|
1
|
Gilbert AN, Shevin RS, Anderson JC,
Langford CP, Eustace N, Gillespie GY, Singh R and Willey CD:
Generation of microtumors using 3D human biogel culture system and
patient-derived glioblastoma cells for kinomic profiling and drug
response testing. J Vis Exp. Jun 9–2016.(Epub ahead of print). doi:
10.3791/54026. View
Article : Google Scholar
|
|
2
|
Hess KR, Broglio KR and Bondy ML: Adult
glioma incidence trends in the United States, 1977–2000. Cancer.
101:2293–2299. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: European Organisation for Research and Treatment of
Cancer Brain Tumor and Radiotherapy Groups; National Cancer
Institute of Canada Clinical Trials Group: Radiotherapy plus
concomitant and adjuvant temozolomide for glioblastoma. N Engl J
Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Johnson DR and O'Neill BP: Glioblastoma
survival in the United States before and during the temozolomide
era. J Neurooncol. 107:359–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Verhaak RGW, Hoadley KA, Purdom E, Wang V,
Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al:
Cancer Genome Atlas Research Network: Integrated genomic analysis
identifies clinically relevant subtypes of glioblastoma
characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Madhavan S, Zenklusen JC, Kotliarov Y,
Sahni H, Fine HA and Buetow K: Rembrandt: helping personalized
medicine become a reality through integrative translational
research. Mol Cancer Res. 7:157–167. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Snuderl M, Fazlollahi L, Le LP, Nitta M,
Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD,
Betensky RA, et al: Mosaic amplification of multiple receptor
tyrosine kinase genes in glioblastoma. Cancer Cell. 20:810–817.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Szerlip NJ, Pedraza A, Chakravarty D, Azim
M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, et
al: Intratumoral heterogeneity of receptor tyrosine kinases EGFR
and PDGFRA amplification in glioblastoma defines subpopulations
with distinct growth factor response. Proc Natl Acad Sci USA.
109:3041–3046. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Patel AP, Tirosh I, Trombetta JJ, Shalek
AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT,
Martuza RL, et al: Single-cell RNA-seq highlights intratumoral
heterogeneity in primary glioblastoma. Science. 344:1396–1401.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kisselev AF and Goldberg AL: Proteasome
inhibitors: from research tools to drug candidates. Chem Biol.
8:739–758. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Groll M, Berkers CR, Ploegh HL and Ovaa H:
Crystal structure of the boronic acid-based proteasome inhibitor
bortezomib in complex with the yeast 20S proteasome. Structure.
14:451–456. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Berkers CR, Verdoes M, Lichtman E,
Fiebiger E, Kessler BM, Anderson KC, Ploegh HL, Ovaa H and Galardy
PJ: Activity probe for in vivo profiling of the specificity of
proteasome inhibitor bortezomib. Nat Methods. 2:357–362. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cusack JC Jr, Liu R, Houston M, Abendroth
K, Elliott PJ, Adams J and Baldwin AS Jr: Enhanced chemosensitivity
to CPT-11 with proteasome inhibitor PS-341: implications for
systemic nuclear factor-kappaB inhibition. Cancer Res.
61:3535–3540. 2001.PubMed/NCBI
|
|
14
|
Nawrocki ST, Bruns CJ, Harbison MT, Bold
RJ, Gotsch BS, Abbruzzese JL, Elliott P, Adams J and McConkey DJ:
Effects of the proteasome inhibitor PS-341 on apoptosis and
angiogenesis in orthotopic human pancreatic tumor xenografts. Mol
Cancer Ther. 1:1243–1253. 2002.PubMed/NCBI
|
|
15
|
Nawrocki ST, Sweeney-Gotsch B, Takamori R
and McConkey DJ: The proteasome inhibitor bortezomib enhances the
activity of docetaxel in orthotopic human pancreatic tumor
xenografts. Mol Cancer Ther. 3:59–70. 2004.PubMed/NCBI
|
|
16
|
Ling YH, Liebes L, Zou Y and Perez-Soler
R: Reactive oxygen species generation and mitochondrial dysfunction
in the apoptotic response to Bortezomib, a novel proteasome
inhibitor, in human H460 non-small cell lung cancer cells. J Biol
Chem. 278:33714–33723. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hideshima T, Richardson P, Chauhan D,
Palombella VJ, Elliott PJ, Adams J and Anderson KC: The proteasome
inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes
drug resistance in human multiple myeloma cells. Cancer Res.
61:3071–3076. 2001.PubMed/NCBI
|
|
18
|
Jagannath S, Barlogie B, Berenson J,
Siegel D, Irwin D, Richardson PG, Niesvizky R, Alexanian R,
Limentani SA, Alsina M, et al: A phase 2 study of two doses of
bortezomib in relapsed or refractory myeloma. Br J Haematol.
127:165–172. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Richardson PG, Sonneveld P, Schuster M,
Irwin D, Stadtmauer E, Facon T, Harousseau JL, Ben-Yehuda D, Lonial
S, Goldschmidt H, et al: Extended follow-up of a phase 3 trial in
relapsed multiple myeloma: final time-to-event results of the APEX
trial. Blood. 110:3557–3560. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Potts BC, Albitar MX, Anderson KC,
Baritaki S, Berkers C, Bonavida B, Chandra J, Chauhan D, Cusack JC
Jr, Fenical W, et al: Marizomib, a proteasome inhibitor for all
seasons: preclinical profile and a framework for clinical trials.
Curr Cancer Drug Targets. 11:254–284. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Williams PG, Buchanan GO, Feling RH,
Kauffman CA, Jensen PR and Fenical W: New cytotoxic
salinosporamides from the marine Actinomycete Salinispora tropica.
J Org Chem. 70:6196–6203. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Groll M, Huber R and Potts BCM: Crystal
structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in
complex with the 20S proteasome reveal important consequences of
beta-lactone ring opening and a mechanism for irreversible binding.
J Am Chem Soc. 128:5136–5141. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chauhan D, Catley L, Li G, Podar K,
Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai
A, et al: A novel orally active proteasome inhibitor induces
apoptosis in multiple myeloma cells with mechanisms distinct from
Bortezomib. Cancer Cell. 8:407–419. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kuhn DJ, Hunsucker SA, Chen Q, Voorhees
PM, Orlowski M and Orlowski RZ: Targeted inhibition of the
immunoproteasome is a potent strategy against models of multiple
myeloma that overcomes resistance to conventional drugs and
nonspecific proteasome inhibitors. Blood. 113:4667–4676. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Muchamuel T, Basler M, Aujay MA, Suzuki E,
Kalim KW, Lauer C, Sylvain C, Ring ER, Shields J, Jiang J, et al: A
selective inhibitor of the immunoproteasome subunit LMP7 blocks
cytokine production and attenuates progression of experimental
arthritis. Nat Med. 15:781–787. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
26
|
Miller CP, Ban K, Dujka ME, McConkey DJ,
Munsell M, Palladino M and Chandra J: NPI-0052, a novel proteasome
inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and
in combination with HDAC inhibitors in leukemia cells. Blood.
110:267–277. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Boatright KM and Salvesen GS: Mechanisms
of caspase activation. Curr Opin Cell Biol. 15:725–731. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Styczynski J, Olszewska-Slonina D,
Kolodziej B, Napieraj M and Wysocki M: Activity of bortezomib in
glioblastoma. Anticancer Res. 26:4499–4503. 2006.PubMed/NCBI
|
|
29
|
Yin D, Zhou H, Kumagai T, Liu G, Ong JM,
Black KL and Koeffler HP: Proteasome inhibitor PS-341 causes cell
growth arrest and apoptosis in human glioblastoma multiforme (GBM).
Oncogene. 24:344–354. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Vlashi E, Mattes M, Lagadec C, Donna LD,
Phillips TM, Nikolay P, McBride WH and Pajonk F: Differential
effects of the proteasome inhibitor NPI-0052 against glioma cells.
Transl Oncol. 3:50–55. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pei XY, Dai Y and Grant S: Synergistic
induction of oxidative injury and apoptosis in human multiple
myeloma cells by the proteasome inhibitor bortezomib and histone
deacetylase inhibitors. Clin Cancer Res. 10:3839–3852. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pérez-Galán P, Roué G, Villamor N,
Montserrat E, Campo E and Colomer D: The proteasome inhibitor
bortezomib induces apoptosis in mantle-cell lymphoma through
generation of ROS and Noxa activation independent of p53 status.
Blood. 107:257–264. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zou W, Yue P, Lin N, He M, Zhou Z, Lonial
S, Khuri FR, Wang B and Sun SY: Vitamin C inactivates the
proteasome inhibitor PS-341 in human cancer cells. Clin Cancer Res.
12:273–280. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Baehrecke EH: Autophagy: dual roles in
life and death? Nat Rev Mol Cell Biol. 6:505–510. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhu K, Dunner K Jr and McConkey DJ:
Proteasome inhibitors activate autophagy as a cytoprotective
response in human prostate cancer cells. Oncogene. 29:451–462.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Selimovic D, Porzig BBOW, El-Khattouti A,
Badura HE, Ahmad M, Ghanjati F, Santourlidis S, Haikel Y and Hassan
M: Bortezomib/proteasome inhibitor triggers both apoptosis and
autophagy-dependent pathways in melanoma cells. Cell Signal.
25:308–318. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yao F, Wang G, Wei W, Tu Y, Tong H and Sun
S: An autophagy inhibitor enhances the inhibition of cell
proliferation induced by a proteasome inhibitor in MCF-7 cells. Mol
Med Rep. 5:84–88. 2012.PubMed/NCBI
|
|
38
|
Ding WX, Ni HM, Gao W, Chen X, Kang JH,
Stolz DB, Liu J and Yin XM: Oncogenic transformation confers a
selective susceptibility to the combined suppression of the
proteasome and autophagy. Mol Cancer Ther. 8:2036–2045. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Belloni D, Veschini L, Foglieni C,
Dell'Antonio G, Caligaris-Cappio F, Ferrarini M and Ferrero E:
Bortezomib induces autophagic death in proliferating human
endothelial cells. Exp Cell Res. 316:1010–1018. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Abbott NJ, Patabendige AAK, Dolman DEM,
Yusof SR and Begley DJ: Structure and function of the blood-brain
barrier. Neurobiol Dis. 37:13–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zünkeler B, Carson RE, Olson J, Blasberg
RG, DeVroom H, Lutz RJ, Saris SC, Wright DC, Kammerer W, Patronas
NJ, et al: Quantification and pharmacokinetics of blood-brain
barrier disruption in humans. J Neurosurg. 85:1056–1065. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Balyasnikova IV, Ferguson SD, Han Y, Liu F
and Lesniak MS: Therapeutic effect of neural stem cells expressing
TRAIL and bortezomib in mice with glioma xenografts. Cancer Lett.
310:148–159. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Asklund T, Kvarnbrink S, Holmlund C, Wibom
C, Bergenheim T, Henriksson R and Hedman H: Synergistic killing of
glioblastoma stem-like cells by bortezomib and HDAC inhibitors.
Anticancer Res. 32:2407–2413. 2012.PubMed/NCBI
|
|
44
|
Friday BB, Anderson SK, Buckner J, Yu C,
Giannini C, Geoffroy F, Schwerkoske J, Mazurczak M, Gross H, Pajon
E, et al: Phase II trial of vorinostat in combination with
bortezomib in recurrent glioblastoma: a north central cancer
treatment group study. Neuro Oncol. 14:215–221. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Singh AV, Palladino MA, Lloyd GK, Potts
BC, Chauhan D and Anderson KC: Pharmacodynamic and efficacy studies
of the novel proteasome inhibitor NPI-0052 (marizomib) in a human
plasmacytoma xenograft murine model. Br J Haematol. 149:550–559.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Berkowitz A and Walker S:
Bortezomib-induced peripheral neuropathy in patients with multiple
myeloma. Clin J Oncol Nurs. 16:86–89. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Argyriou AA, Iconomou G and Kalofonos HP:
Bortezomib-induced peripheral neuropathy in multiple myeloma: a
comprehensive review of the literature. Blood. 112:1593–1599. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wolf S, Barton D, Kottschade L, Grothey A
and Loprinzi C: Chemotherapy-induced peripheral neuropathy:
prevention and treatment strategies. Eur J Cancer. 44:1507–1515.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Richardson PG, Spencer A, Cannell P,
Harrison SJ, Catley L, Underhill C, Zimmerman TM, Hofmeister CC,
Jakubowiak AJ, Laubach J, et al: Phase I clinical evaluation of
twice-weekly marizomib (NPI-0052), a novel proteasome inhibitor, in
patients with relapsed/refractory multiple myeloma (MM). Blood (ASH
Annual Meeting abst). 118:3022011.
|
|
50
|
Fuchs D, Berges C, Opelz G, Daniel V and
Naujokat C: Increased expression and altered subunit composition of
proteasomes induced by continuous proteasome inhibition establish
apoptosis resistance and hyperproliferation of Burkitt lymphoma
cells. J Cell Biochem. 103:270–283. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chauhan D, Hideshima T and Anderson KC: A
novel proteasome inhibitor NPI-0052 as an anticancer therapy. Br J
Cancer. 95:961–965. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Weniger MA, Rizzatti EG, Pérez-Galán P,
Liu D, Wang Q, Munson PJ, Raghavachari N, White T, Tweito MM,
Dunleavy K, et al: Treatment-induced oxidative stress and cellular
antioxidant capacity determine response to bortezomib in mantle
cell lymphoma. Clin Cancer Res. 17:5101–5112. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu G, Yuan X, Zeng Z, Tunici P, Ng H,
Abdulkadir IR, Lu L, Irvin D, Black KL and Yu JS: Analysis of gene
expression and chemoresistance of CD133+ cancer stem
cells in glioblastoma. Mol Cancer. 5:672006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lucio-Eterovic AK, Cortez MA, Valera ET,
Motta FJ, Queiroz RG, Machado HR, Carlotti CG Jr, Neder L, Scrideli
CA and Tone LG: Differential expression of 12 histone deacetylase
(HDAC) genes in astrocytomas and normal brain tissue: class II and
IV are hypoexpressed in glioblastomas. BMC Cancer. 8:2432008.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Richon VM, Webb Y, Merger R, Sheppard T,
Jursic B, Ngo L, Civoli F, Breslow R, Rifkind RA and Marks PA:
Second generation hybrid polar compounds are potent inducers of
transformed cell differentiation. Proc Natl Acad Sci USA.
93:5705–5708. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Marks PA and Breslow R: Dimethyl sulfoxide
to vorinostat: development of this histone deacetylase inhibitor as
an anticancer drug. Nat Biotechnol. 25:84–90. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mann BS, Johnson JR, Cohen MH, Justice R
and Pazdur R: FDA approval summary: vorinostat for treatment of
advanced primary cutaneous T-cell lymphoma. Oncologist.
12:1247–1252. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Saito A, Yamashita T, Mariko Y, Nosaka Y,
Tsuchiya K, Ando T, Suzuki T, Tsuruo T and Nakanishi O: A synthetic
inhibitor of histone deacetylase, MS-27-275, with marked in vivo
antitumor activity against human tumors. Proc Natl Acad Sci USA.
96:4592–4597. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lee EQ, Reardon DA, Schiff D, Drappatz J,
Muzikansky A, Hammond S, Grimm SA, Norden AD, Beroukhim R,
McCluskey CS, et al: Interim analysis of a phase I/II study of
panobinostat in combination with bevacizumab for recurrent
glioblastoma. J Clin Oncol. 31:ASCO abst. 2013.
|