|
1
|
Lu J, Li XP, Dong Q, Kung HF and He ML:
TBX2 and TBX3: The special value for anticancer drug targets.
Biochim Biophys Acta. 1806:268–274. 2010.PubMed/NCBI
|
|
2
|
Abrahams A, Parker MI and Prince S: The
T-box transcription factor Tbx2: Its role in development and
possible implication in cancer. IUBMB Life. 62:92–102.
2010.PubMed/NCBI
|
|
3
|
Takeuchi JK, Koshiba-Takeuchi K, Suzuki T,
Kamimura M, Ogura K and Ogura T: Tbx5 and Tbx4 trigger limb
initiation through activation of the Wnt/Fgf signaling cascade.
Development. 130:2729–2739. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kispert A and Hermann BG: The Brachyury
gene encodes a novel DNA binding protein. EMBO J. 12:4898–4899.
1993.PubMed/NCBI
|
|
5
|
MÜller CW and Herrmann BG:
Crystallographic structure of the T domain-DNA complex of the
Brachyury transcription factor. Nature. 389:884–888. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ruvinsky I and Gibson-Brown JJ: Genetic
and developmental bases of serial homology in vertebrate limb
evolution. Development. 127:5233–5244. 2000.PubMed/NCBI
|
|
7
|
Tada M and Smith JC: T-targets: Clues to
understanding the functions of T-box proteins. Dev Growth Differ.
43:1–11. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Papaioannou VE: The T-box gene family:
Emerging roles in development, stem cells and cancer. Development.
141:3819–3833. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Stein RA: A new TBX gene linked to human
disease. Clin Genet. 76:23–24. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Naiche LA, Harrelson Z, Kelly RG and
Papaioannou VE: T-box genes in vertebrate development. Annu Rev
Genet. 39:219–239. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Morley RH, Lachani K, Keefe D, Gilchrist
MJ, Flicek P, Smith JC and Wardle FC: A gene regulatory network
directed by zebrafish No tail accounts for its roles in mesoderm
formation. Proc Natl Acad Sci USA. 106:3829–3834. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gentsch GE, Owens ND, Martin SR,
Piccinelli P, Faial T, Trotter MW, Gilchrist MJ and Smith JC: In
vivo T-box transcription factor profiling reveals joint regulation
of embryonic neuromesodermal bipotency. Cell Rep. 4:1185–1196.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lolas M, Valenzuela PD, Tjian R and Liu Z:
Charting Brachyury-mediated developmental pathways during early
mouse embryogenesis. Proc Natl Acad Sci USA. 111:4478–4483. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Papaioannou VE and Silver LM: The T-box
gene family. Bioessays. 20:9–19. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mowla S, Pinnock R, Leaner VD, Goding CR
and Prince S: PMA-induced up-regulation of TBX3 is mediated by AP-1
and contributes to breast cancer cell migration. Biochem J.
433:145–153. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lingbeek ME, Jacobs JJ and van Lohuizen M:
The T-box repressors TBX2 and TBX3 specifically regulate the tumor
suppressor gene p14ARF via a variant T-site in the initiator. J
Biol Chem. 277:26120–26127. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Davenport TG, Jerome-Majewska LA and
Papaioannou VE: Mammary gland, limb and yolk sac defects in mice
lacking Tbx3, the gene mutated in human ulnar mammary syndrome.
Development. 130:2263–2273. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rowley M, Grothey E and Couch FJ: The role
of Tbx2 and Tbx3 in mammary development and tumorigenesis. J
Mammary Gland Biol Neoplasia. 9:109–118. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fan W, Huang X, Chen C, Gray J and Huang
T: TBX3 and its isoform TBX3+2a are functionally distinctive in
inhibition of senescence and are overexpressed in a subset of
breast cancer cell lines. Cancer Res. 64:5132–5139. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li J, Weinberg MS, Zerbini L and Prince S:
The oncogenic TBX3 is a downstream target and mediator of the
TGF-β1 signaling pathway. Mol Biol Cell. 24:3569–3576. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Peres J, Davis E, Mowla S, Bennett DC, Li
JA, Wansleben S and Prince S: The highly homologous T-Box
transcription factors, TBX2 and TBX3, have distinct roles in the
oncogenic process. Genes Cancer. 1:272–282. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Boyd SC, Mijatov B, Pupo GM, Tran SL,
Gowrishankar K, Shaw HM, Goding CR, Scolyer RA, Mann GJ, Kefford
RF, et al: Oncogenic B-RAF(V600E) signaling induces the T-Box3
transcriptional repressor to repress E-cadherin and enhance
melanoma cell invasion. J Invest Dermatol. 133:1269–1277. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rodriguez M, Aladowicz E, Lanfrancone L
and Goding CR: Tbx3 represses E-cadherin expression and enhances
melanoma invasiveness. Cancer Res. 68:7872–7881. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mowla S, Pinnock R, Leaner VD, Goding CR
and Prince S: PMA-induced up-regulation of TBX3 is mediated by AP-1
and contributes to breast cancer cell migration. Biochem J.
433:145–153. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jackson D, Zheng Y, Lyo D, Shen Y,
Nakayama K, Nakayama KI, Humphries MJ, Reyland ME and Foster DA:
Suppression of cell migration by protein kinase Cdelta. Oncogene.
24:3067–3072. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang ZG, Delva L, Gaboli M, Rivi R,
Giorgio M, Cordon-Cardo C, Grosveld F and Pandolfi PP: Role of PML
in cell growth and the retinoic acid pathway. Science.
279:1547–1551. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gurrieri C, Capodieci P, Bernardi R,
Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C and
Pandolfi PP: Loss of the tumor suppressor PML in human cancers of
multiple histologic origins. J Natl Cancer Inst. 96:269–279. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Martin N, Benhamed M, Nacerddine K,
Demarque MD, van Lohuizen M, Dejean A and Bischof O: Physical and
functional interaction between PML and TBX2 in the establishment of
cellular senescence. EMBO J. 31:95–109. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Pomerantz J, Schreiber-Agus N, Liégeois
NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee
HW, et al: The Ink4a tumor suppressor gene product, p19Arf,
interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell.
92:713–723. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Stott FJ, Bates S, James MC, McConnell BB,
Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH and
Peters G: The alternative product from the human CDKN2A locus,
p14(ARF), participates in a regulatory feedback loop with p53 and
MDM2. EMBO J. 17:5001–5014. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Prince S, Carreira S, Vance KW, Abrahams A
and Goding CR: Tbx2 directly represses the expression of the
p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res.
64:1669–1674. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gitenay D and Baron VT: Is EGR1 a
potential target for prostate cancer therapy? Future Oncol.
5:993–1003. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Krones-Herzig A, Adamson E and Mercola D:
Early growth response 1 protein, an upstream gatekeeper of the p53
tumor suppressor, controls replicative senescence. Proc Natl Acad
Sci USA. 100:3233–3238. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Redmond KL, Crawford NT, Farmer H, D'Costa
ZC, O'Brien GJ, Buckley NE, Kennedy RD, Johnston PG, Harkin DP and
Mullan PB: T-box 2 represses NDRG1 through an EGR1-dependent
mechanism to drive the proliferation of breast cancer cells.
Oncogene. 29:3252–3262. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhu B, Zhang M, Byrum SD, Tackett AJ and
Davie JK: TBX2 blocks myogenesis and promotes proliferation in
rhabdomyosarcoma cells. Int J Cancer. 135:785–797. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ruas M and Peters G: The p16INK4a/CDKN2A
tumor suppressor and its relatives. Biochim Biophys Acta.
1378:F115–F177. 1998.PubMed/NCBI
|
|
37
|
Vance KW, Carreira S, Brosch G and Goding
CR: Tbx2 is overexpressed and plays an important role in
maintaining proliferation and suppression of senescence in
melanomas. Cancer Res. 65:2260–2268. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Basson CT, Bachinsky DR, Lin RC, Levi T,
Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA,
Leblanc-Straceski J, et al: Mutations in human TBX5 [corrected]
cause limb and cardiac malformation in Holt-Oram syndrome. Nat
Genet. 15:30–35. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
He ML, Chen Y, Peng Y, Jin D, Du D, Wu J,
Lu P, Lin MC and Kung HF: Induction of apoptosis and inhibition of
cell growth by developmental regulator hTBX5. Biochem Biophys Res
Commun. 297:185–192. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu WK, Jiang XY and Zhang ZX: Expression
of PSCA, PIWIL1, and TBX2 in endometrial adenocarcinoma. Onkologie.
33:241–245. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Glozak MA, Sengupta N, Zhang X and Seto E:
Acetylation and deacetylation of non-histone proteins. Gene.
363:15–23. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dokmanovic M and Marks PA: Prospects:
Histone deacetylase inhibitors. J Cell Biochem. 96:293–304. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Puri PL, Iezzi S, Stiegler P, Chen TT,
Schiltz RL, Muscat GE, Giordano A, Kedes L, Wang JY and Sartorelli
V: Class I histone deacetylases sequentially interact with MyoD and
pRb during skeletal myogenesis. Mol Cell. 8:885–897. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang X, Ozawa Y, Lee H, Wen YD, Tan TH,
Wadzinski BE and Seto E: Histone deacetylase 3 (HDAC3) activity is
regulated by interaction with protein serine/threonine phosphatase
4. Genes Dev. 19:827–839. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pan LN, Lu J and Huang B: HDAC inhibitors:
A potential new category of anti-tumor agents. Cell Mol Immunol.
4:337–343. 2007.PubMed/NCBI
|
|
46
|
Hosford SR and Miller TW: Clinical
potential of novel therapeutic targets in breast cancer: CDK4/6,
Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways.
Pharmgenomics Pers Med. 7:203–215. 2014.PubMed/NCBI
|
|
47
|
Yarosh W, Barrientos T, Esmailpour T, Lin
L, Carpenter PM, Osann K, Anton-Culver H and Huang T: TBX3 is
overexpressed in breast cancer and represses p14 ARF by interacting
with histone deacetylases. Cancer Res. 68:693–699. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Burgucu D, Guney K, Sahinturk D, Ozbudak
IH, Ozel D, Ozbilim G and Yavuzer U: Tbx3 represses PTEN and is
over-expressed in head and neck squamous cell carcinoma. BMC
Cancer. 12:4812012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Moral M and Paramio JM: Akt pathway as a
target for therapeutic intervention in HNSCC. Histol Histopathol.
23:1269–1278. 2008.PubMed/NCBI
|
|
50
|
Palena C, Polev DE, Tsang KY, Fernando RI,
Litzinger M, Krukovskaya LL, Baranova AV, Kozlov AP and Schlom J:
The human T-box mesodermal transcription factor Brachyury is a
candidate target for T-cell-mediated cancer immunotherapy. Clin
Cancer Res. 13:2471–2478. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shimoda M, Sugiura T, Imajyo I, Ishii K,
Chigita S, Seki K, Kobayashi Y and Shirasuna K: The T-box
transcription factor Brachyury regulates epithelial-mesenchymal
transition in association with cancer stem-like cells in adenoid
cystic carcinoma cells. BMC Cancer. 12:3772012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Grünert S, Jechlinger M and Beug H:
Diverse cellular and molecular mechanisms contribute to epithelial
plasticity and metastasis. Nat Rev Mol Cell Biol. 4:657–665. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nieto MA: The snail superfamily of
zinc-finger transcription factors. Nat Rev Mol Cell Biol.
3:155–166. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bolós V, Peinado H, Pérez-Moreno MA, Fraga
MF, Esteller M and Cano A: The transcription factor Slug represses
E-cadherin expression and induces epithelial to mesenchymal
transitions: A comparison with Snail and E47 repressors. J Cell
Sci. 116:499–511. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yang J, Mani SA, Donaher JL, Ramaswamy S,
Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A and
Weinberg RA: Twist, a master regulator of morphogenesis, plays an
essential role in tumor metastasis. Cell. 117:927–939. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang B, Lindley LE, Fernandez-Vega V,
Rieger ME, Sims AH and Briegel KJ: The T box transcription factor
TBX2 promotes epithelial-mesenchymal transition and invasion of
normal and malignant breast epithelial cells. PLoS One.
7:e413552012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wansleben S, Davis E, Peres J and Prince
S: A novel role for the anti-senescence factor TBX2 in DNA repair
and cisplatin resistance. Cell Death Dis. 4:e8462013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Reya T and Clevers H: Wnt signalling in
stem cells and cancer. Nature. 434:843–850. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Clevers H: Wnt/beta-catenin signaling in
development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Renard CA, Labalette C, Armengol C, Cougot
D, Wei Y, Cairo S, Pineau P, Neuveut C, de Reyniès A, Dejean A, et
al: Tbx3 is a downstream target of the Wnt/beta-catenin pathway and
a critical mediator of beta-catenin survival functions in liver
cancer. Cancer Res. 67:901–910. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Fong SH, Emelyanov A, Teh C and Korzh V:
Wnt signalling mediated by Tbx2b regulates cell migration during
formation of the neural plate. Development. 132:3587–3596. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Manning BD and Cantley LC: AKT/PKB
signaling: Navigating downstream. Cell. 129:1261–1274. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Brazil DP, Park J and Hemmings BA: PKB
binding proteins. Getting in on the Akt. Cell. 111:293–303. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Stahl JM, Sharma A, Cheung M, Zimmerman M,
Cheng JQ, Bosenberg MW, Kester M, Sandirasegarane L and Robertson
GP: Deregulated Akt3 activity promotes development of malignant
melanoma. Cancer Res. 64:7002–7010. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cheung M, Sharma A, Madhunapantula SV and
Robertson GP: Akt3 and mutant V600E B-Raf cooperate to promote
early melanoma development. Cancer Res. 68:3429–3439. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Peres J, Mowla S and Prince S: The T-box
transcription factor, TBX3, is a key substrate of AKT3 in
melanomagenesis. Oncotarget. 6:1821–1833. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Paxton C, Zhao H, Chin Y, Langner K and
Reecy J: Murine Tbx2 contains domains that activate and repress
gene transcription. Gene. 283:117–24. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhou Y, Du W, Koretsky T, Bagby GC and
Pang Q: TAT-mediated intracellular delivery of NPM-derived peptide
induces apoptosis in leukemic cells and suppresses leukemogenesis
in mice. Blood. 112:2474–2483. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fåhraeus R, Laín S, Ball KL and Lane DP:
Characterization of the cyclin-dependent kinase inhibitory domain
of the INK4 family as a model for a synthetic tumour suppressor
molecule. Oncogene. 16:587–596. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bonfanti M, Taverna S, Salmona M,
D'Incalci M and Broggini M: p21WAF1-derived peptides linked to an
internalization peptide inhibit human cancer cell growth. Cancer
Res. 57:1442–1446. 1997.PubMed/NCBI
|
|
71
|
Douglas NC and Papaioannou VE: The T-box
transcription factors TBX2 and TBX3 in mammary gland development
and breast cancer. J Mammary Gland Biol Neoplasia. 18:143–147.
2013. View Article : Google Scholar : PubMed/NCBI
|