HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method

  • Authors:
    • Nazanin Sharifi
    • Arash Salmaninejad
    • Samira Ferdosi
    • Abolfazl Nesaei Bajestani
    • Malihe Khaleghiyan
    • Mehrdad Asghari Estiar
    • Mansour Jamali
    • Mohammad Reza Nowroozi
    • Abbas Shakoori
  • View Affiliations

  • Published online on: October 10, 2016     https://doi.org/10.3892/ol.2016.5235
  • Pages: 4651-4658
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Prostate cancer (PCa) is one of the most widespread malignancies in the world. The role of the human epidermal growth factor receptor 2 (HER2) in the pathogenesis and progression of human PCa remains poorly understood. In contradiction with breast cancer, studies on HER2 overexpression and gene amplification in PCa have produced varying results, although the HER2 oncogene has been implicated in the biology of numerous tumor types, and serves as a prognostic marker and therapeutic target in breast cancer. Technical challenges are considered the main reasons for data discrepancies. Amplification of the HER2 gene has previously been reported in PCa, in which it was associated with tumor progression. The present study aimed to evaluate the prevalence and clinical significance of HER2 amplification in PCa. A total of 32 biopsy samples obtained from human prostate adenocarcinomas were evaluated by chromogenic in situ hybridization (CISH) to determine the frequency of patients with HER2 gene amplifications. High copy numbers of HER2 were detected in 19 of the prostate tumors analyzed. The results of the present study suggested that, in patients without amplification of HER2, high levels of prostate‑specific antigen or a high Gleason score were not significantly correlated with a high pathologic stage. Furthermore, amplification levels of the HER2 gene were directly associated with pathologic stage in patients with PCa. Therefore, the potential use of HER2 as a prognostic factor or therapeutic target for PCa warrants further study.

Introduction

Prostate cancer (PCa), a common non-skin, sex-limited cancer, is the second cause of cancer-associated mortality (after lung cancer) in the USA (1,2) and the second most prevalent cancer among Iranian men (3). Worldwide, PCa is the second most commonly diagnosed cancer and, according to the International Agency for Research on Cancer's GLOBOCAN 2012 (4) database, it is the fifth leading cause of cancer-associated mortality in men. The incidence of PCa is increasing worldwide, although there is a marked variation in its incidence among different regions (5). The clinical configuration of PCa has noticeably altered over the past few years. As a localized disease, it is easily treated by radical radiation therapy or a prostatectomy; however, if the tumor becomes malignant, it transforms into a life-threatening disease (6).

The progression and application of novel high-resolution technologies has enhanced the detection of genomic alterations, enabling elucidation of the complex nature and heterogeneity of PCa (7). The differentiation of PCa tumors is typically based on the serum expression levels of prostate-specific antigen (PSA), although, in certain cases, PSA levels do not accurately reflect tumor burden (8). Previous studies have identified a number of genetic, epigenetic and environmental risk factors for PCa (911). Among them, genetic aberrations and chromosomal changes have been suggested to serve a significant role in the development and progression of PCa (12). At present, >50 PCa susceptibility loci have been identified using genome-wide association studies (13,14). The emerging picture of the genomic complexity of PCa includes frequent large-scale genomic rearrangements (15), gene fusions (16,17), genetic deletions (15) and gene amplifications (18).

Gene amplification, which may occur due to an increase in copy number of certain regions of chromosomes, has been identified in several malignancies, including PCa (18,19). Previous studies have reported that the genetic duplication of various genes was associated with PCa malignancy, including androgen receptor (20), enhancer of zeste homolog 2 (21), eukaryotic translation initiation factor 3 (22), calcium-activated potassium channel subunit α-1 (23), minichromosome maintenance complex component 7 (24), prostate leucine zipper (25) and hypoxia-inducible factor 1 (26).

Human epidermal growth factor receptor 2 (HER2) is a member of the class I receptor tyrosine kinase family and has substantial homology to epidermal growth factor receptor, HER3 and HER4 (27). HER2 overexpression and/or gene amplification occur in a variety of human epithelial tumors, particularly in breast cancer, in which the receptor and its gene have been investigated extensively (28). Conversely, the significance of HER2 overexpression and gene amplification in PCa remains controversial. Previous studies have used immunohistochemical analysis to evaluate HER2 protein expression in primary prostate specimens, demonstrating expression rates ranging from 0–100% (2931). Therefore, the exact prevalence of HER2 gene amplifications in primary PCa remains unknown, likely owing to the wide range of antibodies and methods used in these studies (32,33).

The HER2/neu proto-oncogene, which is located on chromosome 17 (OMIM: 164870), encodes a transmembrane tyrosine kinase growth factor receptor (34), whose overexpression was shown to be involved in the development of various types of human cancer, including non-small-cell lung cancer, colon cancer and breast cancer, and may have prognostic value (35,36). Apparent chromosome 17 polysomy, defined by increased chromosome enumeration probe 17 (CEP17) signal number, is a common genetic aberration in breast cancer and represents an alternative mechanism for increasing HER2 copy number (37). However, the prognostic value of HER2/neu amplification in PCa remains controversial (38).

Chromosomal aberrations associated with PCa have been evaluated using various techniques, including classical cytogenetics (39), loss of heterozygosity analysis (40), fluorescence in situ hybridization (FISH) (41) and, most commonly, comparative genomic hybridization (CGH) (42). Although the criteria for amplification have varied between studies, they have implicated several chromosomal regions, such as 6q, 8p, 10q, 13q, 16q and Xq, that may harbor genes involved in the tumorigenesis of PCa (24,43).

The present study aimed to investigate the frequency of HER2 amplification in prostate biopsies from Iranian (Tehran province) patients using chromogenic in situ hybridization (CISH), which permits the rapid analysis of a large number of tumors (44). Although the FISH method has been verified for the histological analysis of tissues, the evaluation of tumor morphology using FISH is challenging and the fluorescence fades quickly (45). These limitations may be overcome by CISH, which enables visualization of the amplification product along with morphological features (46). Furthermore, CISH technology is superior to high-throughput HER2 genetic testing due its speed, although FISH remains the method of choice for rapid low-throughput HER2 genetic testing.

Materials and methods

Clinical specimens

The present study was approved by the Ethics Committee of Tehran University of Medical Sciences (Tehran, Iran). Suitable patients from the oncology wards or outpatient clinics of Imam Khomeini Hospital (Tehran, Iran) were approached for participation in the study, and informed consent was obtained. Inclusion criteria for the study were a PSA level of >4, a diagnosis of progressive prostate cancer, an age of >54 years, a Gleason score of >2 (47) and the male gender. Formalin-fixed, paraffin-embedded (FFPE) specimens were obtained from 32 consecutive PCa patients who underwent surgery between May 2013 and February 2015. Adjacent normal tissue was used as a control. To account for tumor heterogeneity, a minimum of 3 cylindrical core biopsies, 0.6 mm in diameter, were harvested from different regions of each tumor. A total of 15 tissue sections (2-mm thick) were sliced from each paraffin-embedded tumor block and mounted onto glass slides. The first tissue section was stained with hematoxylin and eosin and visualized under a light microscope to ascertain the region of interest. In all cases, a serum sample was measured by Elecsys® total PSA and free PSA kits (Roche Diagnostics, Basel, Switzerland).

Pathological stage

The stage (extent) of prostate cancer is one of the most important factors in choosing treatment options and predicting prognosis. The stage is based on the prostate biopsy results (including the Gleason score), the blood PSA level at the time of diagnosis, the results of any other exams or tests that were performed to determine metastasis and the pathological stage post-surgery. There are 4 categories for describing the local extent of a prostate tumor, ranging from T1 to T4 (48).

CISH

CISH was performed according to a previously described protocol (49) with minor modifications. Briefly, 2-mm thick archival FFPE tissue sections were deparaffinized and dehydrated in 0.1 mol/l Tris-HCl (pH 7.3) in a temperature-controlled microwave oven at 92°C for 10 min. Subsequently, the sections were allowed to cool for 20 min, followed by washing with phosphate-buffered saline (PBS) for 3–4 min at 37°C. The slides were then dehydrated with graded ethanol, rinsed in saline sodium citrate (pH 7.2) for 5 min at room temperature and air-dried. Enzymatic digestion was performed by incubating the sections with pepsin solution (dilution, 100:l) for 10 to 15 min at room temperature. The slides were then washed with PBS and dehydrated with graded ethanol. The ready-to-use digoxigenin-labeled HER2/neu probe (Zyto Dot 2C SPEC HER2/CEN 17 Probe kit; Zyto Vision GmbH, Bremerhaven, Germany) was applied onto the slides. The presence of certain nucleic acid sequences in cells or tissue can be detected with in situ hybridization using labeled DNA probes. The hybridization results in duplex formation of sequences present in the test object and the specific gene probe. The ZytoDot 2C SPEC HER2/CEN 17 Probe kit uses the ZytoDot 2C SPEC HER2/CEN 17 Probe EmaNOF. The probe contains digoxigenin-labeled polynucleotides, which target sequences of the HER2 gene and DNP-labeled polynucleotides, which target alpha-satellites of the centromere of chromosome 17. Duplex formation of the labeled probe can be visualized using primary (un-marked) antibodies, which are detected by secondary polymerized enzyme-conjugated antibodies. The enzymatic reactions of the substrates leads to the formation of strong permanent red and green signals that can be visualized by light microscopy using a 40X dry lens. The slides were denatured on a hot plate for 3 min and hybridization was performed overnight at 37°C. Following hybridization, the slides were washed with 0.5 ml standard saline citrate for 5 min at 75°C, followed by three washes with PBS containing 0.2% Tween-20 at room temperature. Prostate tissue sections were lightly counterstained with hematoxylin then embedded, and the tissues were analyzed under a light microscope. Amplification was defined when the HER2/chromosome 17 centromere (CEP17) ratio was >2.2.

Statistical analysis

Red/green signals were counted manually. Data analysis was performed using SPSS software version 18 (SPSS, Inc., Chicago, IL, USA). Scale variables were analyzed for normality using the Kolmogorov-Smirnov test. Group comparisons of continuous variables were conducted using the independent-samples t-test. When a variable was non-normally distributed, Mann-Whitney or Kruskal-Wallis non-parametric tests were performed. GraphPad Prism version 5.0 software for Windows (GraphPad Software, La Jolla, CA, USA) was used to illustrate the data through graphs. Data are expressed as the mean ± standard deviation. P<0.05 was considered to indicate a statistically significant difference.

Results

Associations among age, PSA levels, green/red ratios and Gleason scores in patients with or without HER2 amplification

For statistical analysis, patients were divided into two groups consisting of patients with or without HER2 amplification. Variables were assessed within each group and the results are presented in Tables IIII. The demographic data of patients with PCa with and without HER2 amplification are shown in Table I. There were no associations among the serum levels of PSA, green/red ratios (Fig. 1) or Gleason scores in patients without HER2 amplification.

Table I.

Prostate cancer patients with or without HER2 amplification.

Table I.

Prostate cancer patients with or without HER2 amplification.

Patient IDAgeSituationPSAPathologic gradeGleason scoreGreen signalRed signalGreen/red
P-70955L5.1242711162.31
P-43682R8.13b54101343.05
P-113956L8.224201832.42
P-10065L9.23a 3551302.73
P-32661L9.34b6296903.28
P-43582R6.13a5168752.24
P-110167R1954b74011342.99
P-56466L10.93a6201682.95
P-6269L32.83a52781162.39
P-2783L9.33a5180712.53
P-6361R14.83a5214952.25
P-42582L16.23a5220752.93
P-59975R74.34b7224882.54
P-1383R16.44b64851812.67
P-6870L156.24b7182732.49
P-8070R9.2464651932.41
P-6966L19.2474591862.46
P-13778R20.846150682.22
P-16275L33.1464211662.53
P-69165L4.95244442561.73
P-99361L69.84b82121651.28
P-108482L45.74a7
P-80678L6.14b72291122.04
P-85680L78.34a62401231.95
P-2783L8.13a52211102.00
P-15068R8.94b6120
P-43982L6.13a5160792.02
P-17457R5.524112601.80
P-1271L18.63c54782332.05
P-3777L140.146110591.86
P-8358L7.345165861.91
P-16474R4.4455962812.12

[i] HER2 amplification was considered when the green/red ratio was >2.2. HER2, human epidermal growth factor receptor 2; PSA, prostate-specific antigen; L, left; R, right.

Table III.

Associations among tumor position, pathological stage, age, serum levels of PSA, green/red ratio and Gleason score in patients without human epidermal growth factor receptor 2 amplification.

Table III.

Associations among tumor position, pathological stage, age, serum levels of PSA, green/red ratio and Gleason score in patients without human epidermal growth factor receptor 2 amplification.

ParameterAgePSAGreen/redGleason score
Tumor position
  Left73.7±9.338.4±45.21.88±0.235.8±1.2
  Right66.33±8.616.1±2.51.97±0.165±1
  P-value0.150.0090.4530.240
Pathologic stage
  261±5.65.22±0.3841.76
  3a82±0.707±1.4125
  3c7118.62.055
  469.66±10.2150.43±77.581.96±0.145.33±0.5
  4a81±0.7162±23.051.956±0.71
  4b69±8.5428.27±36.001.66±0.547±1
  P-value0.1420.7490.8730.057

[i] Data are presented as the mean ± standard deviation. PSA, prostate-specific antigen.

Amplification levels of the HER2 gene are directly associated with pathological stage in patients with PCa

There was a weak association between the green/red ratio and age in patients without HER2 amplification (P=0.046; Table II), thus suggesting that younger patients exhibited a lower tendency for HER2 amplification. In addition, a positive correlation (P=0.004) was observed between the serum levels of PSA and Gleason score (Table II). The associations between the green/red ratio and PSA levels or Gleason score were not significant (P=0.228 and 0.941, respectively; Table II).

Table II.

P-values for the associations between the mean age, serum levels of PSA, green/red ratio and Gleason score of patients without human epidermal growth factor receptor 2 amplification.

Table II.

P-values for the associations between the mean age, serum levels of PSA, green/red ratio and Gleason score of patients without human epidermal growth factor receptor 2 amplification.

ParameterAgePSAGreen/redGleason
Age0.230.0460.253
PSA0.2280.004
Green/red0.941

[i] PSA, prostate-specific antigen.

For the analysis, patients were divided into two separate groups based on the level of HER2 gene amplification (i.e., with and without amplification). The first group consisted of 19 patients and the second group consisted of 13 patients. A high level of HER2 gene amplification was considered when the HER2/CEP17 ratio was >2.2 (Fig. 1).

The mean ages were 73.7 and 63.3 years for patients with left- and right-side tumors, respectively, which were not significantly different (P=0.15; Table III). With the exception of the serum levels of PSA (P=0.009), there were no significant differences in any of the parameters (green/red ratio and Gleason score) between patients with left- and right-sided tumors. The mean Gleason score among patients was 5, and the Gleason score showed no association with the pathologic stage (P=0.303; Table III). The tumors were composed of different Gleason scores, but were between stages T2 and T5 (Table III). Similar to the patients without HER2 amplification, there was a significant association between the Gleason score and serum levels of PSA in patients with HER2 amplification (P<0.001; Table IV). However, there was no significant association between the other parameters in patients with HER2 amplification (P>0.05; Table IV). The tumor position was not significantly associated with the mean age, PSA levels, green/red ratio or Gleason score of patients with HER2 amplification, although a significant correlation was observed between the Gleason score and pathologic stage (P=0.002; Table V).

Table IV.

P-values for the associations between the age, serum levels of PSA, green/red ratio and Gleason score of patients with human epidermal growth factor receptor 2 amplification.

Table IV.

P-values for the associations between the age, serum levels of PSA, green/red ratio and Gleason score of patients with human epidermal growth factor receptor 2 amplification.

ParameterAgePSAGreen/redGleason
Age0.2480.5710.522
PSA0.404 <0.001a
Green/red0.62

a Correlation is significant at the 0.01 level (two-tailed). PSA, prostate-specific antigen.

Table V.

Associations among tumor position, pathologic stage, age, serum levels of PSA, green/red ratio and Gleason score in patients with human epidermal growth factor receptor 2 amplification.

Table V.

Associations among tumor position, pathologic stage, age, serum levels of PSA, green/red ratio and Gleason score in patients with human epidermal growth factor receptor 2 amplification.

ParameterAgePSAGreen/redGleason score
Tumor position
  Left68.0±9.2428.4±43.52.64±0.35.5±1.0
  Right74.75±8.043±65.252.55±0.335.89±0.83
  P-value0.750.6430.3820.290
Pathologic stage
  255.5±0.716.55±22.36±0.084
  3a73.83±9.6715±9.452.58±0.35.17±0.4
  3b8283.055
  4a72.25±5.3220.55±9.72.4±0.156.25±0.5
  4b71.2±8.3290.24±83.042.79±0.336.6±0.55
  P-value0.0950.0780.1230.002

[i] Data are presented as the mean ± standard deviation. PSA, prostate-specific antigen.

Discussion

DNA ploidy has been accepted as a significant predictor of prognosis in patients with PCa (50). In the present study, amplification and overexpression of HER2 was demonstrated in patients with PCa, which has previously been associated with cancer progression, a poor prognosis and development of androgen independency (51). HER2 status is routinely assigned using in situ hybridization to assess HER2 gene amplification, but interpretation of in situ hybridization results may be challenging in tumors with chromosome 17 polysomy or intratumoral genetic heterogeneity. Apparent chromosome 17 polysomy, defined by increased CEP17 signal number, is a common genetic aberration in breast cancer and represents an alternative mechanism for increasing HER2 copy number. Elevated CEP17 count (polysomy) has been linked with adverse clinicopathologic features and HER2 overexpression, although there are numerous discrepancies in the literature (37). HER2 overexpression and/or amplification are recurrently reported in numerous tumor types, and have been shown to have significant therapeutic implications in patients with cancer (33). A meta-analysis of 5,976 patients demonstrated that HER2/neu overexpression was associated with mortality and recurrence in patients with PCa (52). Furthermore, it has been suggested that HER2 overexpression at the protein level is significantly associated with the amplification of HER2 (53). FISH is considered the gold standard method for detecting gene amplification, and has been reported to be more accurate than flow cytometry and immunohistochemistry (54). An increasing number of authors have employed the CISH method for determining gene amplification in various types of cancer (37,55,56). CISH is a recently developed technique in which the DNA probe is located based on an immunoperoxidase reaction. This method is similar to FISH, although it does not involve the use of fluorescence microscopy. In addition, FISH signals fade within a few weeks and the FISH results must be recorded using expensive digital systems, which is not required for CISH staining. Owing to its resemblance to immunohistochemistry staining (57), CISH is also easier to interpret by pathologists who are not trained in fluorescence microscopy. Furthermore, in previous studies, CISH was observed to be well-correlated with FISH (46,5860).

The present study used standard CISH to demonstrate that HER2 was amplified in Iranian (Tehran province) patients with PCa. Notably, HER2 amplification was observed in >50% of patients. Similarly, using a FISH technique, a study on 44 patients with PCa demonstrated 53 and 80% low copy amplification in non-metastatic and metastatic samples, respectively (61). The results of the present study were consistent with previous studies, in which HER2 amplification was reported in 44 and 41% of 62 and 113 Americans, respectively, using the FISH method (54,62), whereas another analysis reported no HER2 amplification (63). Furthermore, in a previous study, FFPE tissue blocks from 88 patients demonstrated a minor amplification rate of 9.3% (8/88 cases) (64). Similarly, Qi et al (53) used a FISH method and demonstrated that only 5.8% of Chinese patients with PCa had such a genetic alteration, and an investigation of 93 cancer samples showed that 6.5% had low levels of HER2 amplification, which was co-amplified with the topoisomerase (DNA) II α gene (65). These conflicting results may exist due to variation in the sample size and method used, or as a result of genetic heterogeneity. Furthermore, the findings may suggest that the CISH method is superior to FISH for HER2 detection in PCa samples. CISH has also been utilized for detection of copy number variation in the HER2/neu gene (66). In addition, the accuracy and reproducibility of CISH has been demonstrated in a previous study of breast carcinoma, in which the authors suggested that CISH may be regarded as a practical alternative for FISH (67). Other studies have considered this matter and proposed that CISH is a viable alternative to FISH and had similar properties; for example, both are in situ hybridization techniques and directly visualise the number of gene copies present in the nucleus, but CISH is cheaper and it produces a stable record of the slide that can be interpreted with a light microscope in the background of the tumour histopathology (68). Permanent staining and the absence of a fluorescent dye make CISH a suitable replacement for FISH (69). In addition, its usability, relative inexpensiveness and speed make CISH more attractive than FISH for assessing HER2 amplification/overexpression (59,70).

In conclusion, to the best of our knowledge, the present study is the first to report the amplification of HER2 in Iranian patients (Tehran province) with PCa. Furthermore, it was demonstrated that there were no associations among the serum levels of PSA, green/red ratios or Gleason scores in patients without HER2 amplification. Conversely, there was a weak correlation between the green/red ratio and age in these patients (P=0.046), which suggested the tendency for younger patients to exhibit lower levels of HER2 amplification. Notably, there was no association between the green/red ratio and pathologic stage of patients without HER2 amplification (P=0.873), although the increasing trend suggested that clinicians may consider Herceptin as a drug of choice for patients with PCa. In addition, there was no association between PSA levels (P=0.749) or Gleason score (P=0.057) and pathologic stage in patients without HER2 amplification. In patients with HER2 amplification, there was a significant association between the Gleason score and the serum level of PSA (P<0.001). However, there was no significant association between the other parameters in patients with HER2 amplification (P>0.05). The tumor position was not significantly associated with the mean age, PSA level, green/red ratio or Gleason score of the patients with HER2 amplification, although a significant correlation was observed between the Gleason score and pathological stage (P=0.002; Table V). Finally, the present study confirmed the results of previous studies, which suggested that the CISH method may be considered a valuable replacement for FISH. Further studies involving PCa samples are required in order to validate the results of the present study.

Acknowledgements

The present study was supported by a research grant from Tehran University of Medical Sciences (Tehran, Iran; 516478).

Glossary

Abbreviations

Abbreviations:

PCa

prostate cancer

HER2

human epidermal growth factor receptor 2

CISH

chromogenic in situ hybridization

PSA

prostate specific antigen

FISH

florescence in-situ hybridization

References

1 

Braga-Basaria M, Dobs AS, Muller DC, Carducci MA, John M, Egan J and Basaria S: Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J Clin Oncol. 24:3979–3983. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J, Collins C, Bismar TA, Chinnaiyan AM, De Marzo AM and Rubin MA: TMPRSS2-ERG fusion prostate cancer: An early molecular event associated with invasion. Am J Surg Pathol. 31:882–888. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Kolahdoozan S, Sadjadi A, Radmard AR and Khademi H: Five common cancers in Iran. Arch Iran Med. 13:143–146. 2010.PubMed/NCBI

4 

Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O and Bray F: International variation in prostate cancer incidence and mortality rates. Eur Urol. 61:1079–1092. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Wong MC, Goggins WB, Wang HH, Fung FD, Leung C, Wong SY, Ng CF and Sung JJ: Global incidence and mortality for prostate cancer: Analysis of temporal patterns and trends in 36 countries. Eur Urol. June 8–2016.(Epub ahead of print). View Article : Google Scholar

6 

Kallioniemi OP and Visakorpi T: Genetic basis and clonal evolution of human prostate cancer. Adv Cancer Res. 68:225–255. 1996. View Article : Google Scholar : PubMed/NCBI

7 

Boyd LK, Mao X and Lu YJ: The complexity of prostate cancer: Genomic alterations and heterogeneity. Nat Rev Urol. 9:652–664. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Mottet N, Schmid HP, van der Kwast T, Wiegel T, et al: EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 59:61–71. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Damaschke N, Yang B, Bhusari S, Svaren J and Jarrard D: Epigenetic susceptibility factors for prostate cancer with aging. The Prostate. 2013.73(16): 1721–1730. View Article : Google Scholar : PubMed/NCBI

10 

Parent ME and Siemiatycki J: Occupation and prostate cancer. Epidemiol Rev. 23:138–143. 2015. View Article : Google Scholar

11 

Salmaninejad A, Sadeghi N and Ghadami S: Alterations of KRAS exon 2 codon 12/13 mutation status in prostatic adenocarcinoma; Bioinformatics aspects. Arch Can Res. 4:22016. View Article : Google Scholar

12 

Shen MM and Abate-Shen C: Molecular genetics of prostate cancer: New prospects for old challenges. Genes Dev. 24:1967–2000. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Eeles RA, Al Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Ghoussaini M, Luccarini C, Dennis J, Jugurnauth-Little S, et al: Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet. 45:385–391, 391e1-2. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Takata R, Akamatsu S, Kubo M, Takahashi A, Hosono N, Kawaguchi T, Tsunoda T, Inazawa J, Kamatani N, Ogawa O, et al: Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet. 42:751–754. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Barbieri CE, Demichelis F and Rubin MA: Molecular genetics of prostate cancer: Emerging appreciation of genetic complexity. Histopathology. 60:187–198. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, et al: Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 448:595–599. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Kumar-Sinha C, Tomlins SA and Chinnaiyan AM: Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 8:497–511. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Santarius T, Shipley J, Brewer D, Stratton MR and Cooper CS: A census of amplified and overexpressed human cancer genes. Nat Rev Cancer. 10:59–64. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Salmaninejad A, Ghadami S, Dizaji MZ, Golchehre Z, Estiar MA, Zamani MR, Ebrahimzadeh-Vesal R, Nowroozi MR and Shakoori A: Molecular characterization of KRAS, BRAF, and EGFR genes in cases with prostatic adenocarcinoma; reporting bioinformatics description and recurrent mutations. Clin Lab. 61:749–759. 2015.PubMed/NCBI

20 

Brown RS, Edwards J, Dogan A, Payne H, Harland SJ, Bartlett JM and Masters JR: Amplification of the androgen receptor gene in bone metastases from hormone-refractory prostate cancer. J Pathol. 198:237–244. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Saramäki OR, Tammela TL, Martikainen PM, Vessella RL and Visakorpi T: The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer. 45:639–645. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Saramäki O, Willi N, Bratt O, Gasser TC, Koivisto P, Nupponen NN, Bubendorf L and Visakorpi T: Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am J Pathol. 159:2089–2094. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, Kunzelmann K and Bubendorf L: KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene. 26:2525–2534. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Ren B, Yu G, Tseng GC, Cieply K, Gavel T, Nelson J, Michalopoulos G, Yu YP and Luo JH: MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene. 25:1090–1098. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Wang R, Xu J, Saramäki O, Visakorpi T, Sutherland WM, Zhou J, Sen B, Lim SD, Mabjeesh N, Amin M, et al: PrLZ, a novel prostate-specific and androgen-responsive gene of the TPD52 family, amplified in chromosome 8q21. 1 and overexpressed in human prostate cancer. Cancer Res. 64:1589–1594. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Saramäki OR, Savinainen KJ, Nupponen NN, Bratt O and Visakorpi T: Amplification of hypoxia-inducible factor 1alpha gene in prostate cancer. Cancer Genet Cytogenet. 128:31–34. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Rimawi MF, Mayer IA, Forero A, Nanda R, Goetz MP, Rodriguez AA, Pavlick AC, Wang T, Hilsenbeck SG, et al: Multicenter phase II study of neoadjuvant lapatinib and trastuzumab with hormonal therapy and without chemotherapy in patients with human epidermal growth factor receptor 2–overexpressing breast cancer: TBCRC 006. J Clin Oncol. 31:1726–1731. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G and Slamon DJ: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 17:2639–2648. 1999.PubMed/NCBI

29 

Poovassery JS, Kang JC, Kim D, Ober RJ and Ward ES: Antibody targeting of HER2/HER3 signaling overcomes heregulin-induced resistance to PI3K inhibition in prostate cancer. Int J Cancer. 137:267–277. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Rao K, Gaughan L, Robson C and McCracken S: The role of the HER2 and HER3 in prostate cancer and their potential as therapeutic targets. Eur J Cancer. 61:S177–S178. 2016. View Article : Google Scholar

31 

Baek KH, Hong ME, Jung YY, Lee CH, Lee TJ, Park ES, Kim MK, Yoo JH and Lee SW: Correlation of AR, EGFR, and HER2 expression levels in prostate cancer: Immunohistochemical analysis and chromogenic in situ hybridization. Cancer Res Treat. 44:50–56. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Reese DM, Small EJ, Magrane G, Waldman FM, Chew K and Sudilovsky D: HER2 protein expression and gene amplification in androgen-independent prostate cancer. Am J Clin Pathol. 116:234–239. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Yan M, Schwaederle M, Arguello D, Millis SZ, Gatalica Z and Kurzrock R: HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev. 34:157–164. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Yamanaka Y, Friess H, Kobrin MS, Büchler M, Kunz J, Beger HG and Korc M: Overexpression of HER2/neu oncogene in human pancreatic carcinoma. Hum Pathol. 24:1127–1134. 1993. View Article : Google Scholar : PubMed/NCBI

35 

Nuciforo PG, Pellegrini C, Fasani R, Maggioni M, Coggi G, Parafioriti A and Bosari S: Molecular and immunohistochemical analysis of HER2/neu oncogene in synovial sarcoma. Hum Pathol. 34:639–645. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Salmaninejad A, Estiar MA, Gill RK, Shih JH, Hewitt S, Jeon HS, Fukuoka J, Shilo K, Shakoori A and Jen J: Expression analysis of p16, c-Myc, and mSin3A in non-small cell lung cancer by computer aided scoring and analysis (CASA). Clin Lab. 61:549–559. 2015.PubMed/NCBI

37 

Hanna WM, Rüschoff J, Bilous M, Coudry RA, Dowsett M, Osamura RY, Penault-Llorca F, van de Vijver M and Viale G: HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol. 27:4–18. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Bar-Shira A, Pinthus JH, Rozovsky U, Goldstein M, Sellers WR, Yaron Y, Eshhar Z and Orr-Urtreger A: Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res. 62:6803–6807. 2002.PubMed/NCBI

39 

Sattler HP, Lensch R, Rohde V, Zimmer E, Meese E, Bonkhoff H, Retz M, Zwergel T, Bex A, Stoeckle M and Wullich B: Novel amplification unit at chromosome 3q25-q27 in human prostate cancer. Prostate. 45:207–215. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Elo JP and Visakorpi T: Molecular genetics of prostate cancer. Ann Med. 33:130–141. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A and Bartlett JM: HER2 and COX2 expression in human prostate cancer. Eur J Cancer. 40:50–55. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Edwards J, Krishna NS, Witton CJ and Bartlett JM: Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res. 9:5271–2581. 2003.PubMed/NCBI

43 

Nupponen NN, Kakkola L, Koivisto P and Visakorpi T: Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol. 153:141–148. 1998. View Article : Google Scholar : PubMed/NCBI

44 

Lass U, Hartmann C, Capper D, Herold-Mende C, von Deimling A, Meiboom M and Mueller W: Chromogenic in situ hybridization is a reliable alternative to fluorescence in situ hybridization for diagnostic testing of 1p and 19q loss in paraffin-embedded gliomas. Brain Pathol. 23:311–318. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Zhang Y, Perez T, Blondin B, Du J, Liu P, Escarzaga D, et al: Identification of FISH biomarkers to detect chromosome abnormalities associated with prostate adenocarcinoma in tumour and field effect environment. BMC Cancer. 14:1292014. View Article : Google Scholar : PubMed/NCBI

46 

Arnould L, Denoux Y, MacGrogan G, Penault-Llorca F, Fiche M, Treilleux I, Mathieu MC, Vincent-Salomon A, Vilain MO and Couturier J: Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer. Br J Cancer. 88:1587–1591. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Brimo F, Montironi R, Egevad L, Erbersdobler A, Lin DW, Nelson JB, Rubin MA, van der Kwast T, Amin M and Epstein JI: Contemporary grading for prostate cancer: Implications for patient care. Eur Urol. 63:892–901. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F and Mottet N: European Association of Urology: EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent - update 2013. Eur Urol. 65:124–137. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Tanner M, Gancberg D, Di Leo A, Larsimont D, Rouas G, Piccart MJ and Isola J: Chromogenic in situ hybridization: A practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol. 157:1467–1472. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Lennartz M, Minner S, Brasch S, Wittmann H, Paterna L, Angermeier K, Öztürk E, Shihada R, Ruge M, Kluth M, et al: The combination of DNA ploidy status and PTEN/6q15 deletions provides strong and independent prognostic information in prostate cancer. Clin Cancer Res. 22:2802–2811. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Di Lorenzo G, Tortora G, D'Armiento FP, De Rosa G, Staibano S, Autorino R, D'Armiento M, De Laurentiis M, De Placido S, Catalano G, et al: Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res. 8:3438–3444. 2002.PubMed/NCBI

52 

Neto AS, Tobias-Machado M, Wroclawski ML, Fonseca FL, Teixeira GK, Amarante RD, Wroclawski ER and Del Giglio A: Her-2/neu expression in prostate adenocarcinoma: A systematic review and meta-analysis. J Urol. 184:842–850. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Qi M, Yang X, Zhang F, Lin T, Sun X, Li Y, Yuan H, Ren Y, Zhang J, Qin X and Han B: ERG rearrangement is associated with prostate cancer-related death in Chinese prostate cancer patients. PLoS One. 9:e849592014. View Article : Google Scholar : PubMed/NCBI

54 

Ross JS, Sheehan C, Hayner-Buchan AM, Ambros RA, Kallakury BV, Kaufman R, Fisher HA and Muraca PJ: HER-2/neu gene amplification status in prostate cancer by fluorescence in situ hybridization. Hum Pathol. 28:827–833. 1997. View Article : Google Scholar : PubMed/NCBI

55 

Valtorta E, Misale S, Sartore-Bianchi A, Nagtegaal ID, Paraf F, Lauricella C, Dimartino V, Hobor S, Jacobs B, Ercolani C, et al: KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy. Int J Cancer. 133:1259–1265. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Park YS, Hwang HS, Park HJ, Ryu M-H, Chang H-M, Yook JH, Kim BS, Jang SJ and Kang YK: Comprehensive analysis of HER2 expression and gene amplification in gastric cancers using immunohistochemistry and in situ hybridization: Which scoring system should we use? Hum Pathol. 43:413–422. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Jacquemier J, Spyratos F, Esterni B, Mozziconacci M-J, Antoine M, Arnould L, Lizard S, Bertheau P, Lehmann-Che J, Fournier CB, et al: SISH/CISH or qPCR as alternative techniques to FISH for determination of HER2 amplification status on breast tumors core needle biopsies: A multicenter experience based on 840 cases. BMC Cancer. 13:3512013. View Article : Google Scholar : PubMed/NCBI

58 

Horii R, Matsuura M, Iwase T, Ito Y and Akiyama F: Comparison of dual-color in-situ hybridization and fluorescence in-situ hybridization in HER2 gene amplification in breast cancer. Breast Cancer. 21:598–604. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Rosa FE, Santos RM, Rogatto SR and Domingues MA: Chromogenic in situ hybridization compared with other approaches to evaluate HER2/neu status in breast carcinomas. Braz J Med Biol Res. 46:207–216. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Kiyose S, Igarashi H, Nagura K, Kamo T, Kawane K, Mori H, Ozawa T, Maeda M, Konno K, Hoshino H, et al: Chromogenic in situ hybridization (CISH) to detect HER2 gene amplification in breast and gastric cancer: comparison with immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Pathol Int. 62:728–734. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Liu HL, Gandour-Edwards R, Lara PN Jr, de Vere White R and LaSalle JM: Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J. 7:395–403. 2001.PubMed/NCBI

62 

Ross JS, Sheehan CE, Hayner-Buchan AM, Ambros RA, Kallakury BV, Kaufman RP Jr, Fisher HA, Rifkin MD and Muraca PJ: Prognostic significance of HER-2/neu gene amplification status by fluorescence in situ hybridization of prostate carcinoma. Cancer. 79:2162–2170. 1997. View Article : Google Scholar : PubMed/NCBI

63 

Sadasivan R, Morgan R, Jennings S, Austenfeld M, Van Veldhuizen P, Stephens R and Noble M: Overexpression of Her-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol. 150:126–131. 1993.PubMed/NCBI

64 

Mark HF, Feldman D, Das S, Kye H, Mark S, Sun CL and Samy M: Fluorescence in situ hybridization study of HER-2/neu oncogene amplification in prostate cancer. Exp Mol Pathol. 66:170–178. 1999. View Article : Google Scholar : PubMed/NCBI

65 

Murphy AJ, Hughes CA, Barrett C, Magee H, Loftus B, O'Leary JJ and Sheils O: Low-level TOP2A amplification in prostate cancer is associated with HER2 duplication, androgen resistance, and decreased survival. Cancer Res. 67:2893–2898. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Savinainen KJ, Saramäki OR, Linja MJ, Bratt O, Tammela TL, Isola JJ and Visakorpi T: Expression and gene copy number analysis of ERBB2 oncogene in prostate cancer. Am J Pathol. 160:339–345. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Loring P, Cummins R, O'Grady A and Kay EW: HER2 positivity in breast carcinoma: A comparison of chromogenic in situ hybridization with fluorescence in situ hybridization in tissue microarrays, with targeted evaluation of intratumoral heterogeneity by in situ hybridization. Appl Immunohistochem Mol Morphol. 13:194–200. 2005. View Article : Google Scholar : PubMed/NCBI

68 

van de Vijver M, Bilous M, Hanna W, Hofmann M, Kristel P, Penault-Llorca F and Rüschoff J: Chromogenic in situ hybridisation for the assessment of HER2 status in breast cancer: An international validation ring study. Breast Cancer Res. 9:R682007. View Article : Google Scholar : PubMed/NCBI

69 

Elliott K, Hamilton PW and Maxwell P: Fluorescence (FISH) and chromogenic (CISH) in situ hybridisation in prostate carcinoma cell lines: Comparison and use of virtual microscopy. Br J Biomed Sci. 65:167–171. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Penault-Llorca F, Bilous M, Dowsett M, Hanna W, Osamura RY, Rüschoff J and van de Vijver M: Emerging technologies for assessing HER2 amplification. Am J Clin Pathol. 132:539–548. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December-2016
Volume 12 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Sharifi N, Salmaninejad A, Ferdosi S, Bajestani AN, Khaleghiyan M, Estiar MA, Jamali M, Nowroozi MR and Shakoori A: HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method. Oncol Lett 12: 4651-4658, 2016
APA
Sharifi, N., Salmaninejad, A., Ferdosi, S., Bajestani, A.N., Khaleghiyan, M., Estiar, M.A. ... Shakoori, A. (2016). HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method. Oncology Letters, 12, 4651-4658. https://doi.org/10.3892/ol.2016.5235
MLA
Sharifi, N., Salmaninejad, A., Ferdosi, S., Bajestani, A. N., Khaleghiyan, M., Estiar, M. A., Jamali, M., Nowroozi, M. R., Shakoori, A."HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method". Oncology Letters 12.6 (2016): 4651-4658.
Chicago
Sharifi, N., Salmaninejad, A., Ferdosi, S., Bajestani, A. N., Khaleghiyan, M., Estiar, M. A., Jamali, M., Nowroozi, M. R., Shakoori, A."HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method". Oncology Letters 12, no. 6 (2016): 4651-4658. https://doi.org/10.3892/ol.2016.5235