|
1
|
Sakamoto A and Iwamoto Y: Current status
and perspectives regarding the treatment of osteo-sarcoma:
Chemotherapy. Rev Recent Clin Trials. 3:228–231. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mori K, Rédini F, Gouin F, Cherrier B and
Heymann D: Osteosarcoma: Current status of immunotherapy and future
trends (Review). Oncol Rep. 15:693–700. 2006.PubMed/NCBI
|
|
3
|
Loeb DM: Is there a role for immunotherapy
in osteosarcoma? Cancer Treat Res. 152:447–457. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Habel N, Hamidouche Z, Girault I,
Patiño-García A, Lecanda F, Marie PJ and Fromigué O: Zinc
chelation: A metallothionein 2A's mechanism of action involved in
osteosarcoma cell death and chemotherapy resistance. Cell Death
Dis. 4:e8742013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wilky BA and Goldberg JM: Immunotherapy in
sarcoma: A new frontier. Discov Med. 17:201–206. 2014.PubMed/NCBI
|
|
6
|
D'Angelo SP, Tap WD, Schwartz GK and
Carvajal RD: Sarcoma immunotherapy: Past approaches and future
directions. Sarcoma. 2014:3919672014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Russell SJ, Peng KW and Bell JC: Oncolytic
virotherapy. Nat Biotechnol. 30:658–670. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dzierzbicka K, Gozdowska M and
Kołodziejczyk AM: L-MTP-PE - a potential antineoplastic agent.
Postepy Hig Med Dosw. 51:227–236. 1997.(In Polish). PubMed/NCBI
|
|
9
|
Kager L, Pötschger U and Bielack S: Review
of mifamurtide in the treatment of patients with osteosarcoma. Ther
Clin Risk Manag. 6:279–286. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
MacEwen EG, Kurzman ID, Rosenthal RC,
Smith BW, Manley PA, Roush JK and Howard PE: Therapy for
osteosarcoma in dogs with intravenous injection of
liposome-encapsulated muramyl tripeptide. J Natl Cancer Inst.
81:935–938. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kleinerman ES, Gano JB, Johnston DA,
Benjamin RS and Jaffe N: Efficacy of liposomal muramyl tripeptide
(CGP 19835A) in the treatment of relapsed osteosarcoma. Am J Clin
Oncol. 18:93–99. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kleinerman ES, Meyers PA, Raymond AK, Gano
JB, Jia SF and Jaffe N: Combination therapy with ifosfamide and
liposome-encapsulated muramyl tripeptide: Tolerability, toxicity
and immune stimulation. J Immunother Emphasis Tumor Immunol.
17:181–193. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Meyers PA, Schwartz CL, Krailo M,
Kleinerman ES, Betcher D, Bernstein ML, Conrad E, Ferguson W,
Gebhardt M, Goorin AM, et al: Osteosarcoma: A randomized,
prospective trial of the addition of ifosfamide and/or muramyl
tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J
Clin Oncol. 23:2004–2011. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Meyers PA, Schwartz CL, Krailo MD, Healey
JH, Bernstein ML, Betcher D, Ferguson WS, Gebhardt MC, Goorin AM,
Harris M, et al: Osteosarcoma: The addition of muramyl tripeptide
to chemotherapy improves overall survival - a report from the
Children's Oncology Group. J Clin Oncol. 26:633–638. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chou AJ, Kleinerman ES, Krailo MD, Chen Z,
Betcher DL, Healey JH, Conrad EU 3rd, Nieder ML, Weiner MA, Wells
RJ, et al: Addition of muramyl tripeptide to chemotherapy for
patients with newly diagnosed metastatic osteosarcoma: A report
from the Children's Oncology Group. Cancer. 115:5339–5348. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Anderson PM, Meyers P, Kleinerman E,
Venkatakrishnan K, Hughes DP, Herzog C, Huh W, Sutphin R, Vyas YM,
Shen V, et al: Mifamurtide in metastatic and recurrent
osteosarcoma: A patient access study with pharmacokinetic,
pharmacodynamic, and safety assessments. Pediatr Blood Cancer.
61:238–244. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pahl JH, Kwappenberg KM, Varypataki EM,
Santos SJ, Kuijjer ML, Mohamed S, Wijnen JT, van Tol MJ,
Cleton-Jansen AM, Egeler RM, et al: Macrophages inhibit human
osteosarcoma cell growth after activation with the bacterial cell
wall derivative liposomal muramyl tripeptide in combination with
interferon-γ. J Exp Clin Cancer Res. 33:272014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Song HJ, Lee EK, Lee JA, Kim HL and Jang
KW: The addition of mifamurtide to chemotherapy improves lifetime
effectiveness in children with osteosarcoma: A Markov model
analysis. Tumour Biol. 35:8771–8779. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lindner DJ: Interferons as antiangiogenic
agents. Curr Oncol Rep. 4:510–514. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Whelan J, Patterson D, Perisoglou M,
Bielack S, Marina N, Smeland S and Bernstein M: The role of
interferons in the treatment of osteosarcoma. Pediatr Blood Cancer.
54:350–354. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Müller CR, Smeland S, Bauer HC, Saeter G
and Strander H: Interferon-alpha as the only adjuvant treatment in
high-grade osteosarcoma: Long term results of the Karolinska
Hospital series. Acta Oncol. 44:475–480. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Strander H and Einhorn S: Effect of human
leukocyte interferon on the growth of human osteosarcoma cells in
tissue culture. Int J Cancer. 19:468–473. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Brosjö O, Bauer HC, Broström LA, Nilsonne
U, Nilsson OS, Reinholt FP, Strander H and Tribukait B: Influence
of human alpha-interferon on four human osteosarcoma xenografts in
nude mice. Cancer Res. 45:5598–5602. 1985.PubMed/NCBI
|
|
24
|
Manara MC, Serra M, Benini S, Picci P and
Scotlandi K: Effectiveness of Type I interferons in the treatment
of multidrug resistant osteosarcoma cells. Int J Oncol. 24:365–372.
2004.PubMed/NCBI
|
|
25
|
Strander H, Bauer HC, Brosjö O, Fernberg
JO, Kreicbergs A, Nilsonne U, Silfverswärd C, Signomklao T and
Söderlund V: Long-term adjuvant interferon treatment of human
osteosarcoma. A pilot study. Acta Oncol. 34:877–880. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bukowski R, Ernstoff MS, Gore ME,
Nemunaitis JJ, Amato R, Gupta SK and Tendler CL: Pegylated
interferon alfa-2b treatment for patients with solid tumors: A
phase I/II study. J Clin Oncol. 20:3841–3849. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bukowski RM, Tendler C, Cutler D, Rose E,
Laughlin MM and Statkevich P: Treating cancer with PEG Intron:
Pharmacokinetic profile and dosing guidelines for an improved
interferon-alpha-2b formulation. Cancer. 95:389–396. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Postiglione L, Di Domenico G,
Giordano-Lanza G, Ladogana P, Turano M, Castaldo C, Di Meglio F,
Cocozza S and Montagnani S: Effect of human granulocyte
macrophage-colony stimulating factor on differentiation and
apoptosis of the human osteosarcoma cell line SaOS-2. Eur J
Histochem. 47:309–316. 2003.PubMed/NCBI
|
|
29
|
Anderson PM, Markovic SN, Sloan JA,
Clawson ML, Wylam M, Arndt CA, Smithson WA, Burch P, Gornet M and
Rahman E: Aerosol granulocyte macrophage-colony stimulating factor:
A low toxicity, lung-specific biological therapy in patients with
lung metastases. Clin Cancer Res. 5:2316–2323. 1999.PubMed/NCBI
|
|
30
|
Arndt CA, Koshkina NV, Inwards CY, et al:
Inhaled granulocyte-macrophage colony stimulating factor for first
pulmonary recurrence of osteosarcoma: Effects on disease-free
survival and immunomodulation. A report from the Children's
Oncology Group. Clin Cancer Res. 16:4024–4030. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Du T, Shi G, Li YM, Zhang JF, Tian HW, Wei
YQ, Deng H and Yu DC: Tumor-specific oncolytic adenoviruses
expressing granulocyte macrophage colony-stimulating factor or
anti-CTLA4 antibody for the treatment of cancers. Cancer Gene Ther.
21:340–348. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schwinger W, Klass V, Benesch M, Lackner
H, Dornbusch HJ, Sovinz P, Moser A, Schwantzer G and Urban C:
Feasibility of high-dose interleukin-2 in heavily pretreated
pediatric cancer patients. Ann Oncol. 16:1199–1206. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Luksch R, Perotti D, Cefalo G, Gambacorti
Passerini C, Massimino M, Spreafico F, Casanova M, Ferrari A,
Terenziani M, Polastri D, et al: Immunomodulation in a treatment
program including pre- and post-operative interleukin-2 and
chemotherapy for childhood osteosarcoma. Tumori. 89:263–268.
2003.PubMed/NCBI
|
|
34
|
Guma SR, Lee DA, Ling Y, Gordon N and
Kleinerman ES: Aerosol interleukin-2 induces natural killer cell
proliferation in the lung and combination therapy improves the
survival of mice with osteosarcoma lung metastasis. Pediatr Blood
Cancer. 61:1362–1368. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Guma SR, Lee DA, Yu L, Gordon N, Hughes D,
Stewart J, Wang WL and Kleinerman ES: Natural killer cell therapy
and aerosol interleukin-2 for the treatment of osteosarcoma lung
metastasis. Pediatr Blood Cancer. 61:618–626. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kohyama K, Sugiura H, Kozawa E, Wasa J,
Yamada K, Nishioka A, Kamei Y and Taguchi O: Antitumor activity of
an interleukin-2 monoclonal antibody in a murine osteosarcoma
transplantation model. Anticancer Res. 32:779–782. 2012.PubMed/NCBI
|
|
37
|
Dow S, Elmslie R, Kurzman I, MacEwen G,
Pericle F and Liggitt D: Phase I study of liposome-DNA complexes
encoding the interleukin-2 gene in dogs with osteosarcoma lung
metastases. Hum Gene Ther. 16:937–946. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Rosenberg SA, Restifo NP, Yang JC, Morgan
RA and Dudley ME: Adoptive cell transfer: A clinical path to
effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
DeRenzo C and Gottschalk S: Genetically
modified T-cell therapy for osteosarcoma. Adv Exp Med Biol.
804:323–340. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ruella M and Kalos M: Adoptive
immunotherapy for cancer. Immunol Rev. 257:14–38. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Restifo NP, Dudley ME and Rosenberg SA:
Adoptive immunotherapy for cancer: Harnessing the T cell response.
Nat Rev Immunol. 12:269–281. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Morgan RA, Dudley ME, Wunderlich JR,
Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US,
Restifo NP, et al: Cancer regression in patients after transfer of
genetically engineered lymphocytes. Science. 314:126–129. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Johnson LA, Morgan RA, Dudley ME, Cassard
L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich
JR, et al: Gene therapy with human and mouse T-cell receptors
mediates cancer regression and targets normal tissues expressing
cognate antigen. Blood. 114:535–546. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rosenberg SA: Cell transfer immunotherapy
for metastatic solid cancer - what clinicians need to know. Nat Rev
Clin Oncol. 8:577–585. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Robbins PF, Morgan RA, Feldman SA, Yang
JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ,
Mackall CL, et al: Tumor regression in patients with metastatic
synovial cell sarcoma and melanoma using genetically engineered
lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29:917–924. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Morgan RA, Chinnasamy N, Abate-Daga D,
Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry
RM, et al: Cancer regression and neurological toxicity following
anti-MAGE-A3 TCR gene therapy. J Immunother. 36:133–151. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Linette GP, Stadtmauer EA, Maus MV,
Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM,
Cimino PJ, et al: Cardiovascular toxicity and titin
cross-reactivity of affinity-enhanced T cells in myeloma and
melanoma. Blood. 122:863–871. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Parkhurst MR, Yang JC, Langan RC, Dudley
ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry
RM, et al: T cells targeting carcinoembryonic antigen can mediate
regression of metastatic colorectal cancer but induce severe
transient colitis. Mol Ther. 19:620–626. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Song DG, Ye Q, Poussin M, Harms GM, Figini
M and Powell DJ Jr: CD27 costimulation augments the survival and
antitumor activity of redirected human T cells in vivo.
Blood. 119:696–706. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Maher J, Brentjens RJ, Gunset G, Rivière I
and Sadelain M: Human T-lymphocyte cytotoxicity and proliferation
directed by a single chimeric TCRzeta/CD28 receptor. Nat
Biotechnol. 20:70–75. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Altvater B, Landmeier S, Pscherer S, Temme
J, Juergens H, Pule M and Rossig C: 2B4 (CD244) signaling via
chimeric receptors costimulates tumor-antigen specific
proliferation and in vitro expansion of human T cells.
Cancer Immunol Immunother. 58:1991–2001. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Song DG, Ye Q, Carpenito C, Poussin M,
Wang LP, Ji C, Figini M, June CH, Coukos G and Powell DJ Jr: In
vivo persistence, tumor localization, and antitumor activity of
CAR-engineered T cells is enhanced by costimulatory signaling
through CD137 (4-1BB). Cancer Res. 71:4617–4627. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hombach AA, Heiders J, Foppe M,
Chmielewski M and Abken H: OX40 costimulation by a chimeric antigen
receptor abrogates CD28 and IL-2 induced IL-10 secretion by
redirected CD4(+) T cells. Oncoimmunology. 1:458–466. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Vitale M, Pelusi G, Taroni B, Gobbi G,
Micheloni C, Rezzani R, Donato F, Wang X and Ferrone S: HLA class I
antigen down-regulation in primary ovary carcinoma lesions:
Association with disease stage. Clin Cancer Res. 11:67–72.
2005.PubMed/NCBI
|
|
55
|
Morris CD, Gorlick R, Huvos G, Heller G,
Meyers PA and Healey JH: Human epidermal growth factor receptor 2
as a prognostic indicator in osteogenic sarcoma. Clin Orthop Relat
Res. 382:59–65. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ahmed N, Salsman VS, Yvon E, Louis CU,
Perlaky L, Wels WS, Dishop MK, Kleinerman EE, Pule M, Rooney CM, et
al: Immunotherapy for osteosarcoma: Genetic modification of T cells
overcomes low levels of tumor antigen expression. Mol Ther.
17:1779–1787. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rainusso N, Brawley VS, Ghazi A, Hicks MJ,
Gottschalk S, Rosen JM and Ahmed N: Immunotherapy targeting HER2
with genetically modified T cells eliminates tumor-initiating cells
in osteosarcoma. Cancer Gene Ther. 19:212–217. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Morgan RA, Yang JC, Kitano M, Dudley ME,
Laurencot CM and Rosenberg SA: Case report of a serious adverse
event following the administration of T cells transduced with a
chimeric antigen receptor recognizing ERBB2. Mol Ther. 18:843–851.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Huang G, Yu L, Cooper LJ, Hollomon M, Huls
H and Kleinerman ES: Genetically modified T cells targeting
interleukin-11 receptor α-chain kill human osteosarcoma cells and
induce the regression of established osteosarcoma lung metastases.
Cancer Res. 72:271–281. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kiessling S, Muller-Newen G, Leeb SN,
Hausmann M, Rath HC, Strater J, Spottl T, Schlottmann K, Grossmann
J, Montero-Julian FA, et al: Functional expression of the
interleukin-11 receptor alpha-chain and evidence of antiapoptotic
effects in human colonic epithelial cells. J Biol Chem.
279:10304–10315. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
John LB, Devaud C, Duong CP, Yong CS,
Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH and Darcy PK:
Anti-PD-1 antibody therapy potently enhances the eradication of
established tumors by gene-modified T cells. Clin Cancer Res.
19:5636–5646. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Raulet DH and Guerra N: Oncogenic stress
sensed by the immune system: Role of natural killer cell receptors.
Nat Rev Immunol. 9:568–580. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ljunggren HG and Kärre K: In search of the
‘missing self’: MHC molecules and NK cell recognition. Immunol
Today. 11:237–244. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Markiewicz K, Zeman K, Kozar A,
Gołębiowska-Wawrzyniak M and Woźniak W: Evaluation of selected
parameters of cellular immunity in children with osteosarcoma at
diagnosis. Med Wieku Rozwoj. 16:212–221. 2012.PubMed/NCBI
|
|
65
|
Moore C, Eslin D, Levy A, Roberson J,
Giusti V and Sutphin R: Prognostic significance of early lymphocyte
recovery in pediatric osteosarcoma. Pediatr Blood Cancer.
55:1096–1102. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Delgado D, Webster DE, DeSantes KB, Durkin
ET and Shaaban AF: KIR receptor-ligand incompatibility predicts
killing of osteosarcoma cell lines by allogeneic NK cells. Pediatr
Blood Cancer. 55:1300–1305. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tsukahara T, Kawaguchi S, Torigoe T,
Asanuma H, Nakazawa E, Shimozawa K, Nabeta Y, Kimura S, Kaya M,
Nagoya S, et al: Prognostic significance of HLA class I expression
in osteosarcoma defined by anti-pan HLA class I monoclonal
antibody, EMR8-5. Cancer Sci. 97:1374–1380. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cho D, Shook DR, Shimasaki N, Chang YH,
Fujisaki H and Campana D: Cytotoxicity of activated natural killer
cells against pediatric solid tumors. Clin Cancer Res.
16:3901–3909. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Pahl JH, Ruslan SE, Buddingh EP, et al:
Anti-EGFR antibody cetuximab enhances the cytolytic activity of
natural killer cells toward osteosarcoma. Clin Cancer Res.
18:432–441. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tam YK, Martinson JA, Doligosa K and
Klingemann HG: Ex vivo expansion of the highly cytotoxic human
natural killer-92 cell-line under current good manufacturing
practice conditions for clinical adoptive cellular immunotherapy.
Cytotherapy. 5:259–272. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tonn T, Schwabe D, Klingemann HG, Becker
S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG and Bug G:
Treatment of patients with advanced cancer with the natural killer
cell line NK-92. Cytotherapy. 15:1563–1570. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chang YH, Connolly J, Shimasaki N, Mimura
K, Kono K and Campana D: A chimeric receptor with NKG2D specificity
enhances natural killer cell activation and killing of tumor cells.
Cancer Res. 73:1777–1786. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Dillman R, Barth N, Selvan S, Beutel L, de
Leon C, DePriest C, Peterson C and Nayak S: Phase I/II trial of
autologous tumor cell line-derived vaccines for recurrent or
metastatic sarcomas. Cancer Biother Radiopharm. 19:581–588. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mackall CL, Rhee EH, Read EJ, et al: A
pilot study of consolidative immunotherapy in patients with
high-risk pediatric sarcomas. Clin Cancer Res. 14:4850–4858. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Finkelstein SE, Iclozan C, Bui MM, Cotter
MJ, Ramakrishnan R, Ahmed J, Noyes DR, Cheong D, Gonzalez RJ,
Heysek RV, et al: Combination of external beam radiotherapy (EBRT)
with intratumoral injection of dendritic cells as neo-adjuvant
treatment of high-risk soft tissue sarcoma patients. Int J Radiat
Oncol Biol Phys. 82:924–932. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Suminoe A, Matsuzaki A, Hattori H, Koga Y
and Hara T: Immunotherapy with autologous dendritic cells and tumor
antigens for children with refractory malignant solid tumors.
Pediatr Transplant. 6:746–753. 2009. View Article : Google Scholar
|
|
77
|
Pritchard-Jones K, Spendlove I, Wilton C,
Whelan J, Weeden S, Lewis I, Hale J, Douglas C, Pagonis C, Campbell
B, et al: Immune responses to the 105AD7 human anti-idiotypic
vaccine after intensive chemotherapy, for osteosarcoma. Br J
Cancer. 92:1358–1365. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kawaguchi S, Tsukahara T, Ida K, Kimura S,
Murase M, Kano M, Emori M, Nagoya S, Kaya M, Torigoe T, et al:
SYT-SSX breakpoint peptide vaccines in patients with synovial
sarcoma: A study from the Japanese Musculoskeletal Oncology Group.
Cancer Sci. 103:1625–1630. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Miki K, Nagaoka K, Harada M, Hayashi T,
Jinguji H, Kato Y and Maekawa R: Combination therapy with dendritic
cell vaccine and IL-2 encapsulating polymeric micelles enhances
intra-tumoral accumulation of antigen-specific CTLs. Int
Immunopharmacol. 23:499–504. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu S, Geng P, Cai X and Wang J:
Comprehensive evaluation of the cytotoxic T-lymphocyte antigen-4
gene polymorphisms in risk of bone sarcoma. Genet Test Mol
Biomarkers. 18:574–579. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yano H, Thakur A, Tomaszewski EN, Choi M,
Deol A and Lum LG: Ipilimumab augments antitumor activity of
bispecific antibody-armed T cells. J Transl Med. 12:1912014.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wolchok JD, Neyns B, Linette G, Negrier S,
Lutzky J, Thomas L, Waterfield W, Schadendorf D, Smylie M, Guthrie
T Jr, et al: Ipilimumab monotherapy in patients with pretreated
advanced melanoma: A randomised, double-blind, multicentre, phase
2, dose-ranging study. Lancet Oncol. 11:155–164. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Robert C, Thomas L, Bondarenko I, O'Day S,
Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al:
Ipilimumab plus dacarbazine for previously untreated metastatic
melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Maki RG, Jungbluth AA, Gnjatic S, Schwartz
GK, D'Adamo DR, Keohan ML, Wagner MJ, Scheu K, Chiu R, Ritter E, et
al: A pilot study of anti-CTLA4 antibody ipilimumab in patients
with synovial sarcoma. Sarcoma. 2013:1681452013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lesterhuis WJ, Salmons J, Nowak AK, Rozali
EN, Khong A, Dick IM, Harken JA, Robinson BW and Lake RA:
Synergistic effect of CTLA-4 blockade and cancer chemotherapy in
the induction of anti-tumor immunity. PLoS One. 8:e618952013.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang W, Wang J, Song H, Liu J, Song B and
Cao X: Cytotoxic T-lymphocyte antigen-4 +49G/A polymorphism is
associated with increased risk of osteosarcoma. Genet Test Mol
Biomarkers. 15:503–506. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu Y, He Z, Feng D, Shi G, Gao R, Wu X,
Song W and Yuan W: Cytotoxic T-lymphocyte antigen-4 polymorphisms
and susceptibility to osteosarcoma. DNA Cell Biol. 30:1051–1055.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sznol M and Chen L: Antagonist antibodies
to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human
cancer. Clin Cancer Res. 19:1021–1034. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kline J and Gajewski TF: Clinical
development of mAbs to block the PD1 pathway as an immunotherapy
for cancer. Curr Opin Investig Drugs. 11:1354–1359. 2010.PubMed/NCBI
|
|
90
|
Okudaira K, Hokari R, Tsuzuki Y, Okada Y,
Komoto S, Watanabe C, Kurihara C, Kawaguchi A, Nagao S, Azuma M, et
al: Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a
mouse pancreatic cancer model. Int J Oncol. 35:741–749.
2009.PubMed/NCBI
|
|
91
|
Iwai Y, Terawaki S and Honjo T: PD-1
blockade inhibits hematogenous spread of poorly immunogenic tumor
cells by enhanced recruitment of effector T cells. Int Immunol.
17:133–144. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kim JR, Moon YJ, Kwon KS, Bae JS, Wagle S,
Kim KM, Park HS, Lee H, Moon WS, Chung MJ, et al: Tumor
infiltrating PD1-positive lymphocytes and the expression of PD-L1
predict poor prognosis of soft tissue sarcomas. PLoS One.
8:e828702013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Brahmer JR, Drake CG, Wollner I, Powderly
JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller
TL, et al: Phase I study of single-agent anti-programmed death-1
(MDX-1106) in refractory solid tumors: Safety, clinical activity,
pharmacodynamics and immunologic correlates. J Clin Oncol.
28:3167–3175. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity and immune correlates
of anti-PD-1 antibody in cancer. N Engl J Med. 366:2443–2454. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hamid O, Robert C, Daud A, Hodi FS, Hwu
WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al:
Safety and tumor responses with lambrolizumab (anti-PD-1) in
melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zheng W, Xiao H, Liu H and Zhou Y:
Expression of programmed death 1 is correlated with progression of
osteosarcoma. APMIS. 123:102–107. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lynch JP 3rd, Fishbein M and Echavarria M:
Adenovirus. Semin Respir Crit Care Med. 32:494–511. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tomko RP, Xu R and Philipson L: HCAR and
MCAR: The human and mouse cellular receptors for subgroup C
adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA.
94:3352–3356. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chu RL, Post DE, Khuri FR and Van Meir EG:
Use of replicating oncolytic adenoviruses in combination therapy
for cancer. Clin Cancer Res. 10:5299–5312. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu TC and Kirn D: Viruses with deletions
in antiapoptotic genes as potential oncolytic agents. Oncogene.
24:6069–6079. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bischoff JR, Kirn DH, Williams A, Heise C,
Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A and
McCormick F: An adenovirus mutant that replicates selectively in
p53-deficient human tumor cells. Science. 274:373–376. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ganly I, Kirn D, Eckhardt G, Rodriguez GI,
Soutar DS, Otto R, Robertson AG, Park O, Gulley ML, Heise C, et al:
A phase I study of Onyx-015, an E1B attenuated adenovirus,
administered intratumorally to patients with recurrent head and
neck cancer. Clin Cancer Res. 6:798–806. 2000.PubMed/NCBI
|
|
103
|
Miller CW, Aslo A, Tsay C, Slamon D,
Ishizaki K, Toguchida J, Yamamuro T, Lampkin B and Koeffler HP:
Frequency and structure of p53 rearrangements in human
osteosarcoma. Cancer Res. 50:7950–7954. 1990.PubMed/NCBI
|
|
104
|
Fueyo J, Gomez-Manzano C, Alemany R, Lee
PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK and
Kyritsis AP: A mutant oncolytic adenovirus targeting the Rb pathway
produces anti-glioma effect in vivo. Oncogene. 19:2–12.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Witlox AM, Van Beusechem VW, Molenaar B,
Bras H, Schaap GR, Alemany R, Curiel DT, Pinedo HM, Wuisman PI and
Gerritsen WR: Conditionally replicative adenovirus with tropism
expanded towards integrins inhibits osteosarcoma tumor growth in
vitro and in vivo. Clin Cancer Res. 10:61–67. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Martinez-Velez N, Xipell E, Jauregui P,
Zalacain M, Marrodan L, Zandueta C, Vera B, Urquiza L,
Sierrasesúmaga L, Julián MS, et al: The oncolytic adenovirus
∆24-RGD in combination with cisplatin exerts a potent
anti-osteosarcoma activity. J Bone Miner Res. 29:2287–2296. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Fukuda K, Abei M, Ugai H, Seo E, Wakayama
M, Murata T, Todoroki T, Tanaka N, Hamada H and Yokoyama KK: E1A,
E1B double-restricted adenovirus for oncolytic gene therapy of
gallbladder cancer. Cancer Res. 63:4434–4440. 2003.PubMed/NCBI
|
|
108
|
Fukuda K, Abei M, Ugai H, Kawashima R, Seo
E, Wakayama M, Murata T, Endo S, Hamada H, Hyodo I and Yokoyama KK:
E1A, E1B double-restricted replicative adenovirus at low dose
greatly augments tumor-specific suicide gene therapy for
gallbladder cancer. Cancer Gene Ther. 16:126–136. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Benjamin R, Helman L, Meyers P and Reaman
G: A phase I/II dose escalation and activity study of intravenous
injections of OCaP1 for subjects with refractory osteosarcoma
metastatic to lung. Hum Gene Ther. 12:1591–1593. 2001.PubMed/NCBI
|
|
110
|
Li X, Jung C, Liu YH, Bae KH, Zhang YP,
Zhang HJ, Vanderputten D, Jeng MH, Gardner TA and Kao C: Anti-tumor
efficacy of a transcriptional replication-competent adenovirus,
Ad-OC-E1a, for osteosarcoma pulmonary metastasis. J Gene Med.
8:679–689. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kim NW, Piatyszek MA, Prowse KR, Harley
CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay
JW: Specific association of human telomerase activity with immortal
cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Shay JW and Bacchetti S: A survey of
telomerase activity in human cancer. Eur J Cancer. 33:787–791.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li G, Kawashima H, Ogose A, Ariizumi T, Xu
Y, Hotta T, Urata Y, Fujiwara T and Endo N: Efficient virotherapy
for osteosarcoma by telomerase-specific oncolytic adenovirus. J
Cancer Res Clin Oncol. 137:1037–1051. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Xie YF, Sheng W, Xiang J, Zhang H, Ye Z
and Yang J: Adenovirus-mediated ING4 expression suppresses
pancreatic carcinoma cell growth via induction of cell-cycle
alteration, apoptosis, and inhibition of tumor angiogenesis. Cancer
Biother Radiopharm. 24:261–269. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Xu M, Xie Y, Sheng W, Miao J and Yang J:
Adenovirus-mediated ING4 gene transfer in osteosarcoma suppresses
tumor growth via induction of apoptosis and inhibition of tumor
angiogenesis. Technol Cancer Res Treat. 14:369–378. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Miranda CA, Lima EG, de Lima DB, Cobucci
RN, Cornetta Mda C, Fernandes TA, de Azevedo PR, de Azevedo JC, de
Araújo JM and Fernandes JV: Genital infection with herpes simplex
virus types 1 and 2 in women from natal, Brazil. ISRN Obstet
Gynecol. 2014:3236572014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Liu S, Dai M, You L and Zhao Y: Advance in
herpes simplex viruses for cancer therapy. Sci China Life Sci.
56:298–305. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hingorani P, Sampson V, Lettieri C and
Kolb EA: Oncolytic viruses for potential osteosarcoma therapy. Adv
Exp Med Biol. 804:259–283. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Smith KD, Mezhir JJ, Bickenbach K,
Veerapong J, Charron J, Posner MC, Roizman B and Weichselbaum RR:
Activated MEK suppresses activation of PKR and enables efficient
replication and in vivo oncolysis by Deltagamma(1)34.5 mutants of
herpes simplex virus 1. J Virol. 80:1110–1120. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Kelly KJ, Wong J and Fong Y: Herpes
simplex virus NV1020 as a novel and promising therapy for hepatic
malignancy. Expert Opin Investig Drugs. 17:1105–1113. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kroeger KM, Muhammad AK, Baker GJ, Assi H,
Wibowo MK, Xiong W, Yagiz K, Candolfi M, Lowenstein PR and Castro
MG: Gene therapy and virotherapy: Novel therapeutic approaches for
brain tumors. Discov Med. 10:293–304. 2010.PubMed/NCBI
|
|
122
|
Bharatan NS, Currier MA and Cripe TP:
Differential susceptibility of pediatric sarcoma cells to oncolysis
by conditionally replication-competent herpes simplex viruses. J
Pediatr Hematol Oncol. 24:447–453. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
He S, Li P, Chen CH, Bakst RL,
Chernichenko N, Yu YA, Chen N, Szalay AA, Yu Z, Fong Y and Wong RJ:
Effective oncolytic vaccinia therapy for human sarcomas. J Surg
Res. 175:e53–e60. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Pollack SM, Loggers ET, Rodler ET, Yee C
and Jones RL: Immune-based therapies for sarcoma. Sarcoma.
2011:4389402011. View Article : Google Scholar : PubMed/NCBI
|