|
1
|
Viola D, Valerio L, Molinaro E, Agate L,
Bottici V, Biagini A, Lorusso L, Cappagli V, Pieruzzi L, Giani C,
et al: Treatment of advanced thyroid cancer with targeted
therapies: Ten years of experience. Endocr Relat Cancer.
23:R185–R205. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
World Health Organization. WHO
Classification of Tumours8. Pathology and Genetics of Tumours of
Endocrine Organs. Third. IARC Press; Lyon: pp. 73–76. 2004
|
|
3
|
Sherman SI: Thyroid carcinoma. Lancet.
361:501–511. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nagaiah G, Hossain A, Mooney C, Parmentier
J and Remick SC: Anaplastic thyroid cancer: A review of
epidemiology, pathogenesis, and treatment. J Oncol.
2011:5423582011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Perri F, Lorenzo GD, Scarpati GD and
Buonerba C: Anaplastic thyroid carcinoma: A comprehensive review of
current and future therapeutic options. World J Clin Oncol.
2:150–157. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Giuffrida D, Prestifilippo A, Scarfia A,
Martino D and Marchisotta S: New treatment in advanced thyroid
cancer. J Oncol. 2012:3916292012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jin S, Borkhuu O, Bao W and Yang YT:
Signaling Pathways in thyroid cancer and their therapeutic
implications. J Clin Med Res. 284–296. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Regalbuto C, Frasca F, Pellegriti G,
Malandrino P, Marturano I, Di Carlo I and Pezzino V: Update on
thyroid cancer treatment. Future Oncol. 8:1331–1348. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Podberezin M, Wen J and Chang CC: Cancer
stem cells: A review of potential clinical applications. Arch
Pathol Lab Med. 137:1111–1116. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Singh SR: Cancer stem cells: Recent
developments and future prospects. Cancer Lett. 338:1–2. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
O'Brien CA, Kreso A and Jamieson CH:
Cancer stem cells and self-renewal. Clin Cancer Res. 16:3113–3120.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
AlHaj JM, Wicha MS, BenitoHernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Collins AT, Berry PA, Hyde C, Stower MJ
and Maitland N: Prospective identification of tumorigenic prostate
cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
RicciVitiani L, Fabrizi E, Palio E and De
Maria R: Colon cancer stem cells. J Mol Med (Berl). 87:1097–1104.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
RicciVitiani L, Pagliuca A, Palio E,
Zeuner A and De Maria R: Colon cancer stem cells. Gut. 57:538–548.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
RicciVitiani L, Lombardi DG, Pilozzi E,
Biffoni M, Todaro M, Peschle C and De Maria R: Identification and
expansion of human colon-cancer-initiating cells. Nature.
445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Prince ME, Sivanandan R, Kaczorowski A,
Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF and Ailles
LE: Identification of a subpopulation of cells with cancer stem
cell properties in head and neck squamous cell carcinoma. Proc Natl
Acad Sci USA. 104:973–978. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Eramo A, Lotti F, Sette G, Pilozzi E,
Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De
Maria R: Identification and expansion of the tumorigenic lung
cancer stem cell population. Cell Death Differ. 15:504–514. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schatton T and Frank MH: Cancer stem cells
and human malignant melanoma. Pigment Cell Melanoma Res. 21:39–55.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai
P, Chu PW, Lam CT, Poon RT and Fan ST: Significance of CD90+ cancer
stem cells in human liver cancer. Cancer Cell. 13:153–166. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Curley MD, Therrien VA, Cummings CL,
Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden
DT, Rueda BR and Foster R: CD133 expression defines a tumor
initiating cell population in primary human ovarian cancer. Stem
Cells. 27:2875–2883. 2009.PubMed/NCBI
|
|
24
|
Li C, Heidt DG, Dalerba P, Burant CF,
Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM: Identification
of pancreatic cancer stem cells. Cancer Res. 67:1030–1037. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lin RY: Thyroid cancer stem cells. Nat Rev
Endocrinol. 7:609–616. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Maugeri-Saccà M, Vigneri P and De Maria R:
Cancer stem cells and chemosensitivity. Clin Cancer Res.
17:4942–4927. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Giuffrida R, Adamo L, Iannolo G, Vicari L,
Giuffrida D, Eramo A, Gulisano M, Memeo L and Conticello C:
Resistance of papillary thyroid cancer stem cells to chemotherapy.
Oncology Letters. 12:687–691. 2016.PubMed/NCBI
|
|
28
|
Nguyen LV, Vanner R, Dirks P and Eaves CJ:
Cancer stem cells: An evolving concept. Nat Rev Cancer. 12:133–143.
2012.PubMed/NCBI
|
|
29
|
Shackleton M: Normal stem cells and cancer
stem cells: Similar and different. Semin Cancer Biol. 20:85–92.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sengupta A and Cancelas JA: Cancer stem
cells: A stride towards cancer cure? J Cell Physiol. 225:7–14.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shiozawa Y, Nie B, Pienta KJ, Morgan TM
and Taichman RS: Cancer stem cells and their role in metastasis.
Pharmacol Ther. 138:285–293. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Borovski T, De Sousa E, Melo F, Vermeulen
L and Medema JP: Cancer stem cell niche: The place to be. Cancer
Res. 71:634–639. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yu Z, Pestell TG, Lisanti MP and Pestell
RG: Cancer stem cells. Int J Biochem Cell Biol. 44:2144–2151. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Clevers H: The cancer stem cell: Premises,
promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rutella S, Bonanno G, Procoli A, Mariotti
A, Corallo M, Prisco MG, Eramo A, Napoletano C, Gallo D, Perillo A,
et al: Cells with characteristics of cancer stem/progenitor cells
express the CD133 antigen in human endometrial tumors. Clin Cancer
Res. 15:4299–4311. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Padhye SS, Guin S, Yao HP, Zhou YQ, Zhang
R and Wang MH: Sustained expression of the RON receptor tyrosine
kinase by pancreatic cancer stem cells as a potential targeting
moiety for antibody-directed chemotherapeutics. Mol Pharm.
8:2310–2319. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang SC, Balch MW, Chan HC, Lai D, Matei
JM, Schilder PS, Yan PS, Huang TH and Nephew KP: Identification and
characterization of ovarian cancer-initiating cells from primary
human tumors. Cancer Res. 68:4311–4320. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
MurilloSauca O, Chung MK, Shin JH,
Karamboulas C, Wok SK, Jung YH, Oakley R, Tysome JR, Farnebo LO,
Kaplan MJ, et al: CD271 is a functional and targetable marker of
tumor-initiating cells in head and neck squamous cell carcinoma.
Oncotarget. 5:6854–6866. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tomuleasa C, Soritau O, RusCiuca D, Pop T,
Todea D, Mosteanu O, Pintea B, Foris V, Susman S, Kacsó G and
Irimie A: Isolation and characterization of hepatic cancer cells
with stem-like properties from hepatocellular carcinoma. J
Gastrointestin Liver Dis. 19:61–67. 2010.PubMed/NCBI
|
|
40
|
Bussolati B, Bruno S, Grange C, Ferrando U
and Camussi G: Identification of a tumor-initiating stem cell
population in human renal carcinomas. FASEB J. 22:3696–3705. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Boiko AD, Razorenova OV, Van de Rijn M,
Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan
MJ, et al: Human melanoma-initiating cells express neural crest
nerve growth factor receptor CD271. Nature. 466:133–137. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Imai T, Tamai K, Oizumi S, Oyama K,
Yamaguchi K, Sato I, Satoh K, Matsuura K, Saijo S, Sugamura K and
Tanaka N: CD271 defines a stem cell-like population in
hypopharyngeal cancer. PLoS One. 8:e620022013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tian J, Li X, Si M, Liu T and Li J: CD271+
osteosarcoma cells display stem-like properties. PLoS One.
9:e985492014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen J, Song W and Amato K: Eph receptor
tyrosine kinases in cancer stem cells. Cytokine Growth Factor Rev.
26:1–6. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Genander M and Frisén J: Ephrins and Eph
receptors in stem cells and cancer. Curr Opin Cell Biol.
22:611–616. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Miao H, Gale NW, Guo H, Qian J, Petty A,
Kaspar J, Murphy AJ, Valenzuela DM, Yancopoulos G, Hambardzumyan D,
et al: EphA2 promotes infiltrative invasion of glioma stem cells in
vivo through cross-talk with Akt and regulates stem cell
properties. Oncogene. 34:558–567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Song W, Ma Y, Wang J, BrantleySieders D
and Chen J: JNK signaling mediates EPHA2-dependent tumor cell
proliferation, motility and cancer stem cell-like properties in
non-small cell lung cancer. Cancer Res. 74:2444–2454. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sugihara E and Saya H: Complexity of
cancer stem cells. Int J Cancer. 132:1249–1259. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hadnagy A, Gaboury L, Beaulieu R and
Balicki D: SP analysis may be used to identify cancer stem cell
populations. Exp Cell Res. 312:3701–3710. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tirino V, Desiderio V, Paino F, De Rosa A,
Papaccio F, La Noce M, Laino L, De Francesco F and Papaccio G:
Cancer stem cells in solid tumors: An overview and new approaches
for their isolation and characterization. FASEB J. 27:13–24. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang Z, Liu L, GomezCasal R, Wang X,
Hayashi R, Appella E, Kopelovich L and DeLeo AB: Targeting cancer
stem cells with p53 modulators. Oncotarget. Apr 8–2016.(Epub ahead
of print).
|
|
52
|
Luo Y, Nguyen N and Fujita M: Isolation of
human melanoma stem cells using ALDH as a marker. Curr Protoc Stem
Cell Biol. 26:Unit 3.8. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen YC, Chen YW, Hsu HS, Tseng LM, Huang
PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC, et al: Aldehyde
dehydrogenase 1 is a putative marker for cancer stem cells in head
and neck squamous cancer. Biochem Biophys Res Commun. 385:307–313.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Davies TF, Latif R, Minsky NC and Ma R:
Clinical review: The emerging cell biology of thyroid stem cells. J
Clin Endocrinol Metab. 96:2692–2702. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Klonish T, HoangVu C and Hombach-klonish
S: Thyroid stem cells and cancer. Thyroid. 19:1303–1315. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Thomas D, Friedman S and Lin RY: Thyroid
stem cells: Lessons from normal development and thyroid cancer.
Endocr Relat Cancer. 15:51–58. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Takano T: Fetal cell carcinogenesis of the
thyroid: A modified theory based on recent evidence. Endocr J.
61:311–320. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Takano T: Fetal cell carcinogenesis of the
thyroid: Theory and practice. Semin Cancer Biol. 17:233–240. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Takano T and Amino N: Fetal cell
carcinogenesis: A new hypothesis for better understanding of
thyroid carcinoma. Thyroid. 15:432–438. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chaffer CL, Brueckmann I, Scheel C,
Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y
and Polyak K: Normal and neoplastic nonstem cells can spontaneously
convert to a stem-like state. Proc Natl Acad Sci USA.
108:7950–7955. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lan L, Luo Y, Cui D, Shi BY, Deng W, Huo
LL, Chen HL, Zhang GY and Deng LL: Epithelial-mesenchymal
transition induces cancer stem cell generation in human thyroid
cancer cells in vitro. Zhonghua Yi Xue Za Zhi. 93:1261–1265.
2013.(In Chinese). PubMed/NCBI
|
|
62
|
Hardin H, MontemayorGarcia C and Llyod RV:
Thyroid cancer stem-like cells and epithelial-mesenchymal
transition in thyroid cancers. Hum Pathol. 44:1707–1713. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yasui K, Shimamura M, Mitsutake N and
Nagayama Y: SNAIL induces epithelial-to-mesenchymal transition and
cancer stem cell-like properties in aldehyde
dehydroghenase-negative thyroid cancer cells. Thyroid. 23:989–996.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nagayama Y, Shimamura M and Mitsutake N:
Cancer stem cells in the thyroid. Front Endocrinol (Lausanne).
7:202016.PubMed/NCBI
|
|
65
|
Zito G, Richiusa P, Bommarito A, Carissimi
E, Russo L, Coppola A, Zerilli M, Rodolico V, Criscimanna A, Amato
M, et al: In vitro identification and characterization of
CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma
cell lines. PloS One. 3:e35442008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Friedman S, Lu M, Schultz A, Thomas D and
Lin RY: CD133+ anaplastic thyroid cancer cells initiate tumors in
immunodeficient mice and are regulated by thyrotropin. PLoS One.
4:e53952009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Schweppe RE, Klopper JP, Korch C,
Pugazhenthi U, Benezra M, Knauf JA, Fagin JA, Marlow LA, Copland
JA, Smallridge RC and Haugen BR: Deoxyribonucleic acid profiling
analysis of 40 human thyroid cancer cell lines reveals
cross-contamination resulting in cell line redundancy and
misidentification. J Clin Endocrinol Metab. 93:4331–4341. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Todaro M, Iovino F, Eterno V, Cammareri P,
Gambara G, Espina V, Gulotta G, Dieli F, Giordano S, De Maria R and
Stassi G: Tumorigenic and metastatic activity of human thyroid
cancer stem cells. Cancer Res. 70:8874–8885. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Malaguarnera R, Morcavallo A, Giuliano S
and Belfiore A: Thyroid cancer development and progression:
Emerging role of cancer stem cells. Minerva Endocrinol. 37:103–115.
2012.PubMed/NCBI
|
|
70
|
Malaguarnera R, Frasca F, Garozzo A, Gianì
F, Pandini G, Vella V, Vigneri R and Belfiore A: Insulin receptor
isoforms and insulin-like growth factor receptor in human
follicular cell precursors from papillary thyroid cancer and normal
thyroid. J Clin Endocrinol Metab. 96:766–774. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li W, Reeb AN, Sewell WA, Elhomsy G and
Lin RY: Phenotypic characterization of metastatic anaplastic
thyroid cancer stem cells. PloS One. 8:e650952013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ahn SH, Henderson YC, Williams MD, Lai SY
and Clayman GL: Detection of thyroid cancer stem cells in papillary
thyroid carcinoma. J Clin Endocrinol Metab. 99:536–544. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shimamura M, Nagayama Y, Matsuse M,
Yamashita S and Mitsutake N: Analysis of multiple markers for
cancer stem-like cells in human thyroid carcinoma cell lines.
Endocr J. 61:481–490. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
HombachKlonisch S, Natarajan S,
Thanasupawat T, Medapati M, Pathak A, Ghavami S and Klonisch T:
Mechanisms of therapeutic resistance in cancer (Stem) cells with
emphasis on thyroid cancer cells. Front Endocrinol (Lausanne).
5:372014.PubMed/NCBI
|
|
75
|
Ke CC, Liu RS, Yang AH, Liu CS, Chi CW,
Tseng LM, Tsai YF, Ho JH, Lee CH and Lee OK: CD133-expressing
thyroid cancer cells are undifferentiated, radioresistant and
survive radioiodide therapy. Eur J Nucl Med Mol Imaging. 40:61–71.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zane M, Scavo E, Catalano V, Bonanno M,
Todaro M, De Maria R and Stassi G: Normal vs cancer thyroid stem
cells: The road to transformation. Oncogene. 35:805–815. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gao YJ, Li B, Wu XY, Cui J and Han JK:
Thyroid tumor-initiating cells: Increasing evidence and
opportunities for anticancer therapy (review). Oncology Rep.
31:1035–1042. 2014.
|
|
78
|
Bhatia P, Tsumagari K, Abd Elmageed ZY,
Friedlander P, Buell JF and Kandil E: Stem cell biology in thyroid
cancer: Insights for novel therapies. World J Stem Cells.
6:614–619. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Soltanian S and Matin MM: Cancer stem
cells and cancer therapy. Tumour Biol. 32:425–440. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Abroun S, Saki N, Ahmadvand M, Asghari F,
Salari F and Rahim F: STATs: An old story, yet mesmerizing. Cell J.
17:395–411. 2015.PubMed/NCBI
|
|
81
|
Spitzner M, Ebner R, Wolff HA, Ghadimi BM,
Wienands J and Grade M: STAT3: A novel molecular mediator of
resistance to chemoradiotherapy. Cancers (Basel). 6:1986–2011.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tseng LM, Huang PI, Chen YR, Chen YC, Chou
YC, Chen YW, Chang YL, Hsu HS, Lan YT, Chen KH, et al: Targeting
signal transducer and activator of transcription 3 pathway by
cucurbitacin I diminishes self-renewing and radiochemoresistant
abilities in thyroid cancer-derived CD133+ cells. J Pharmacol Exp
Ther. 341:410–423. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Peters S and Adjei AA: MET: A promising
anticancer therapeutic target. Nat Rev Clin Oncol. 9:314–326. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sierra JR and Tsao MS: c-MET as a
potential therapeutic target and biomarker in cancer. Ther Adv Med
Oncol. 3(Suppl): S21–S35. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Spitzweg C, Morris JC and Bible KC: New
drugs for medullary thyroid cancer: New promises? Endocr Relat
Cancer. May 16–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
86
|
PlazaMenacho I, Mologni L and McDonald NQ:
Mechanisms of RET signaling in cancer: Current and future
implications for targeted therapy. Cell Signal. 26:1743–1752. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Messina M and Robinson BG: Technology
insight: Gene therapy and its potential role in the treatment of
medullary thyroid carcinoma. Nat Clin Pract Endocrinol Metab.
3:290–301. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Fletcher JI, Williams RT, Henderson MJ,
Norris MD and Haber M: ABC transporters as mediators of drug
resistance and contributors to cancer cell biology. Drug Resist
Updat. 26:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zheng X, Cui D, Xu S, Brabant G and
Derwahl M: Doxorubicin fails to eradicate cancer stem cells derived
from anaplastic thyroid carcinoma cells: Characterization of
resistant cells. Int J Oncol. 37:307–315. 2010.PubMed/NCBI
|
|
90
|
Fulawka L, Donizy P and Halon A: Cancer
stem cells - the current status of an old concept: Literature
review and clinical approaches. Biol Res. 47:662014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhao Y, Bao Q, Renner A, Camaj P, Eichhorn
M, Ischenko I, Angele M, Kleespies A, Jauch KW and Bruns C: Cancer
stem cells and angiogenesis. Int J Dev Biol. 55:477–482. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yi SY, Hao YB, Nan KJ and Fan TL: Cancer
stem cells niche: A target for novel cancer therapeutics. Cancer
Treat Rev. 39:290–296. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Raza U, Zhang JD and Sahin O: MicroRNAs:
Master regulators of drug resistance, stemness and metastasis. J
Mol Med (Berl). 92:321–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hatfield S and Ruohola-Baker H: microRNA
and stem cell function. Cell Tissue Res. 331:57–66. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
He L, Thomson JM, Hemann MT, HernandoMonge
E, Mu D, Goodson S, Powers S, CordonCardo C, Lowe SW, Hannon GJ and
Hammond SM: A microRNA polycistron as a potential human oncogene.
Nature. 435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al:
Frequent deletions and downregulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Vriens MR, Weng J, Suh I, Huynh N,
Guerrero MA, Shen WT, Duh QY, Clark OH and Kebebew E: MicroRNA
expression profiling is a potential diagnostic tool for thyroid
cancer. Cancer. 118:3426–3432. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Forte S, LaRosa C, Pecce V, Rosignolo F
and Memeo L: The role of microRNA in thyroid carcinomas. Anticancer
Res. 35:2037–2047. 2015.PubMed/NCBI
|
|
99
|
Zhang X, Mao H and LV Z: MicroRNA role in
thyroid cancer pathogenesis. Front Biosci (Landmark Ed).
18:734–739. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang J, Yang Y, Liu Y, Fan Y, Liu Z, Wang
X, Yuan Q, Yin Y, Yu J, Zhu M, et al: MicroRNA-21 regulates
biological behaviors in papillary thyroid carcinoma by targeting
programmed cell death 4. J Surg Res. 189:68–74. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lin X, Guan H, Li H, Liu L, Liu J, Wei G,
Huang Z, Liao Z and Li Y: miR-101 inhibits cell proliferation by
targeting Rac1 in papillary thyroid carcinoma. Biomed Rep.
2:122–126. 2014.PubMed/NCBI
|
|
102
|
Minna E, Romeo P, De Cecco L, Dugo M,
Cassinelli G, Pilotti S, Degl'Innocenti D, Lanzi C, Casalini P and
Pierotti MA: miR-199a-3p displays tumor suppressor functions in
papillary thyroid carcinoma. Oncotarget. 5:2513–2528. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lv M, Zhang X, Li M, Chen Q, Ye M, Liang
W, Ding L, Cai H, Fu D and Lv Z: miR-26a and its target CKS2
modulate cell growth and tumorigenesis of papillary thyroid
carcinoma. PloS One. 8:e675912013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu X, He M, Hou Y, Liang B, Zhao L, Ma S,
Yu Y and Liu X: Expression profiles of microRNAs and their target
genes in papillary thyroid carcinoma. Oncol Rep. 4:1415–1420.
2013.
|
|
105
|
Zhang X, Li M, Zuo K, Li D, Ye M, Ding L,
Cai H, Fu D, Fan Y and Lv Z: Upregulated miR-155 in papillary
thyroid carcinoma promotes tumor growth by targeting APC and
activating Wnt/β-catenin signaling. J Clin Endocrinol Metab.
98:E1305–E1313. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang Z, Zhang H, Zhang P, Li J, Shan Z and
Teng W: Upregulation of miR-2861 and miR-451 expression in
papillary thyroid carcinoma with lymph node metastasis. Med Oncol.
30:5772013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chou CK, Yang KD, Chou FF, Huang CC, Lan
YW, Lee YF, Kang HY and Liu RT: Prognostic implications of miR-146b
expression and its functional role in papillary thyroid carcinoma.
J Clin Endocrinol Metab. 98:E196–E205. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang J, Liu Y, Liu Z, Wang XM, Yin DT,
Zheng LL, Zhang DY and Lu XB: Differential expression profiling and
functional analysis of microRNAs through stage I–III papillary
thyroid carcinoma. Int J Med Sci. 10:585–592. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Pallante P, Visone R, Ferracin M, Ferraro
A, Berlingieri MT, Troncone G, Chiappetta G, Liu CG, Santoro M,
Negrini M, et al: MicroRNA deregulation in human thyroid papillary
carcinomas. Endocr Relat Cancer. 13:497–508. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Stokowy T, Eszlinger M, Świerniak M,
Fujarewicz K, Jarząb B, Paschke R and Krohn K: Analysis options for
high-throughput sequencing in miRNA expression profiling. BMC Res
Notes. 7:1442014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Jikuzono T, Kawamoto M, Yoshitake H,
Kikuchi K, Akasu H, Ishikawa H, Hirokawa M, Miyauchi A, Tsuchiya S,
Shimizu K and Takizawa T: The miR-221/222 cluster, miR-10b and
miR-92a are highly upregulated in metastatic minimally invasive
follicular thyroid carcinoma. Int J Oncol. 42:1858–1868.
2013.PubMed/NCBI
|
|
112
|
Rossing M, Borup R, Henao R, Winther O,
Vikesaa J, Niazi O, Godballe C, Krogdahl A, Glud M, Hjort-Sørensen
C, et al: Down-regulation of microRNAs controlling tumourigenic
factors in follicular thyroid carcinoma. J Mol Endocrinol.
48:11–23. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Puppin C, Durante C, Sponziello M,
Verrienti A, Pecce V, Lavarone E, Baldan F, Campese AF, Boichard A,
Lacroix L, et al: Overexpression of genes involved in miRNA
biogenesis in medullary thyroid carcinomas with RET mutation.
Endocrine. 47:528–536. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Hudson J, Duncavage E, Tamburrino A,
Salerno P, Xi L, Raffeld M, Moley J and Chernock RD: Overexpression
of miR-10a and miR-375 and downregulation of YAP1 in medullary
thyroid carcinoma. Exp Mol Pathol. 95:62–67. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Reddi HV, Driscoll CB, Madde P, Milosevic
D, Hurley RM, McDonough SJ, HallangerJohnson J, McIver B and
Eberhardt NL: Redifferentiation and induction of tumor suppressors
miR-122 and miR-375 by the PAX8/PPARγ fusion protein inhibits
anaplastic thyroid cancer: A novel therapeutic strategy. Cancer
Gene Ther. 20:267–275. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang Z, Liu ZB, Ren WM, Ye XG and Zhang
YY: The miR-200 family regulates the epithelial-mesenchymal
transition induced by EGF/EGFR in anaplastic thyroid cancer cells.
Int J Mol Med. 30:856–862. 2012.PubMed/NCBI
|
|
117
|
Takakura S, Mitsutake N, Nakashima M,
Namba H, Saenko VA, Rogounovitch TI, Nakazawa Y, Hayashi T, Ohtsuru
A and Yamashita S: Oncogenic role of miR-17-92 cluster in
anaplastic thyroid cancer cells. Cancer Sci. 99:1147–1154. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yu S, Liu Y, Wang J, Guo Z, Zhang Q, Yu F,
Zhang Y, Huang K, Li Y, Song E, et al: Circulating microRNA
profiles as potential biomarkers for diagnosis of papillary thyroid
carcinoma. J Clin Endocrinol Metab. 97:2084–2092. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lee JC, Zhao JT, CliftonBligh RJ, Gill A,
Gundara JS, Ip JC, Glover A, Sywak MS, Delbridge LW, Robinson BG
and Sidhu SB: MicroRNA-222 and microRNA-146b are tissue and
circulating biomarkers of recurrent papillary thyroid cancer.
Cancer. 119:4358–4365. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Takahashi RU, Miyazaki H and Ochiya T: The
role of microRNAs in the regulation of cancer stem cells. Front
Genet. 4:2952014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Hao J, Zhao S, Zhang Y, Zhao Z, Ye R, Wen
J and Li J: Emerging role of microRNAs in cancer and cancer stem
cells. J Cell Biochem. 115:605–610. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Vira D, Basak SK, Veena MS, Wang MB, Batra
RK and Srivatsan ES: Cancer stem cells, microRNAs, and therapeutic
strategies including natural products. Cancer Metastasis Rev.
31:733–751. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Garg M: MicroRNAs, stem cells and cancer
stem cells. World J Stem Cells. 4:62–70. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hao J, Zhang Y, Deng M, Ye R, Zhao S, Wang
Y, Li J and Zhao Z: MicroRNA control of epithelial-mesenchymal
transition in cancer stem cells. Int J Cancer. 135:1019–1027. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Eramo A, Haas TL and De Maria R: Lung
cancer stem cells: Tools and targets to fight lung cancer.
Oncogene. 29:4625–4635. 2010. View Article : Google Scholar : PubMed/NCBI
|