Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2016 Volume 11 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2016 Volume 11 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Strategies and developments of immunotherapies in osteosarcoma (Review)

  • Authors:
    • Jia Wan
    • Xianghong Zhang
    • Tang Liu
    • Xiangsheng Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
  • Pages: 511-520
    |
    Published online on: November 24, 2015
       https://doi.org/10.3892/ol.2015.3962
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteosarcoma (OS) is a frequently observed primary malignant tumor. Current therapy for osteosarcoma consists of comprehensive treatment. The long-term survival rate of patients exhibiting nonmetastatic OS varies between 65‑70%. However, a number of OS cases have been observed to be resistant to currently used therapies, leading to disease recurrence and lung metastases, which are the primary reasons leading to patient mortality. In the present review, a number of pieces of evidence provide support for the potential uses of immunotherapy, including immunomodulation and vaccine therapy, for the eradication of tumors via upregulation of the immune response. Adoptive T‑cell therapy and oncolytic virotherapy have been used to treat OS and resulted in objective responses. Immunologic checkpoint blockade and targeted therapy are also potentially promising therapeutic tools. Immunotherapy demonstrates significant promise with regard to improving the outcomes for patients exhibiting OS.
View Figures
View References

1 

Sakamoto A and Iwamoto Y: Current status and perspectives regarding the treatment of osteo-sarcoma: Chemotherapy. Rev Recent Clin Trials. 3:228–231. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Mori K, Rédini F, Gouin F, Cherrier B and Heymann D: Osteosarcoma: Current status of immunotherapy and future trends (Review). Oncol Rep. 15:693–700. 2006.PubMed/NCBI

3 

Loeb DM: Is there a role for immunotherapy in osteosarcoma? Cancer Treat Res. 152:447–457. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Habel N, Hamidouche Z, Girault I, Patiño-García A, Lecanda F, Marie PJ and Fromigué O: Zinc chelation: A metallothionein 2A's mechanism of action involved in osteosarcoma cell death and chemotherapy resistance. Cell Death Dis. 4:e8742013. View Article : Google Scholar : PubMed/NCBI

5 

Wilky BA and Goldberg JM: Immunotherapy in sarcoma: A new frontier. Discov Med. 17:201–206. 2014.PubMed/NCBI

6 

D'Angelo SP, Tap WD, Schwartz GK and Carvajal RD: Sarcoma immunotherapy: Past approaches and future directions. Sarcoma. 2014:3919672014. View Article : Google Scholar : PubMed/NCBI

7 

Russell SJ, Peng KW and Bell JC: Oncolytic virotherapy. Nat Biotechnol. 30:658–670. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Dzierzbicka K, Gozdowska M and Kołodziejczyk AM: L-MTP-PE - a potential antineoplastic agent. Postepy Hig Med Dosw. 51:227–236. 1997.(In Polish). PubMed/NCBI

9 

Kager L, Pötschger U and Bielack S: Review of mifamurtide in the treatment of patients with osteosarcoma. Ther Clin Risk Manag. 6:279–286. 2010. View Article : Google Scholar : PubMed/NCBI

10 

MacEwen EG, Kurzman ID, Rosenthal RC, Smith BW, Manley PA, Roush JK and Howard PE: Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J Natl Cancer Inst. 81:935–938. 1989. View Article : Google Scholar : PubMed/NCBI

11 

Kleinerman ES, Gano JB, Johnston DA, Benjamin RS and Jaffe N: Efficacy of liposomal muramyl tripeptide (CGP 19835A) in the treatment of relapsed osteosarcoma. Am J Clin Oncol. 18:93–99. 1995. View Article : Google Scholar : PubMed/NCBI

12 

Kleinerman ES, Meyers PA, Raymond AK, Gano JB, Jia SF and Jaffe N: Combination therapy with ifosfamide and liposome-encapsulated muramyl tripeptide: Tolerability, toxicity and immune stimulation. J Immunother Emphasis Tumor Immunol. 17:181–193. 1995. View Article : Google Scholar : PubMed/NCBI

13 

Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, Conrad E, Ferguson W, Gebhardt M, Goorin AM, et al: Osteosarcoma: A randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 23:2004–2011. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, Ferguson WS, Gebhardt MC, Goorin AM, Harris M, et al: Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival - a report from the Children's Oncology Group. J Clin Oncol. 26:633–638. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Chou AJ, Kleinerman ES, Krailo MD, Chen Z, Betcher DL, Healey JH, Conrad EU 3rd, Nieder ML, Weiner MA, Wells RJ, et al: Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: A report from the Children's Oncology Group. Cancer. 115:5339–5348. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Anderson PM, Meyers P, Kleinerman E, Venkatakrishnan K, Hughes DP, Herzog C, Huh W, Sutphin R, Vyas YM, Shen V, et al: Mifamurtide in metastatic and recurrent osteosarcoma: A patient access study with pharmacokinetic, pharmacodynamic, and safety assessments. Pediatr Blood Cancer. 61:238–244. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Pahl JH, Kwappenberg KM, Varypataki EM, Santos SJ, Kuijjer ML, Mohamed S, Wijnen JT, van Tol MJ, Cleton-Jansen AM, Egeler RM, et al: Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ. J Exp Clin Cancer Res. 33:272014. View Article : Google Scholar : PubMed/NCBI

18 

Song HJ, Lee EK, Lee JA, Kim HL and Jang KW: The addition of mifamurtide to chemotherapy improves lifetime effectiveness in children with osteosarcoma: A Markov model analysis. Tumour Biol. 35:8771–8779. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Lindner DJ: Interferons as antiangiogenic agents. Curr Oncol Rep. 4:510–514. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Whelan J, Patterson D, Perisoglou M, Bielack S, Marina N, Smeland S and Bernstein M: The role of interferons in the treatment of osteosarcoma. Pediatr Blood Cancer. 54:350–354. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Müller CR, Smeland S, Bauer HC, Saeter G and Strander H: Interferon-alpha as the only adjuvant treatment in high-grade osteosarcoma: Long term results of the Karolinska Hospital series. Acta Oncol. 44:475–480. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Strander H and Einhorn S: Effect of human leukocyte interferon on the growth of human osteosarcoma cells in tissue culture. Int J Cancer. 19:468–473. 1977. View Article : Google Scholar : PubMed/NCBI

23 

Brosjö O, Bauer HC, Broström LA, Nilsonne U, Nilsson OS, Reinholt FP, Strander H and Tribukait B: Influence of human alpha-interferon on four human osteosarcoma xenografts in nude mice. Cancer Res. 45:5598–5602. 1985.PubMed/NCBI

24 

Manara MC, Serra M, Benini S, Picci P and Scotlandi K: Effectiveness of Type I interferons in the treatment of multidrug resistant osteosarcoma cells. Int J Oncol. 24:365–372. 2004.PubMed/NCBI

25 

Strander H, Bauer HC, Brosjö O, Fernberg JO, Kreicbergs A, Nilsonne U, Silfverswärd C, Signomklao T and Söderlund V: Long-term adjuvant interferon treatment of human osteosarcoma. A pilot study. Acta Oncol. 34:877–880. 1995. View Article : Google Scholar : PubMed/NCBI

26 

Bukowski R, Ernstoff MS, Gore ME, Nemunaitis JJ, Amato R, Gupta SK and Tendler CL: Pegylated interferon alfa-2b treatment for patients with solid tumors: A phase I/II study. J Clin Oncol. 20:3841–3849. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Bukowski RM, Tendler C, Cutler D, Rose E, Laughlin MM and Statkevich P: Treating cancer with PEG Intron: Pharmacokinetic profile and dosing guidelines for an improved interferon-alpha-2b formulation. Cancer. 95:389–396. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Postiglione L, Di Domenico G, Giordano-Lanza G, Ladogana P, Turano M, Castaldo C, Di Meglio F, Cocozza S and Montagnani S: Effect of human granulocyte macrophage-colony stimulating factor on differentiation and apoptosis of the human osteosarcoma cell line SaOS-2. Eur J Histochem. 47:309–316. 2003.PubMed/NCBI

29 

Anderson PM, Markovic SN, Sloan JA, Clawson ML, Wylam M, Arndt CA, Smithson WA, Burch P, Gornet M and Rahman E: Aerosol granulocyte macrophage-colony stimulating factor: A low toxicity, lung-specific biological therapy in patients with lung metastases. Clin Cancer Res. 5:2316–2323. 1999.PubMed/NCBI

30 

Arndt CA, Koshkina NV, Inwards CY, et al: Inhaled granulocyte-macrophage colony stimulating factor for first pulmonary recurrence of osteosarcoma: Effects on disease-free survival and immunomodulation. A report from the Children's Oncology Group. Clin Cancer Res. 16:4024–4030. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Du T, Shi G, Li YM, Zhang JF, Tian HW, Wei YQ, Deng H and Yu DC: Tumor-specific oncolytic adenoviruses expressing granulocyte macrophage colony-stimulating factor or anti-CTLA4 antibody for the treatment of cancers. Cancer Gene Ther. 21:340–348. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Schwinger W, Klass V, Benesch M, Lackner H, Dornbusch HJ, Sovinz P, Moser A, Schwantzer G and Urban C: Feasibility of high-dose interleukin-2 in heavily pretreated pediatric cancer patients. Ann Oncol. 16:1199–1206. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Luksch R, Perotti D, Cefalo G, Gambacorti Passerini C, Massimino M, Spreafico F, Casanova M, Ferrari A, Terenziani M, Polastri D, et al: Immunomodulation in a treatment program including pre- and post-operative interleukin-2 and chemotherapy for childhood osteosarcoma. Tumori. 89:263–268. 2003.PubMed/NCBI

34 

Guma SR, Lee DA, Ling Y, Gordon N and Kleinerman ES: Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis. Pediatr Blood Cancer. 61:1362–1368. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Guma SR, Lee DA, Yu L, Gordon N, Hughes D, Stewart J, Wang WL and Kleinerman ES: Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr Blood Cancer. 61:618–626. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Kohyama K, Sugiura H, Kozawa E, Wasa J, Yamada K, Nishioka A, Kamei Y and Taguchi O: Antitumor activity of an interleukin-2 monoclonal antibody in a murine osteosarcoma transplantation model. Anticancer Res. 32:779–782. 2012.PubMed/NCBI

37 

Dow S, Elmslie R, Kurzman I, MacEwen G, Pericle F and Liggitt D: Phase I study of liposome-DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum Gene Ther. 16:937–946. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI

39 

DeRenzo C and Gottschalk S: Genetically modified T-cell therapy for osteosarcoma. Adv Exp Med Biol. 804:323–340. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Ruella M and Kalos M: Adoptive immunotherapy for cancer. Immunol Rev. 257:14–38. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Restifo NP, Dudley ME and Rosenberg SA: Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat Rev Immunol. 12:269–281. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, et al: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 314:126–129. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, et al: Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 114:535–546. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Rosenberg SA: Cell transfer immunotherapy for metastatic solid cancer - what clinicians need to know. Nat Rev Clin Oncol. 8:577–585. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29:917–924. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, et al: Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 36:133–151. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, et al: Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 122:863–871. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, et al: T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 19:620–626. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Song DG, Ye Q, Poussin M, Harms GM, Figini M and Powell DJ Jr: CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood. 119:696–706. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Maher J, Brentjens RJ, Gunset G, Rivière I and Sadelain M: Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 20:70–75. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Altvater B, Landmeier S, Pscherer S, Temme J, Juergens H, Pule M and Rossig C: 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells. Cancer Immunol Immunother. 58:1991–2001. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Song DG, Ye Q, Carpenito C, Poussin M, Wang LP, Ji C, Figini M, June CH, Coukos G and Powell DJ Jr: In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 71:4617–4627. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Hombach AA, Heiders J, Foppe M, Chmielewski M and Abken H: OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology. 1:458–466. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Vitale M, Pelusi G, Taroni B, Gobbi G, Micheloni C, Rezzani R, Donato F, Wang X and Ferrone S: HLA class I antigen down-regulation in primary ovary carcinoma lesions: Association with disease stage. Clin Cancer Res. 11:67–72. 2005.PubMed/NCBI

55 

Morris CD, Gorlick R, Huvos G, Heller G, Meyers PA and Healey JH: Human epidermal growth factor receptor 2 as a prognostic indicator in osteogenic sarcoma. Clin Orthop Relat Res. 382:59–65. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, Dishop MK, Kleinerman EE, Pule M, Rooney CM, et al: Immunotherapy for osteosarcoma: Genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther. 17:1779–1787. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Rainusso N, Brawley VS, Ghazi A, Hicks MJ, Gottschalk S, Rosen JM and Ahmed N: Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Ther. 19:212–217. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM and Rosenberg SA: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 18:843–851. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Huang G, Yu L, Cooper LJ, Hollomon M, Huls H and Kleinerman ES: Genetically modified T cells targeting interleukin-11 receptor α-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res. 72:271–281. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Kiessling S, Muller-Newen G, Leeb SN, Hausmann M, Rath HC, Strater J, Spottl T, Schlottmann K, Grossmann J, Montero-Julian FA, et al: Functional expression of the interleukin-11 receptor alpha-chain and evidence of antiapoptotic effects in human colonic epithelial cells. J Biol Chem. 279:10304–10315. 2004. View Article : Google Scholar : PubMed/NCBI

61 

John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH and Darcy PK: Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res. 19:5636–5646. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Raulet DH and Guerra N: Oncogenic stress sensed by the immune system: Role of natural killer cell receptors. Nat Rev Immunol. 9:568–580. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Ljunggren HG and Kärre K: In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today. 11:237–244. 1990. View Article : Google Scholar : PubMed/NCBI

64 

Markiewicz K, Zeman K, Kozar A, Gołębiowska-Wawrzyniak M and Woźniak W: Evaluation of selected parameters of cellular immunity in children with osteosarcoma at diagnosis. Med Wieku Rozwoj. 16:212–221. 2012.PubMed/NCBI

65 

Moore C, Eslin D, Levy A, Roberson J, Giusti V and Sutphin R: Prognostic significance of early lymphocyte recovery in pediatric osteosarcoma. Pediatr Blood Cancer. 55:1096–1102. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Delgado D, Webster DE, DeSantes KB, Durkin ET and Shaaban AF: KIR receptor-ligand incompatibility predicts killing of osteosarcoma cell lines by allogeneic NK cells. Pediatr Blood Cancer. 55:1300–1305. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Tsukahara T, Kawaguchi S, Torigoe T, Asanuma H, Nakazawa E, Shimozawa K, Nabeta Y, Kimura S, Kaya M, Nagoya S, et al: Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5. Cancer Sci. 97:1374–1380. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Cho D, Shook DR, Shimasaki N, Chang YH, Fujisaki H and Campana D: Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res. 16:3901–3909. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Pahl JH, Ruslan SE, Buddingh EP, et al: Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin Cancer Res. 18:432–441. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Tam YK, Martinson JA, Doligosa K and Klingemann HG: Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy. 5:259–272. 2003. View Article : Google Scholar : PubMed/NCBI

71 

Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG and Bug G: Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 15:1563–1570. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K and Campana D: A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 73:1777–1786. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Dillman R, Barth N, Selvan S, Beutel L, de Leon C, DePriest C, Peterson C and Nayak S: Phase I/II trial of autologous tumor cell line-derived vaccines for recurrent or metastatic sarcomas. Cancer Biother Radiopharm. 19:581–588. 2004. View Article : Google Scholar : PubMed/NCBI

74 

Mackall CL, Rhee EH, Read EJ, et al: A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin Cancer Res. 14:4850–4858. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Finkelstein SE, Iclozan C, Bui MM, Cotter MJ, Ramakrishnan R, Ahmed J, Noyes DR, Cheong D, Gonzalez RJ, Heysek RV, et al: Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int J Radiat Oncol Biol Phys. 82:924–932. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Suminoe A, Matsuzaki A, Hattori H, Koga Y and Hara T: Immunotherapy with autologous dendritic cells and tumor antigens for children with refractory malignant solid tumors. Pediatr Transplant. 6:746–753. 2009. View Article : Google Scholar

77 

Pritchard-Jones K, Spendlove I, Wilton C, Whelan J, Weeden S, Lewis I, Hale J, Douglas C, Pagonis C, Campbell B, et al: Immune responses to the 105AD7 human anti-idiotypic vaccine after intensive chemotherapy, for osteosarcoma. Br J Cancer. 92:1358–1365. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Kawaguchi S, Tsukahara T, Ida K, Kimura S, Murase M, Kano M, Emori M, Nagoya S, Kaya M, Torigoe T, et al: SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: A study from the Japanese Musculoskeletal Oncology Group. Cancer Sci. 103:1625–1630. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Miki K, Nagaoka K, Harada M, Hayashi T, Jinguji H, Kato Y and Maekawa R: Combination therapy with dendritic cell vaccine and IL-2 encapsulating polymeric micelles enhances intra-tumoral accumulation of antigen-specific CTLs. Int Immunopharmacol. 23:499–504. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Liu S, Geng P, Cai X and Wang J: Comprehensive evaluation of the cytotoxic T-lymphocyte antigen-4 gene polymorphisms in risk of bone sarcoma. Genet Test Mol Biomarkers. 18:574–579. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Yano H, Thakur A, Tomaszewski EN, Choi M, Deol A and Lum LG: Ipilimumab augments antitumor activity of bispecific antibody-armed T cells. J Transl Med. 12:1912014. View Article : Google Scholar : PubMed/NCBI

82 

Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, Waterfield W, Schadendorf D, Smylie M, Guthrie T Jr, et al: Ipilimumab monotherapy in patients with pretreated advanced melanoma: A randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11:155–164. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Maki RG, Jungbluth AA, Gnjatic S, Schwartz GK, D'Adamo DR, Keohan ML, Wagner MJ, Scheu K, Chiu R, Ritter E, et al: A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma. 2013:1681452013. View Article : Google Scholar : PubMed/NCBI

85 

Lesterhuis WJ, Salmons J, Nowak AK, Rozali EN, Khong A, Dick IM, Harken JA, Robinson BW and Lake RA: Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PLoS One. 8:e618952013. View Article : Google Scholar : PubMed/NCBI

86 

Wang W, Wang J, Song H, Liu J, Song B and Cao X: Cytotoxic T-lymphocyte antigen-4 +49G/A polymorphism is associated with increased risk of osteosarcoma. Genet Test Mol Biomarkers. 15:503–506. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Liu Y, He Z, Feng D, Shi G, Gao R, Wu X, Song W and Yuan W: Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to osteosarcoma. DNA Cell Biol. 30:1051–1055. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Sznol M and Chen L: Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res. 19:1021–1034. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Kline J and Gajewski TF: Clinical development of mAbs to block the PD1 pathway as an immunotherapy for cancer. Curr Opin Investig Drugs. 11:1354–1359. 2010.PubMed/NCBI

90 

Okudaira K, Hokari R, Tsuzuki Y, Okada Y, Komoto S, Watanabe C, Kurihara C, Kawaguchi A, Nagao S, Azuma M, et al: Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int J Oncol. 35:741–749. 2009.PubMed/NCBI

91 

Iwai Y, Terawaki S and Honjo T: PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol. 17:133–144. 2005. View Article : Google Scholar : PubMed/NCBI

92 

Kim JR, Moon YJ, Kwon KS, Bae JS, Wagle S, Kim KM, Park HS, Lee H, Moon WS, Chung MJ, et al: Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas. PLoS One. 8:e828702013. View Article : Google Scholar : PubMed/NCBI

93 

Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, et al: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics and immunologic correlates. J Clin Oncol. 28:3167–3175. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al: Safety, activity and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Zheng W, Xiao H, Liu H and Zhou Y: Expression of programmed death 1 is correlated with progression of osteosarcoma. APMIS. 123:102–107. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Lynch JP 3rd, Fishbein M and Echavarria M: Adenovirus. Semin Respir Crit Care Med. 32:494–511. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Tomko RP, Xu R and Philipson L: HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA. 94:3352–3356. 1997. View Article : Google Scholar : PubMed/NCBI

99 

Chu RL, Post DE, Khuri FR and Van Meir EG: Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res. 10:5299–5312. 2004. View Article : Google Scholar : PubMed/NCBI

100 

Liu TC and Kirn D: Viruses with deletions in antiapoptotic genes as potential oncolytic agents. Oncogene. 24:6069–6079. 2005. View Article : Google Scholar : PubMed/NCBI

101 

Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A and McCormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 274:373–376. 1996. View Article : Google Scholar : PubMed/NCBI

102 

Ganly I, Kirn D, Eckhardt G, Rodriguez GI, Soutar DS, Otto R, Robertson AG, Park O, Gulley ML, Heise C, et al: A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 6:798–806. 2000.PubMed/NCBI

103 

Miller CW, Aslo A, Tsay C, Slamon D, Ishizaki K, Toguchida J, Yamamuro T, Lampkin B and Koeffler HP: Frequency and structure of p53 rearrangements in human osteosarcoma. Cancer Res. 50:7950–7954. 1990.PubMed/NCBI

104 

Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK and Kyritsis AP: A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 19:2–12. 2000. View Article : Google Scholar : PubMed/NCBI

105 

Witlox AM, Van Beusechem VW, Molenaar B, Bras H, Schaap GR, Alemany R, Curiel DT, Pinedo HM, Wuisman PI and Gerritsen WR: Conditionally replicative adenovirus with tropism expanded towards integrins inhibits osteosarcoma tumor growth in vitro and in vivo. Clin Cancer Res. 10:61–67. 2004. View Article : Google Scholar : PubMed/NCBI

106 

Martinez-Velez N, Xipell E, Jauregui P, Zalacain M, Marrodan L, Zandueta C, Vera B, Urquiza L, Sierrasesúmaga L, Julián MS, et al: The oncolytic adenovirus ∆24-RGD in combination with cisplatin exerts a potent anti-osteosarcoma activity. J Bone Miner Res. 29:2287–2296. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Fukuda K, Abei M, Ugai H, Seo E, Wakayama M, Murata T, Todoroki T, Tanaka N, Hamada H and Yokoyama KK: E1A, E1B double-restricted adenovirus for oncolytic gene therapy of gallbladder cancer. Cancer Res. 63:4434–4440. 2003.PubMed/NCBI

108 

Fukuda K, Abei M, Ugai H, Kawashima R, Seo E, Wakayama M, Murata T, Endo S, Hamada H, Hyodo I and Yokoyama KK: E1A, E1B double-restricted replicative adenovirus at low dose greatly augments tumor-specific suicide gene therapy for gallbladder cancer. Cancer Gene Ther. 16:126–136. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Benjamin R, Helman L, Meyers P and Reaman G: A phase I/II dose escalation and activity study of intravenous injections of OCaP1 for subjects with refractory osteosarcoma metastatic to lung. Hum Gene Ther. 12:1591–1593. 2001.PubMed/NCBI

110 

Li X, Jung C, Liu YH, Bae KH, Zhang YP, Zhang HJ, Vanderputten D, Jeng MH, Gardner TA and Kao C: Anti-tumor efficacy of a transcriptional replication-competent adenovirus, Ad-OC-E1a, for osteosarcoma pulmonary metastasis. J Gene Med. 8:679–689. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay JW: Specific association of human telomerase activity with immortal cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI

112 

Shay JW and Bacchetti S: A survey of telomerase activity in human cancer. Eur J Cancer. 33:787–791. 1997. View Article : Google Scholar : PubMed/NCBI

113 

Li G, Kawashima H, Ogose A, Ariizumi T, Xu Y, Hotta T, Urata Y, Fujiwara T and Endo N: Efficient virotherapy for osteosarcoma by telomerase-specific oncolytic adenovirus. J Cancer Res Clin Oncol. 137:1037–1051. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Xie YF, Sheng W, Xiang J, Zhang H, Ye Z and Yang J: Adenovirus-mediated ING4 expression suppresses pancreatic carcinoma cell growth via induction of cell-cycle alteration, apoptosis, and inhibition of tumor angiogenesis. Cancer Biother Radiopharm. 24:261–269. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Xu M, Xie Y, Sheng W, Miao J and Yang J: Adenovirus-mediated ING4 gene transfer in osteosarcoma suppresses tumor growth via induction of apoptosis and inhibition of tumor angiogenesis. Technol Cancer Res Treat. 14:369–378. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Miranda CA, Lima EG, de Lima DB, Cobucci RN, Cornetta Mda C, Fernandes TA, de Azevedo PR, de Azevedo JC, de Araújo JM and Fernandes JV: Genital infection with herpes simplex virus types 1 and 2 in women from natal, Brazil. ISRN Obstet Gynecol. 2014:3236572014. View Article : Google Scholar : PubMed/NCBI

117 

Liu S, Dai M, You L and Zhao Y: Advance in herpes simplex viruses for cancer therapy. Sci China Life Sci. 56:298–305. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Hingorani P, Sampson V, Lettieri C and Kolb EA: Oncolytic viruses for potential osteosarcoma therapy. Adv Exp Med Biol. 804:259–283. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Smith KD, Mezhir JJ, Bickenbach K, Veerapong J, Charron J, Posner MC, Roizman B and Weichselbaum RR: Activated MEK suppresses activation of PKR and enables efficient replication and in vivo oncolysis by Deltagamma(1)34.5 mutants of herpes simplex virus 1. J Virol. 80:1110–1120. 2006. View Article : Google Scholar : PubMed/NCBI

120 

Kelly KJ, Wong J and Fong Y: Herpes simplex virus NV1020 as a novel and promising therapy for hepatic malignancy. Expert Opin Investig Drugs. 17:1105–1113. 2008. View Article : Google Scholar : PubMed/NCBI

121 

Kroeger KM, Muhammad AK, Baker GJ, Assi H, Wibowo MK, Xiong W, Yagiz K, Candolfi M, Lowenstein PR and Castro MG: Gene therapy and virotherapy: Novel therapeutic approaches for brain tumors. Discov Med. 10:293–304. 2010.PubMed/NCBI

122 

Bharatan NS, Currier MA and Cripe TP: Differential susceptibility of pediatric sarcoma cells to oncolysis by conditionally replication-competent herpes simplex viruses. J Pediatr Hematol Oncol. 24:447–453. 2002. View Article : Google Scholar : PubMed/NCBI

123 

He S, Li P, Chen CH, Bakst RL, Chernichenko N, Yu YA, Chen N, Szalay AA, Yu Z, Fong Y and Wong RJ: Effective oncolytic vaccinia therapy for human sarcomas. J Surg Res. 175:e53–e60. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Pollack SM, Loggers ET, Rodler ET, Yee C and Jones RL: Immune-based therapies for sarcoma. Sarcoma. 2011:4389402011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wan J, Zhang X, Liu T and Zhang X: Strategies and developments of immunotherapies in osteosarcoma (Review). Oncol Lett 11: 511-520, 2016.
APA
Wan, J., Zhang, X., Liu, T., & Zhang, X. (2016). Strategies and developments of immunotherapies in osteosarcoma (Review). Oncology Letters, 11, 511-520. https://doi.org/10.3892/ol.2015.3962
MLA
Wan, J., Zhang, X., Liu, T., Zhang, X."Strategies and developments of immunotherapies in osteosarcoma (Review)". Oncology Letters 11.1 (2016): 511-520.
Chicago
Wan, J., Zhang, X., Liu, T., Zhang, X."Strategies and developments of immunotherapies in osteosarcoma (Review)". Oncology Letters 11, no. 1 (2016): 511-520. https://doi.org/10.3892/ol.2015.3962
Copy and paste a formatted citation
x
Spandidos Publications style
Wan J, Zhang X, Liu T and Zhang X: Strategies and developments of immunotherapies in osteosarcoma (Review). Oncol Lett 11: 511-520, 2016.
APA
Wan, J., Zhang, X., Liu, T., & Zhang, X. (2016). Strategies and developments of immunotherapies in osteosarcoma (Review). Oncology Letters, 11, 511-520. https://doi.org/10.3892/ol.2015.3962
MLA
Wan, J., Zhang, X., Liu, T., Zhang, X."Strategies and developments of immunotherapies in osteosarcoma (Review)". Oncology Letters 11.1 (2016): 511-520.
Chicago
Wan, J., Zhang, X., Liu, T., Zhang, X."Strategies and developments of immunotherapies in osteosarcoma (Review)". Oncology Letters 11, no. 1 (2016): 511-520. https://doi.org/10.3892/ol.2015.3962
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team