenases as markers of tumor progression. Clin
Cancer Res. 6:4823–4830. 2000.PubMed/NCBI
|
|
83
|
Przybylo JA and Radisky DC: Matrix
metalloproteinase-induced epithelial-mesenchymal transition: Tumor
progression at Snail's pace. Int J Biochem Cell Biol. 39:1082–1088.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sonoda K, Miyamoto S, Kobayashi H, Ogawa
S, Okugawa K, Taniguchi S and Wake N: The level of RCAS1 expression
is inversely correlated with the number of vimentin-positive
stromal cells in epithelial ovarian cancer. Int J Gynecol Cancer.
19:838–843. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Byun Y, Chen F, Chang R, Trivedi M, Green
KJ and Cryns VL: Caspase cleavage of vimentin disrupts intermediate
filaments and promotes apoptosis. Cell Death Differ. 8:443–450.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Eckes B, Dogic D, Colucci-Guyon E, Wang N,
Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvée
A, et al: Impaired mechanical stability, migration and contractile
capacity in vimentin-deficient fibroblasts. J Cell Sci.
111:1897–1907. 1998.PubMed/NCBI
|
|
87
|
Nieminen M, Henttinen T, Merinen M,
Marttila-Ichihara F, Eriksson JE and Jalkanen S: Vimentin function
in lymphocyte adhesion and transcellular migration. Nat Cell Biol.
8:156–162. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sonoda K, Miyamoto S, Yamazaki A,
Kobayashi H, Nakashima M, Mekada E and Wake N: Biologic
significance of receptor-binding cancer antigen expressed on SiSo
cells (RCAS1) as a pivotal regulator of tumor growth through
angiogenesis in human uterine cancer. Cancer. 110:1979–1990. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liby TA, Spyropoulos P, Buff Lindner H,
Eldridge J, Beeson C, Hsu T and Muise-Helmericks RC: Akt3 controls
vascular endothelial growth factor secretion and angiogenesis in
ovarian cancer cells. Int J Cancer. 130:532–543. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Davis GE and Senger DR: Endothelial
extracellular matrix: Biosynthesis, remodeling, and functions
during vascular morphogenesis and neovessel stabilization. Circ
Res. 97:1093–1107. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
American Cancer Society: Global Cancer
Facts & Figures (3rd). Atlanta, GA: American Cancer Society.
34–36. 2015.
|
|
92
|
Schiffman M, Castle PE, Jeronimo J, et al:
Human papillomavirus and cervical cancer. Lancet. 370:890–907.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Burk RD, Chen Z and Van Doorslaer K: Human
papillomaviruses: Genetic basis of carcinogenicity. Public Health
Genomics. 12:281–290. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Moody CA and Laimins LA: Human
papillomavirus oncoproteins: Pathways to transformation. Nat Rev
Cancer. 10:550–560. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Buck CB, Day PM and Trus BL: The
papillomavirus major capsid protein L1. Virology. 445:169–174.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Mammas IN, Sourvinos G, Giannoudis A and
Spandidos DA: Human papilloma virus (HPV) and host cellular
interactions. Pathol Oncol Res. 14:345–354. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Huang KF, Lee WY, Huang SC, Lin YS, Kang
CY, Liou CP and Tzeng CC: Chromosomal gain of 3q and loss of 11q
often associated with nodal metastasis in early stage cervical
squamous cell carcinoma. J Formos Med Assoc. 106:894–902. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Giarnieri E, Zanesi N, Bottoni A,
Alderisio M, Lukic A, Vecchione A, Ziparo V, Croce CM and Mancini
R: Oncosuppressor proteins of fragile sites are reduced in cervical
cancer. Cancer Lett. 289:40–45. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Samir R, Asplund A, Tot T, Pekar G and
Hellberg D: High-risk HPV infection and CIN grade correlates to the
expression of c-myc, CD4+, FHIT, E-cadherin, Ki-67, and p16INK4a. J
Low Genit Tract Dis. 15:280–286. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Spandidos DA, Dokianakis DN, Kallergi G
and Aggelakis E: Molecular basis of gynecological cancer. Ann N Y
Acad Sci. 900:56–64. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sonoda K, Kaku T, Kamura T, Nakashima M,
Watanabe T and Nakano H: Tumor-associated antigen 22-1-1 expression
in the uterine cervical squamous neoplasia. Clin Cancer Res.
4:1517–1520. 1998.PubMed/NCBI
|
|
102
|
Wright JD, Barrena Medel NI, Sehouli J,
Fujiwara K and Herzog TJ: Contemporary management of endometrial
cancer. Lancet. 379:1352–1360. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
American Cancer Society: Cancer facts
& figures 2015. Atlanta, GA: American Cancer Society. 24–25.
2015.
|
|
104
|
Sorosky JI: Endometrial cancer. Obstet
Gynecol. 120:383–397. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Koornstra JJ, Mourits MJ, Sijmons RH,
Leliveld AM, Hollema H and Kleibeuker JH: Management of
extracolonic tumours in patients with Lynch syndrome. Lancet Oncol.
10:400–408. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Matias-Guiu X and Prat J: Molecular
pathology of endometrial carcinoma. Histopathology. 62:111–123.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Banno K, Yanokura M, Iida M, Masuda K and
Aoki D: Carcinogenic mechanisms of endometrial cancer: Involvement
of genetics and epigenetics. J Obstet Gynaecol Res. 40:1957–1967.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Niwa K, Murase T, Furui T, Morishita S,
Mori H, Tanaka T, Mori H and Tamaya T: Enhancing effects of
estrogens on endometrial carcinogenesis initiated by
N-methyl-N-nitrosourea in ICR mice. Jpn J Cancer Res. 84:951–955.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Ohgami T and Kato K: Pathogenesis of
endometrial cancer. Current Approaches to Endometrial Cancer.
Sakuragi N and Silverberg SG: (London). Future Medicine. 18–32.
2014.
|
|
110
|
Yeramian A, Moreno-Bueno G, Dolcet X,
Catasus L, Abal M, Colas E, Reventos J, Palacios J, Prat J and
Matias-Guiu X: Endometrial carcinoma: Molecular alterations
involved in tumor development and progression. Oncogene.
32:403–413. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
MacDonald ND, Salvesen HB, Ryan A, Iversen
OE, Akslen LA and Jacobs IJ: Frequency and prognostic impact of
microsatellite instability in a large population-based study of
endometrial carcinomas. Cancer Res. 60:1750–1752. 2000.PubMed/NCBI
|
|
112
|
Hecht JL and Mutter GL: Molecular and
pathologic aspects of endometrial carcinogenesis. J Clin Oncol.
24:4783–4791. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Halperin R, Zehavi S, Habler L, Hadas E,
Bukovsky I and Schneider D: Comparative immunohistochemical study
of endometrioid and serous papillary carcinoma of endometrium. Eur
J Gynaecol Oncol. 22:122–126. 2001.PubMed/NCBI
|
|
114
|
Holcomb K, Delatorre R, Pedemonte B,
McLeod C, Anderson L and Chambers J: E-cadherin expression in
endometrioid, papillary serous, and clear cell carcinoma of the
endometrium. Obstet Gynecol. 100:1290–1295. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sonoda K, Kaku T, Hirakawa T, Kobayashi H,
Amada S, Sakai K, Nakashima M, Watanabe T and Nakano H: The
clinical significance of tumor-associated antigen RCAS1 expression
in the normal, hyperplastic, and malignant uterine endometrium.
Gynecol Oncol. 79:424–429. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Sonoda K, Miyamoto S, Hirakawa T, Kaku T,
Nakashima M, Watanabe T, Akazawa K, Fujita T and Nakano H:
Association between RCAS1 expression and clinical outcome in
uterine endometrial cancer. Br J Cancer. 89:546–551. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Landen CN Jr, Birrer MJ and Sood AK: Early
events in the pathogenesis of epithelial ovarian cancer. J Clin
Oncol. 26:995–1005. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Gui T, Cao D, Yang J and Shen K: Tumor
heterogeneity has important consequences for personalized medicine
in ovarian cancer. Histol Histopathol. 30:173–181. 2015.PubMed/NCBI
|
|
119
|
Mayr D, Hirschmann A, Löhrs U and Diebold
J: KRAS and BRAF mutations in ovarian tumors: A comprehensive study
of invasive carcinomas, borderline tumors and extraovarian
implants. Gynecol Oncol. 103:883–887. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
O'Neill CJ, Deavers MT, Malpica A, Foster
H and McCluggage WG: An immunohistochemical comparison between
low-grade and high-grade ovarian serous carcinomas: Significantly
higher expression of p53, MIB1, BCL2, HER-2/neu, and C-KIT in
high-grade neoplasms. Am J Surg Pathol. 29:1034–1041.
2005.PubMed/NCBI
|
|
121
|
Nowee ME, Snijders AM, Rockx DA, de Wit
RM, Kosma VM, Hämäläinen K, Schouten JP, Verheijen RH, van Diest
PJ, Albertson DG and Dorsman JC: DNA profiling of primary serous
ovarian and fallopian tube carcinomas with array comparative
genomic hybridization and multiplex ligation-dependent probe
amplification. J Pathol. 213:46–55. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wiegand KC, Hennessy BT, Leung S, Wang Y,
Ju Z, McGahren M, Kalloger SE, Finlayson S, Stemke-Hale K, Lu Y, et
al: A functional proteogenomic analysis of endometrioid and clear
cell carcinomas using reverse phase protein array and mutation
analysis: Protein expression is histotype-specific and loss of
ARID1A/BAF250a is associated with AKT phosphorylation. BMC Cancer.
14:1202014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Naik JD, Seligmann J and Perren TJ:
Mucinous tumours of the ovary. J Clin Pathol. 65:580–584. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
George SH and Shaw P: BRCA and early
events in the development of serous ovarian cancer. Front Oncol.
4:52014. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Powell SN and Kachnic LA: Roles of BRCA1
and BRCA2 in homologous recombination, DNA replication fidelity and
the cellular response to ionizing radiation. Oncogene.
22:5784–5791. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Venkitaraman AR: Linking the cellular
functions of BRCA genes to cancer pathogenesis and treatment. Annu
Rev Pathol. 4:461–487. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Risch HA, McLaughlin JR, Cole DE, Rosen B,
Bradley L, Kwan E, Jack E, Vesprini DJ, Kuperstein G, Abrahamson
JL, et al: Prevalence and penetrance of germline BRCA1 and BRCA2
mutations in a population series of 649 women with ovarian cancer.
Am J Hum Genet. 68:700–710. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
128
|
Antoniou A, Pharoah PD, Narod S, Risch HA,
Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, et
al: Average risks of breast and ovarian cancer associated with
BRCA1 or BRCA2 mutations detected in case Series unselected for
family history: A combined analysis of 22 studies. Am J Hum Genet.
72:1117–1130. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
129
|
McLaughlin JR, Risch HA, Lubinski J, et
al: Reproductive risk factors for ovarian cancer in carriers of
BRCA1 or BRCA2 mutations: A case-control study. Lancet Oncol.
8:26–34. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Liu JF, Konstantinopoulos PA and Matulonis
UA: PARP inhibitors in ovarian cancer: Current status and future
promise. Gynecol Oncol. 133:362–369. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Ledermann J, Harter P, Gourley C, et al:
Olaparib maintenance therapy in platinum-sensitive relapsed ovarian
cancer. N Engl J Med. 366:1382–1392. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Fujita T, Miyamoto S, Onoyama I, et al:
Expression of lysophosphatidic acid receptors and vascular
endothelial growth factor mediating lysophosphatidic acid in the
development of human ovarian cancer. Cancer Lett. 192:161–169.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Yotsumoto F, Yagi H, Suzuki SO, et al:
Validation of HB-EGF and amphiregulin as targets for human cancer
therapy. Biochem Biophys Res Commun. 365:555–561. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Yagi H, Yotsumoto F, Sonoda K, et al:
Synergistic anti-tumor effect of paclitaxel with CRM197, an
inhibitor of HB-EGF, in ovarian cancer. Int J Cancer.
124:1429–1439. 2009. View Article : Google Scholar : PubMed/NCBI
|