|
1
|
Ostrom QT, Gittleman H, Farah P, Ondracek
A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C and Barnholtz-Sloan JS:
CBTRUS statistical report: Primary brain and central nervous system
tumors diagnosed in the United States in 2006–2010. Neuro Oncol.
15(Suppl 2): ii1–ii56. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ostermann S, Csajka C, Buclin T, Leyvraz
S, Lejeune F, Decosterd LA and Stupp R: Plasma and cerebrospinal
fluid population pharmacokinetics of temozolomide in malignant
glioma patients. Clin Cancer Res. 10:3728–3736. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Laperriere N, Zuraw L and Cairncross G:
Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology
Disease Site Group: Radiotherapy for newly diagnosed malignant
glioma in adults: A systematic review. Radiother Oncol. 64:259–273.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Stupp R, Mason WP, van den Bent MJ, et al:
Radiotherapy plus concomitant and adjuvant temozolomide for
glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ohka F, Natsume A and Wakabayashi T:
Current trends in targeted therapies for glioblastoma multiforme.
Neurol Res Int. 2012:8784252012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Keunen O, Johansson M, Oudin A, Sanzey M,
Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, et al:
Anti-VEGF treatment reduces blood supply and increases tumor cell
invasion in glioblastoma. Proc Natl Acad Sci USA. 108:3749–3754.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chinot OL, Wick W, Mason W, Henriksson R,
Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea
D, et al: Bevacizumab plus radiotherapy-temozolomide for newly
diagnosed glioblastoma. N Engl J Med. 370:709–722. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Uhm JH, Ballman KV, Wu W, Giannini C,
Krauss JC, Buckner JC, James CD, Scheithauer BW, Behrens RJ, Flynn
PJ, et al: Phase II evaluation of gefitinib in patients with newly
diagnosed Grade 4 astrocytoma: Mayo/North central cancer treatment
group study N0074. Int J Radiat Oncol Biol Phys. 80:347–353. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lau D, Magill ST and Aghi MK: Molecularly
targeted therapies for recurrent glioblastoma: Current and future
targets. Neurosurg Focus. 37:E152014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Melosky B: Review of EGFR TKIs in
metastatic NSCLC, including ongoing trials. Front Oncol. 4:2442014.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wen PY, Yung WK, Lamborn KR, Dahia PL,
Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, et al:
Phase I/II study of imatinib mesylate for recurrent malignant
gliomas: North American brain tumor consortium study 99-08. Clin
Cancer Res. 12:4899–4907. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Razis E, Selviaridis P, Labropoulos S,
Norris JL, Zhu MJ, Song DD, Kalebic T, Torrens M,
Kalogera-Fountzila A, Karkavelas G, et al: Phase II study of
neoadjuvant imatinib in glioblastoma: Evaluation of clinical and
molecular effects of the treatment. Clin Cancer Res. 15:6258–6266.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Druker BJ, Talpaz M, Resta DJ, Peng B,
Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R,
Ohno-Jones S, et al: Efficacy and safety of a specific inhibitor of
the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J
Med. 344:1031–1037. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lu-Emerson C, Norden AD, Drappatz J, Quant
EC, Beroukhim R, Ciampa AS, Doherty LM, Lafrankie DC, Ruland S and
Wen PY: Retrospective study of dasatinib for recurrent glioblastoma
after bevacizumab failure. J Neurooncol. 104:287–291. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pitz MW, Desai A, Grossman SA and Blakeley
JO: Tissue concentration of systemically administered
antineoplastic agents in human brain tumors. J Neurooncol.
104:629–638. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ashburn TT and Thor KB: Drug
repositioning: identifying and developing new uses for existing
drugs. Nat Rev Drug Discov. 3:673–683. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yaryura-Tobias JA, Patito JA, Mizrahi J,
Roger RV and Cappelletti SR: The action of pimozide on acute
psychosis. Acta Psychiatr Belg. 74:421–429. 1974.PubMed/NCBI
|
|
18
|
Lapidus KA, Soleimani L and Murrough JW:
Novel glutamatergic drugs for the treatment of mood disorders.
Neuropsychiatr Dis Treat. 9:1101–1112. 2013.PubMed/NCBI
|
|
19
|
Foster AC and Kemp JA: Glutamate- and
GABA-based CNS therapeutics. Curr Opin Pharmacol. 6:7–17. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rosenberg G: The mechanisms of action of
valproate in neuropsychiatric disorders: Can we see the forest for
the trees? Cell Mol Life Sci. 64:2090–2103. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Javaid JI: Clinical pharmacokinetics of
antipsychotics. J Clin Pharmacol. 34:286–295. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Barak Y, Achiron A, Mandel M, Mirecki I
and Aizenberg D: Reduced cancer incidence among patients with
schizophrenia. Cancer. 104:2817–2821. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tran E, Rouillon F, Loze JY, Casadebaig F,
Philippe A, Vitry F and Limosin F: Cancer mortality in patients
with schizophrenia: an 11-year prospective cohort study. Cancer.
115:3555–3562. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chou FH, Tsai KY, Su CY and Lee CC: The
incidence and relative risk factors for developing cancer among
patients with schizophrenia: A nine-year follow-up study. Schizophr
Res. 129:97–103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Damjanović A, Ivković M, Jasović-Gasić M
and Paunović V: Comorbidity of schizophrenia and cancer: Clinical
recommendations for treatment. Psychiatr Danub. 18:55–60.
2006.PubMed/NCBI
|
|
26
|
du Pan RM and Muller C: Cancer mortality
in patients of psychiatric hospitals. Schweiz Med Wochenschr.
107:597–604. 1977.(In French). PubMed/NCBI
|
|
27
|
Grinshpoon A, Barchana M, Ponizovsky A, et
al: Cancer in schizophrenia: Is the risk higher or lower? Schizophr
Res. 73:333–341. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lichtermann D: Cancer risk in parents of
patients with schizophrenia. Am J Psychiatry. 162:1024.author reply
1024–1026. 2005.
|
|
29
|
Goldacre MJ, Kurina LM, Wotton CJ, Yeates
D and Seagroat V: Schizophrenia and cancer: An epidemiological
study. Br J Psychiatry. 187:334–338. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Michaelis M, Doerr HW and Cinatl J Jr:
Valproic acid as anti-cancer drug. Curr Pharm Des. 13:3378–3393.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Duenas-Gonzalez A, Candelaria M,
Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E and
Herrera LA: Valproic acid as epigenetic cancer drug: Preclinical,
clinical and transcriptional effects on solid tumors. Cancer Treat
Rev. 34:206–222. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Reynolds MF, Sisk EC and Rasgon NL:
Valproate and neuroendocrine changes in relation to women treated
for epilepsy and bipolar disorder: A review. Curr Med Chem.
14:2799–2812. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Driever PH, Knupfer MM, Cinatl J and Wolff
JE: Valproic acid for the treatment of pediatric malignant glioma.
Klin Padiatr. 211:323–328. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sami S, Höti N, Xu HM, Shen Z and Huang X:
Valproic acid inhibits the growth of cervical cancer both in vitro
and in vivo. J Biochem. 144:357–362. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Strobl JS, Melkoumian Z, Peterson VA and
Hylton H: The cell death response to gamma-radiation in MCF-7 cells
is enhanced by a neuroleptic drug, pimozide. Breast Cancer Res
Treat. 51:83–95. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Brimson JM, Brown CA and Safrany ST:
Antagonists show GTP-sensitive high-affinity binding to the sigma-1
receptor. Br J Pharmacol. 164:772–780. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Strobl JS, Kirkwood KL, Lantz TK, Lewine
MA, Peterson VA and Worley JF III: Inhibition of human breast
cancer cell proliferation in tissue culture by the neuroleptic
agents pimozide and thioridazine. Cancer Res. 50:5399–5405.
1990.PubMed/NCBI
|
|
38
|
Neifeld JP, Tormey DC, Baker MA, Meyskens
FL Jr and Taub RN: Phase II trial of the dopaminergic inhibitor
pimozide in previously treated melanoma patients. Cancer Treat Rep.
67:155–157. 1983.PubMed/NCBI
|
|
39
|
Chen J, Dexheimer TS, Ai Y, Liang Q,
Villamil MA, Inglese J, Maloney DJ, Jadhav A, Simeonov A and Zhuang
Z: Selective and cell-active inhibitors of the USP1/UAF1
deubiquitinase complex reverse cisplatin resistance in non-small
cell lung cancer cells. Chem Biol. 18:1390–1400. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sachlos E, Risueño RM, Laronde S,
Shapovalova Z, Lee JH, Russell J, Malig M, McNicol JD, Fiebig-Comyn
A, Graham M, et al: Identification of drugs including a dopamine
receptor antagonist that selectively target cancer stem cells.
Cell. 149:1284–1297. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fond G, Macgregor A, Attal J, et al:
Antipsychotic drugs: pro-cancer or anti-cancer? A systematic
review. Med Hypotheses. 79:38–42. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Drori S, Eytan GD and Assaraf YG:
Potentiation of anticancer-drug cytotoxicity by
multidrug-resistance chemosensitizers involves alterations in
membrane fluidity leading to increased membrane permeability. Eur J
Biochem. 228:1020–1029. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kataoka Y, Ishikawa M, Miura M, Takeshita
M, Fujita R, Furusawa S, Takayanagi M, Takayanagi Y and Sasaki K:
Reversal of vinblastine resistance in human leukemic cells by
haloperidol and dihydrohaloperidol. Biol Pharm Bull. 24:612–617.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wiklund ED, Catts VS, Catts SV, Ng TF,
Whitaker NJ, Brown AJ and Lutze-Mann LH: Cytotoxic effects of
antipsychotic drugs implicate cholesterol homeostasis as a novel
chemotherapeutic target. Int J Cancer. 126:28–40. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhelev Z, Ohba H, Bakalova R, Hadjimitova
V, Ishikawa M, Shinohara Y and Baba Y: Phenothiazines suppress
proliferation and induce apoptosis in cultured leukemic cells
without any influence on the viability of normal lymphocytes.
Phenothiazines and leukemia. Cancer Chemother Pharmacol.
53:267–275. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Magnon C, Hall SJ, Lin J, Xue X, Gerber L,
Freedland SJ and Frenette PS: Autonomic nerve development
contributes to prostate cancer progression. Science.
341:12363612013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li L and Hanahan D: Hijacking the neuronal
NMDAR signaling circuit to promote tumor growth and invasion. Cell.
153:86–100. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Osuka S, Takano S, Watanabe S, Ishikawa E,
Yamamoto T and Matsumura A: Valproic acid inhibits angiogenesis in
vitro and glioma angiogenesis in vivo in the brain. Neurol Med Chir
(Tokyo). 52:186–193. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Berendsen S, Broekman M, Seute T, Snijders
T, van Es C, de Vos F, Regli L and Robe P: Valproic acid for the
treatment of malignant gliomas: Review of the preclinical rationale
and published clinical results. Expert Opin Investig Drugs.
21:1391–1415. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Van Nifterik KA, Van den Berg J, Slotman
BJ, Lafleur MV, Sminia P and Stalpers P: Valproic acid sensitizes
human glioma cells for temozolomide and γ-radiation. J Neurooncol.
107:61–67. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Das CM, Aguilera D, Vasquez H, Prasad P,
Zhang M, Wolff JE and Gopalakrishnan V: Valproic acid induces p21
and topoisomerase-II (alpha/beta) expression and synergistically
enhances etoposide cytotoxicity in human glioblastoma cell lines. J
Neurooncol. 85:159–170. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li
Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD and Rich JN: Stem
cell-like glioma cells promote tumor angiogenesis through vascular
endothelial growth factor. Cancer Res. 66:7843–7848. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Das S, Srikanth M and Kessler JA: Cancer
stem cells and glioma. Nat Clin Pract Neurol. 4:427–435. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Stiles CD and Rowitch DH: Glioma stem
cells: a midterm exam. Neuron. 58:832–846. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fine HA: Glioma stem cells: Not all
created equal. Cancer Cell. 15:247–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Feng X, Zhou Q, Liu C and Tao ML: Drug
screening study using glioma stem-like cells. Mol Med Rep.
6:1117–1120. 2012.PubMed/NCBI
|
|
59
|
Lee J, Kotliarova S, Kotliarov Y, Li A, Su
Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al:
Tumor stem cells derived from glioblastomas cultured in bFGF and
EGF more closely mirror the phenotype and genotype of primary
tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Joo KM, Jin J, Kim E, Kim Ho K, Kim Y,
Kang Gu B, Kang YJ, Lathia JD, Cheong KH, Song PH, et al: MET
signaling regulates glioblastoma stem cells. Cancer Res.
72:3828–3838. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kim E, Kim M, Woo DH, Shin Y, Shin J,
Chang N, Oh YT, Kim H, Rheey J, Nakano I, et al: Phosphorylation of
EZH2 activates STAT3 signaling via STAT3 methylation and promotes
tumorigenicity of glioblastoma stem-like cells. Cancer Cell.
23:839–852. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Diamandis P, Wildenhain J, Clarke ID,
Sacher AG, Graham J, Bellows DS, Ling EK, Ward RJ, Jamieson LG,
Tyers M, et al: Chemical genetics reveals a complex functional
ground state of neural stem cells. Nat Chem Biol. 3:268–273. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gil-Ad I, Shtaif B, Levkovitz Y, Dayag M,
Zeldich E and Weizman A: Characterization of phenothiazine-induced
apoptosis in neuroblastoma and glioma cell lines: Clinical
relevance and possible application for brain-derived tumors. J Mol
Neurosci. 22:189–198. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG,
Lim Y and Lee YH: The antipsychotic agent chlorpromazine induces
autophagic cell death by inhibiting the Akt/mTOR pathway in human
U-87MG glioma cells. Carcinogenesis. 34:2080–2089. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kast RE: Glioblastoma chemotherapy adjunct
via potent serotonin receptor-7 inhibition using currently marketed
high-affinity antipsychotic medicines. Br J Pharmacol. 161:481–487.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pierce KL, Premont RT and Lefkowitz RJ:
Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 3:639–650.
2002. View
Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lappano R and Maggiolini M: GPCRs and
cancer. Acta Pharmacol Sin. 33:351–362. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Neves SR, Ram PT and Iyengar R: G protein
pathways. Science. 296:1636–1639. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gonzalez-Maeso J: Anxious interactions.
Nat Neurosci. 13:524–526. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Meltzer HY: What's atypical about atypical
antipsychotic drugs? Curr Opin Pharmacol. 4:53–57. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Blair DT and Dauner A: Extrapyramidal
symptoms are serious side-effects of antipsychotic and other drugs.
Nurse Pract. 56:62–64. 1992.
|
|
72
|
Seeman P, Lee T, Chau-Wong M and Wong K:
Antipsychotic drug doses and neuroleptic/dopamine receptors.
Nature. 261:717–719. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Meltzer HY, Li Z, Kaneda Y and Ichikawa J:
Serotonin receptors: their key role in drugs to treat
schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry.
27:1159–1172. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fribourg M, Moreno JL, Holloway T, Provasi
D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, et al:
Decoding the signaling of a GPCR heteromeric complex reveals a
unifying mechanism of action of antipsychotic drugs. Cell.
147:1011–1023. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Weiner DM, Burstein ES, Nash N, Croston
GE, Currier EA, Vanover KE, Harvey SC, Donohue E, Hansen HC,
Andersson CM, et al: 5-hydroxytryptamine2A receptor inverse
agonists as antipsychotics. J Pharmacol Exp Ther. 299:268–276.
2001.PubMed/NCBI
|
|
76
|
Bymaster FP, Calligaro DO, Falcone JF,
Marsh RD, Moore NA, Tye NC, Seeman P and Wong DT: Radioreceptor
binding profile of the atypical antipsychotic olanzapine.
Neuropsychopharmacology. 14:87–96. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Noguchi K, Herr D, Mutoh T and Chun J:
Lysophosphatidic acid (LPA) and its receptors. Curr Opin Pharmacol.
9:15–23. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sanchez T and Hla T: Structural and
functional characteristics of S1P receptors. J Cell Biochem.
92:913–922. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mills GB and Moolenaar WH: The emerging
role of lysophosphatidic acid in cancer. Nat Rev Cancer. 3:582–591.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Bagnato A and Rosanò L: The endothelin
axis in cancer. Int J Biochem Cell Biol. 40:1443–1451. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Clevers H: Wnt/beta-catenin signaling in
development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan
YC, Deng X, Chen L, Kim CC, Lau S, et al: FZD7 has a critical role
in cell proliferation in triple negative breast cancer. Oncogene.
30:4437–4446. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lai SL, Chien AJ and Moon RT: Wnt/Fz
signaling and the cytoskeleton: Potential roles in tumorigenesis.
Cell Res. 19:532–545. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang K, Wang X, Zou J, Zhang A, Wan Y, Pu
P, Song Z, Qian C, Chen Y, Yang S, et al: miR-92b controls glioma
proliferation and invasion through regulating Wnt/beta-catenin
signaling via Nemo-like kinase. Neuro Oncol. 15:578–588. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gong A and Huang S: FoxM1 and
Wnt/β-catenin signaling in glioma stem cells. Cancer Res.
72:5658–5662. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang K, Zhang J, Han L, Pu P and Kang C:
Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol.
7:740–749. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Scales SJ and de Sauvage FJ: Mechanisms of
Hedgehog pathway activation in cancer and implications for therapy.
Trends Pharmacol Sci. 30:303–312. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Jiang J and Hui CC: Hedgehog signaling in
development and cancer. Dev Cell. 15:801–812. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ingham PW and McMahon AP: Hedgehog
signaling in animal development: Paradigms and principles. Genes
Dev. 15:3059–3087. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wicking C, Smyth I and Bale A: The
hedgehog signalling pathway in tumorigenesis and development.
Oncogene. 18:7844–7851. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Beachy PA, Karhadkar SS and Berman DM:
Tissue repair and stem cell renewal in carcinogenesis. Nature.
432:324–331. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ruizi Altaba A, Mas C and Stecca B: The
Gli code: An information nexus regulating cell fate, stemness and
cancer. Trends Cell Biol. 17:438–447. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Vandercappellen J, Van Damme J and Struyf
S: The role of CXC chemokines and their receptors in cancer. Cancer
Lett. 267:226–244. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Strieter RM, Belperio JA, Phillips RJ and
Keane MP: CXC chemokines in angiogenesis of cancer. Semin Cancer
Biol. 14:195–200. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Strieter RM, Burdick MD, Mestas J,
Gomperts B, Keane MP and Belperio JA: Cancer CXC chemokine networks
and tumour angiogenesis. Eur J Cancer. 42:768–778. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Teicher BA and Fricker SP: CXCL12
(SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 16:2927–2931.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhou Y, Larsen PH, Hao C and Yong VW:
CXCR4 is a major chemokine receptor on glioma cells and mediates
their survival. J Biol Chem. 277:49481–49487. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ehtesham M, Winston JA, Kabos P and
Thompson RC: CXCR4 expression mediates glioma cell invasiveness.
Oncogene. 25:2801–2806. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Terasaki M, Sugita Y, Arakawa F, Okada Y,
Ohshima K and Shigemori M: CXCL12/CXCR4 signaling in malignant
brain tumors: A potential pharmacological therapeutic target. Brain
Tumor Pathol. 28:89–97. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Girault JA and Greengard P: The
neurobiology of dopamine signaling. Arch Neurol. 61:641–644. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gemignani F, Landi S, Moreno V,
Gioia-Patricola L, Chabrier A, Guino E, Navarro M, Cambray M,
Capellà G and Canzian F: Polymorphisms of the dopamine receptor
gene DRD2 and colorectal cancer risk. Cancer Epidemiol Biomarkers
Prev. 14:1633–1638. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Sarkar C, Chakroborty D, Chowdhury UR,
Dasgupta PS and Basu S: Dopamine increases the efficacy of
anticancer drugs in breast and colon cancer preclinical models.
Clin Cancer Res. 14:2502–2510. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Rubi B and Maechler P: Minireview: New
roles for peripheral dopamine on metabolic control and tumor
growth: Let's seek the balance. Endocrinology. 151:5570–5581. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bellack AS: Scientific and consumer models
of recovery in schizophrenia: Concordance, contrasts and
implications. Schizophr Bull. 32:432–442. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Leucht S, Cipriani A, Spineli L, Mavridis
D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, et
al: Comparative efficacy and tolerability of 15 antipsychotic drugs
in schizophrenia: A multiple-treatments meta-analysis. Lancet.
382:951–962. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ucok A and Gaebel W: Side effects of
atypical antipsychotics: A brief overview. World Psychiatry.
7:58–62. 2008. View Article : Google Scholar : PubMed/NCBI
|