|
1
|
Jemal A, Siegel R, Xu J and Ward E: Cancer
statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
AC Society, . Global cancer facts and
figures. 2008.http://www.cancer.org/acs/groups/content/@editorial/documents/document/acspc-044552.pdfAccessed:
December 16, 2016.
|
|
3
|
Lencioni R, Petruzzi P and Crocetti L:
Chemoembolization of hepatocellular carcinoma. Semin Intervent
Radiol. 30:3–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kim HY and Park JW: Clinical trials of
combined molecular targeted therapy and locoregional therapy in
hepatocellular carcinoma: Past, present and future. Liver Cancer.
3:9–17. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Levin B and Amos C: Therapy of
unresectable hepatocellular carcinoma. N Engl J Med. 332:1294–1296.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nocentini G: Ribonucleotide reductase
inhibitors: New strategies for cancer chemotherapy. Crit Rev Oncol
Hematol. 22:89–126. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Deng C, Fu H, Teng L, Hu Z, Xu X, Chen J
and Ren T: Anti-tumor activity of the regenerated triple-helical
polysaccharide from Dictyophora indusiata. Int J Biol Macromol.
61:453–458. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shen H, Tang G, Zeng G, Yang Y, Cai X, Li
D, Liu H and Zhou N: Purification and characterization of an
antitumor polysaccharide from Portulaca oleracea L. Carbohydr
Polym. 93:395–400. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yang Z, Xu J, Fu Q, Fu X, Shu T, Bi Y and
Song B: Antitumor activity of a polysaccharide from Pleurotus
eryngii on mice bearing renal cancer. Carbohydr Polym. 95:615–620.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang B, Xiao B and Sun T: Antitumor and
immunomodulatory activity of Astragalus membranaceus
polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol.
62:287–290. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Odenthal J, Takes R and Friedl P:
Plasticity of tumor cell invasion: Governance by growth factors and
cytokines. Carcinogenesis. 37:1117–1128. 2016.PubMed/NCBI
|
|
12
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hanada K, Perry-Lalley DM, Ohnmacht GA,
Bettinotti MP and Yang JC: Identification of fibroblast growth
factor-5 as an overexpressed antigen in multiple human
adenocarcinomas. Cancer Res. 61:5511–5516. 2001.PubMed/NCBI
|
|
14
|
Habib SA, Aggour YA and Taha HA:
Downregulation of transforming growth factor- β (TGF-) and vascular
endothelial growth factor (VEGF) in ehrlich ascites
carcinoma-bearing mice using stearic acid-grafted carboxymethyl
chitosan (SA-CMC). Nat Sci. 4:808–818. 2012.
|
|
15
|
Wolf HK, Zarnegar R and Michalopoulos GK:
Localization of hepatocyte growth factor in human and rat tissues:
An immunohistochemical study. Hepatology. 14:488–494. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Awuah PK, Nejak-Bowen KN and Monga SP:
Role and regulation of PDGFRα signaling in liver development and
regeneration. Am J Pathol. 182:1648–1658. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Suzuki A, Iwama A, Miyashita H, Nakauchi H
and Taniguchi H: Role for growth factors and extracellular matrix
in controlling differentiation of prospectively isolated hepatic
stem cells. Development. 130:2513–2524. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Duncan SA: Mechanisms controlling early
development of the liver. Mech Dev. 120:19–33. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Breuhahn K, Longerich T and Schirmacher P:
Dysregulation of growth factor signaling in human hepatocellular
carcinoma. Oncogene. 25:3787–3800. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shibuya M: Vascular endothelial growth
factor and its receptor system: Physiological functions in
angiogenesis and pathological roles in various diseases. J Biochem.
153:13–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Shibuya M and Claesson-Welsh L: Signal
transduction by VEGF receptors in regulation of angiogenesis and
lymphangiogenesis. Exp Cell Res. 312:549–560. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bhardwaj S, Roy H, Babu M, Shibuya M and
Yla-Herttuala S: Adventitial gene transfer of VEGFR-2 specific
VEGF-E chimera induces MCP-1 expression in vascular smooth muscle
cells and enhances neointimal formation. Atherosclerosis.
219:84–91. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Meyer JP, Edwards KJ, Kozlowski P, Backer
MV, Backer JM and Lewis JS: Selective imaging of VEGFR-1 and
VEGFR-2 using 89Zr-labeled single-chain VEGF mutants. J Nucl Med.
57:1811–1816. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kanematsu M, Semelka RC, Osada S and
Amaoka N: Magnetic resonance imaging and expression of vascular
endothelial growth factor in hepatocellular nodules in cirrhosis
and hepatocellular carcinomas. Top Magn Reson Imaging. 16:67–75.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Schoenleber SJ, Kurtz DM, Talwalkar JA,
Roberts LR and Gores GJ: Prognostic role of vascular endothelial
growth factor in hepatocellular carcinoma: Systematic review and
meta-analysis. Br J Cancer. 100:1385–1392. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Raskopf E, Dzienisowicz C, Hilbert T, Rabe
C, Leifeld L, Wernert N, Sauerbruch T, Prieto J, Qian C, Caselmann
WH and Schmitz V: Effective angiostatic treatment in a murine
metastatic and orthotopic hepatoma model. Hepatology. 41:1233–1240.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tan HY, Wang N, Tsao SW, Zhang Z and Feng
Y: Suppression of vascular endothelial growth factor via
inactivation of eukaryotic elongation factor 2 by alkaloids in
Coptidis rhizoma in hepatocellular carcinoma. Integr Cancer Ther.
13:425–434. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gao JZ, Du JL, Wang YL, Li J, Wei LX and
Guo MZ: Synergistic effects of curcumin and bevacizumab on cell
signaling pathways in hepatocellular carcinoma. Oncol Lett.
9:295–299. 2015.PubMed/NCBI
|
|
29
|
Hoshida Y, Nijman SM, Kobayashi M, Chan
JA, Brunet JP, Chiang DY, Villanueva A, Newell P, Ikeda K,
Hashimoto M, et al: Integrative transcriptome analysis reveals
common molecular subclasses of human hepatocellular carcinoma.
Cancer Res. 69:7385–7392. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ru NY, Wu J, Chen ZN and Bian H:
HAb18G/CD147 is involved in TGF-β-induced epithelial-mesenchymal
transition and hepatocellular carcinoma invasion. Cell Biol Int.
39:44–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yu W, Huang C, Wang Q, Huang T, Ding Y, Ma
C, Ma H and Chen W: MEF2 transcription factors promotes EMT and
invasiveness of hepatocellular carcinoma through TGF-β1
autoregulation circuitry. Tumour Biol. 35:10943–10951. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Buckley AF, Burgart LJ, Sahai V and Kakar
S: Epidermal growth factor receptor expression and gene copy number
in conventional hepatocellular carcinoma. Am J Clin Pathol.
129:245–251. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lai JP, Chien JR, Moser DR, Staub JK,
Aderca I, Montoya DP, Matthews TA, Nagorney DM, Cunningham JM,
Smith DI, et al: hSulf1 Sulfatase promotes apoptosis of
hepatocellular cancer cells by decreasing heparin-binding growth
factor signaling. Gastroenterology. 126:231–248. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Höpfner M, Schuppan D and Scherübl H:
Growth factor receptors and related signalling pathways as targets
for novel treatment strategies of hepatocellular cancer. World J
Gastroenterol. 14:1–14. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
35. Wilhelm SM, Adnane L, Newell P,
Villanueva A, Llovet JM and Lynch M: Preclinical overview of
sorafenib, a multikinase inhibitor that targets both Raf and VEGF
and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther.
7:3129–3140. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sprinzl MF, Puschnik A, Schlitter AM,
Schad A, Ackermann K, Esposito I, Lang H, Galle PR, Weinmann A,
Heikenwälder M and Protzer U: Sorafenib inhibits macrophage-induced
growth of hepatoma cells by interference with insulin-like growth
factor-1 secretion. J Hepatol. 62:863–870. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Albert DH, Tapang P, Magoc TJ, Pease LJ,
Reuter DR, Wei RQ, Li J, Guo J, Bousquet PF, Ghoreishi-Haack NS, et
al: Preclinical activity of ABT-869, a multitargeted receptor
tyrosine kinase inhibitor. Mol Cancer Ther. 5:995–1006. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Blivet-Van Eggelpoël MJ, Chettouh H,
Fartoux L, Aoudjehane L, Barbu V, Rey C, Priam S, Housset C,
Rosmorduc O and Desbois-Mouthon C: Epidermal growth factor receptor
and HER-3 restrict cell response to sorafenib in hepatocellular
carcinoma cells. J Hepatol. 57:108–115. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhai B and Sun XY: Mechanisms of
resistance to sorafenib and the corresponding strategies in
hepatocellular carcinoma. World J Hepatol. 5:345–352. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bruix J and Sherman M: American
Association for the Study of Liver Diseases: Management of
hepatocellular carcinoma: An update. Hepatology. 53:1020–1022.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S,
Kim JS, Luo R, Feng J, Ye S, Yang TS, et al: Efficacy and safety of
sorafenib in patients in the Asia-Pacific region with advanced
hepatocellular carcinoma: A phase III randomised, double-blind,
placebo-controlled trial. Lancet Oncol. 10:25–34. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ali BH, Ziada A and Blunden G: Biological
effects of gum arabic: A review of some recent research. Food Chem
Toxicol. 47:1–8. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yu Z, LiHua Y, Qian Y and Yan L: Effect of
Lentinus edodes polysaccharide on oxidative stress, immunity
activity and oral ulceration of rats stimulated by phenol.
Carbohydrate Polymers. 75:115–118. 2009. View Article : Google Scholar
|
|
44
|
Zong A, Cao H and Wang F: Anticancer
polysaccharides from natural resources: A review of recent
research. Carbohydr Polym. 90:1395–1410. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ajith TA and Janardhanan KK: Cytotoxic and
antitumor activities of a polypore macrofungus, Phellinus rimosus
(Berk) Pilat. J Ethnopharmacol. 84:157–162. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Santos-Neves JC, Pereira MI, Carbonero ER,
Gracher AHP, Alquini G, Gorin PAJ, Sassaki GL and Iacomini M: A
novel branched αβ-glucan isolated from the basidiocarps of the
edible mushroom Pleurotus florida. Carbohydrate Polymers.
73:309–314. 2008. View Article : Google Scholar
|
|
47
|
Wong SM, Wong KK, Chiu LCM and Cheung PCK:
Non-starch polysaccharides from different developmental stages of
Pleurotus tuber-regium inhibited the growth of human acute
promyelocytic leukemia HL-60 cells by cell-cycle arrest and/or
apoptotic induction. Carbohydrate Polymers. 68:206–217. 2007.
View Article : Google Scholar
|
|
48
|
Zhang M, Cheung PCK, Chiu LCM, Wong EYL
and Ooi VEC: Cell-cycle arrest and apoptosis induction in human
breast carcinoma MCF-7 cells by carboxymethylated β-glucan from the
mushroom sclerotia of Pleurotus tuber-regium. Carbohydrate
Polymers. 66:455–462. 2006. View Article : Google Scholar
|
|
49
|
Lavi I, Nimri L, Levinson D, Peri I, Hadar
Y and Schwartz B: Glucans from the edible mushroom Pleurotus
pulmonarius inhibit colitis-associated colon carcinogenesis in
mice. J Gastroenterol. 47:504–518. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Maehara Y, Tsujitani S, Saeki H, Oki E,
Yoshinaga K, Emi Y, Morita M, Kohnoe S, Kakeji Y, Yano T, et al:
Biological mechanism and clinical effect of protein-bound
polysaccharide K (KRESTIN(®)): Review of development and
future perspectives. Surg Today. 42:8–28. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zeng Q, Zhou F, Lei L, Chen J, Lu J, Zhou
J, Cao K, Gao L, Xia F, Ding S, et al: Ganoderma lucidum
polysaccharides protect fibroblasts against UVB-induced photoaging.
Mol Med Rep. 2016.
|
|
52
|
Hu X, Zhang R, Xie Y, Wang H and Ge M: The
protective effects of polysaccharides from Agaricus blazei Murill
against cadmium-induced oxidant stress and inflammatory damage in
chicken livers. Biol Trace Elem Res. 2016. View Article : Google Scholar
|
|
53
|
Li S, Gao A, Dong S, Chen Y, Sun S, Lei Z
and Zhang Z: Purification, antitumor and immunomodulatory activity
of polysaccharides from soybean residue fermented with Morchella
esculenta. Int J Biol Macromo. 96:26–34. 2016. View Article : Google Scholar
|
|
54
|
Lv Y, Yang X, Zhao Y, Ruan Y, Yang Y and
Wang Z: Separation and quantification of component monosaccharides
of the tea polysaccharides from Gynostemma pentaphyllum by HPLC
with indirect UV detection. Food Chemistry. 112:742–746. 2009.
View Article : Google Scholar
|
|
55
|
Lu X, Zhao Y, Sun Y, Yang S and Yang X:
Characterisation of polysaccharides from green tea of Huangshan
Maofeng with antioxidant and hepatoprotective effects. Food Chem.
141:3415–3423. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang X, Zhao Y, Yang Y and Ruan Y:
Isolation and characterization of immunostimulatory polysaccharide
from an herb tea, Gynostemma pentaphyllum Makino. J Agric Food
Chem. 56:6905–6909. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen J, Yong Y, Xing M, Gu Y, Zhang Z,
Zhang S and Lu L: Characterization of polysaccharides with marked
inhibitory effect on lipid accumulation in Pleurotus eryngii.
Carbohydr Polym. 97:604–613. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Dai L, Kong X and Chen L:
Characterization and in vitro antioxidant activities of
polysaccharides from Pleurotus ostreatus. Int J Biol Macromol.
51:259–265. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li X, Zhang H and Xu H: Analysis of
chemical components of shiitake polysaccharides and its
anti-fatigue effect under vibration. Int J Biol Macromol.
45:377–380. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang M, Wang H, Tang Y, Kang D, Gao Y, Ke
M, Dou J, Xi T and Zhou C: Effective inhibition of a
Strongylocentrotus nudus eggs polysaccharide against hepatocellular
carcinoma is mediated via immunoregulation in vivo. Immunol Lett.
141:74–82. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang CX and Huang KX: Mechanism of
apoptosis induced by a polysaccharide, from the loach Misgurnus
anguillicaudatus (MAP) in human hepatocellular carcinoma cells.
Toxicol Appl Pharmacol. 210:236–245. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Isoda N, Eguchi Y, Nukaya H, Hosho K, Suga
Y, Suga T, Nakazawa S and Sugano K: Clinical efficacy of superfine
dispersed lentinan (β-1,3-glucan) in patients with hepatocellular
carcinoma. Hepatogastroenterology. 56:437–441. 2009.PubMed/NCBI
|
|
63
|
Ruan WJ, Lai MD and Zhou JG: Anticancer
effects of Chinese herbal medicine, science or myth? J Zhejiang
Univ Sci B. 7:1006–1014. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Konkimalla VB and Efferth T:
Evidence-based Chinese medicine for cancer therapy. J
Ethnopharmacol. 116:207–210. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Niwa Y, Matsuura H, Murakami M, Sato J,
Hirai K and Sumi H: Evidence that naturopathic therapy including
Cordyceps sinensis prolongs survival of patients with
hepatocellular carcinoma. Integr Cancer Ther. 12:50–68. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang CR, Ng TB, Li L, Fang JC, Jiang Y,
Wen TY, Qiao WT, Li N and Liu F: Isolation of a polysaccharide with
antiproliferative, hypoglycemic, antioxidant and HIV-1 reverse
transcriptase inhibitory activities from the fruiting bodies of the
abalone mushroom Pleurotus abalonus. J Pharm Pharmacol. 63:825–832.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Xu WW, Li B, Lai ET, Chen L, Huang JJ,
Cheung AL and Cheung PC: Water extract from Pleurotus pulmonarius
with antioxidant activity exerts in vivo chemoprophylaxis and
chemosensitization for liver cancer. Nutr Cancer. 66:989–998. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xu W, Huang JJ and Cheung PC: Extract of
Pleurotus pulmonarius suppresses liver cancer development and
progression through inhibition of VEGF-induced PI3K/AKT signaling
pathway. PLoS One. 7:e344062012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xu R, Ye H, Sun Y, Tu Y and Zeng X:
Preparation, preliminary characterization, antioxidant,
hepatoprotective and antitumor activities of polysaccharides from
the flower of tea plant (Camellia sinensis). Food Chem Toxicol.
50:2473–2480. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen B, Zhou W, Ning M, Wang Z, Zou L,
Zhang H and Wang Q: Evaluation of antitumour activity of tea
carbohydrate polymers in hepatocellular carcinoma animals. Int J
Biol Macromol. 50:1103–1108. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liang G, Tang A, Lin X, Li L, Zhang S,
Huang Z, Tang H and Li QQ: Green tea catechins augment the
antitumor activity of doxorubicin in an in vivo mouse model for
chemoresistant liver cancer. Int J Oncol. 37:111–123.
2010.PubMed/NCBI
|
|
72
|
He X, Li X, Liu B, Xu L, Zhao H and Lu A:
Down-regulation of Treg cells and up-regulation of TH1/TH2 cytokine
ratio were induced by polysaccharide from Radix Glycyrrhizae in H22
hepatocarcinoma bearing mice. Molecules. 16:8343–8352. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wu S, Liu B, Zhang Q, Liu J, Zhou W, Wang
C, Li M, Bao S and Zhu R: Dihydromyricetin reduced Bcl-2 expression
via p53 in human hepatoma HepG2 cells. PLoS One. 8:e768862013.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu J, Shu Y, Zhang Q, Liu B, Xia J, Qiu
M, Miao H, Li M and Zhu R: Dihydromyricetin induces apoptosis and
inhibits proliferation in hepatocellular carcinoma cells. Oncol
Lett. 8:1645–1651. 2014.PubMed/NCBI
|
|
75
|
Zhang Q, Liu J, Liu B, Xia J, Chen N, Chen
X, Cao Y, Zhang C, Lu C, Li M and Zhu R: Dihydromyricetin promotes
hepatocellular carcinoma regression via a p53 activation-dependent
mechanism. Sci Rep. 4:46282014.PubMed/NCBI
|
|
76
|
Jiang L, Zhang Q, Ren H, Ma S, Lu C, Liu
B, Liu J, Liang J, Li M and Zhu R: Dihydromyricetin enhances the
chemo-sensitivity of nedaplatin via regulation of the p53/Bcl-2
pathway in hepatocellular carcinoma cells. PLoS One.
10:e01249942015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Liu B, Zhou W, Chen X, Xu F, Chen Y, Liu
J, Zhang Q, Bao S, Chen N, Li M and Zhu R: Dihydromyricetin induces
mouse hepatoma Hepal-6 cell apoptosis via the transforming growth
factor-β pathway. Mol Med Rep. 11:1609–1614. 2015.PubMed/NCBI
|
|
78
|
Lever R and Page C: Novel drug development
opportunities for heparin. Nat Rev Drug Discov. 1:140–148. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Presta M, Leali D, Stabile H, Ronca R,
Camozzi M, Coco L, Moroni E, Liekens S and Rusnati M: Heparin
derivatives as angiogenesis inhibitors. Curr Pharm Des. 9:553–566.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ferro V, Dredge K, Liu L, Hammond E,
Bytheway I, Li C, Johnstone K, Karoli T, Davis K, Copeman E and
Gautam A: PI-88 and novel heparan sulfate mimetics inhibit
angiogenesis. Semin Thromb Hemost. 33:557–568. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dredge K, Hammond E, Davis K, Li CP, Liu
L, Johnstone K, Handley P, Wimmer N, Gonda TJ, Gautam A, et al: The
PG500 series: Novel heparan sulfate mimetics as potent angiogenesis
and heparanase inhibitors for cancer therapy. Invest New Drugs.
28:276–283. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Budhu A and Wang XW: The role of cytokines
in hepatocellular carcinoma. J Leukoc Biol. 80:1197–1213. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler
P and Chisari FV: Immune pathogenesis of hepatocellular carcinoma.
J Exp Med. 188:341–350. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chuma M, Hige S, Nakanishi M, Ogawa K,
Natsuizaka M, Yamamoto Y and Asaka M: 8-Hydroxy-2′-deoxy-guanosine
is a risk factor for development of hepatocellular carcinoma in
patients with chronic hepatitis C virus infection. J Gastroenterol
Hepatol. 23:1431–1436. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tanaka H, Fujita N, Sugimoto R, Urawa N,
Horiike S, Kobayashi Y, Iwasa M, Ma N, Kawanishi S, Watanabe S, et
al: Hepatic oxidative DNA damage is associated with increased risk
for hepatocellular carcinoma in chronic hepatitis C. Br J Cancer.
98:580–586. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Marra M, Sordelli IM, Lombardi A, Lamberti
M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R,
Accardo M, et al: Molecular targets and oxidative stress biomarkers
in hepatocellular carcinoma: An overview. J Transl Med. 9:1712011.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bishayee A: The role of inflammation and
liver cancer. Adv Exp Med Biol. 816:401–435. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Klampfer L: Cytokines, inflammation and
colon cancer. Curr Cancer Drug Targets. 11:451–464. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chang HL, Lei LS, Yu CL, Zhu ZG, Chen NN
and Wu SG: Effect of Flammulina velutipes polysaccharides on
production of cytokines by murine immunocytes and serum levels of
cytokines in tumor-bearing mice. Zhong Yao Cai. 32:561–563.
2009.(In Chinese). PubMed/NCBI
|
|
90
|
Chen G, Xu J, Miao X, Huan Y, Liu X, Ju Y
and Han X: Characterization and antitumor activities of the
water-soluble polysaccharide from Rhizoma Arisaematis. Carbohydr
Polym. 90:67–72. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wang LJ, Bai L, Su D, Zhang T and Mao ZY:
Proinflammatory conditions promote hepatocellular carcinoma onset
and progression via activation of Wnt and EGFR signaling pathways.
Mol Cell Biochem. 381:173–181. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cassetta L, Cassol E and Poli G:
Macrophage polarization in health and disease.
ScientificWorldJournal. 11:2391–2402. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yang J, Li X, Xue Y, Wang N and Liu W:
Anti-hepatoma activity and mechanism of corn silk polysaccharides
in H22 tumor-bearing mice. Int J Biol Macromol. 64:276–280. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu L, Jia J, Zeng G, Zhao Y, Qi X, He C,
Guo W, Fan D, Han G and Li Z: Studies on immunoregulatory and
anti-tumor activities of a polysaccharide from Salvia miltiorrhiza
Bunge. Carbohydr Polym. 92:479–483. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tian QE, Li HD, Yan M, Cai HL, Tan QY and
Zhang WY: Astragalus polysaccharides can regulate cytokine and
P-glycoprotein expression in H22 tumor-bearing mice. World J
Gastroenterol. 18:7079–7086. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Schild L, Chen BH, Makarov P, Kattengell
K, Heinitz K and Keilhoff G: Selective induction of apoptosis in
glioma tumour cells by a Gynostemma pentaphyllum extract.
Phytomedicine. 17:589–597. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen J, Chen J, Wang X and Liu C:
Anti-tumour effects of polysaccharides isolated from Artemisia
annua L by inducing cell apoptosis and immunomodulatory
anti-hepatoma effects of polysaccharides. Afr J Tradit Complement
Altern Med. 11:15–22. 2013.PubMed/NCBI
|
|
98
|
Liang M, Li S, Shen B, Cai JP, Li C, Wang
ZY, Li XG, Gao J, Huang HY, Zhang XY and Li JY:
Anti-hepatocarcinoma effects of Aconitum coreanum polysaccharides.
Carbohydrate Polymers. 88:973–976. 2012. View Article : Google Scholar
|
|
99
|
Zhang W, Li J, Qiu S, Chen J and Zheng Y:
Effects of the exopolysaccharide fraction (EPSF) from a cultivated
Cordyceps sinensis on immunocytes of H22 tumor bearing mice.
Fitoterapia. 79:168–173. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Byeon SE, Lee J, Lee E, Lee SY, Hong EK,
Kim YE and Cho JY: Functional activation of macrophages, monocytes
and splenic lymphocytes by polysaccharide fraction from Tricholoma
matsutake. Arch Pharm Res. 32:1565–1572. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kim JY, Byeon SE, Lee YG, Lee JY, Park J,
Hong EK and Cho JY: Immunostimulatory activities of polysaccharides
from liquid culture of pine-mushroom Tricholoma matsutake. J
Microbiol Biotechnol. 18:95–103. 2008.PubMed/NCBI
|
|
102
|
Ren M, Ye L, Hao X, Ren Z, Ren S, Xu K and
Li J: Polysaccharides from Tricholoma matsutake and Lentinus edodes
enhance 5-fluorouracil-mediated H22 cell growth inhibition. J
Tradit Chin Med. 34:309–316. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kim DH and Rossi JJ: Strategies for
silencing human disease using RNA interference. Nat Rev Genet.
8:173–184. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Takeshita F and Ochiya T: Therapeutic
potential of RNA interference against cancer. Cancer Sci.
97:689–696. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Whitehead KA, Langer R and Anderson DG:
Knocking down barriers: Advances in siRNA delivery. Nat Rev Drug
Discov. 8:129–138. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Huang Z, Dong L, Chen J, Gao F, Zhang Z,
Chen J and Zhang J: Low-molecular weight chitosan/vascular
endothelial growth factor short hairpin RNA for the treatment of
hepatocellular carcinoma. Life Sci. 91:1207–1215. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Xu Y, Wen Z and Xu Z: Chitosan
nanoparticles inhibit the growth of human hepatocellular carcinoma
xenografts through an antiangiogenic mechanism. Anticancer Res.
29:5103–5109. 2009.PubMed/NCBI
|
|
108
|
Han L, Tang C and Yin C: Oral delivery of
shRNA and siRNA via multifunctional polymeric nanoparticles for
synergistic cancer therapy. Biomaterials. 35:4589–4600. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Roy M, Luo YH, Ye M and Liu J: Nonsmall
cell lung cancer therapy: Insight into multitargeted small-molecule
growth factor receptor inhibitors. Biomed Res Int. 2013:9647432013.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wang E, Chen X, Wang K, Wang J, Chen D,
Geng Y, Lai W and Wei X: Plant polysaccharides used as
immunostimulants enhance innate immune response and disease
resistance against Aeromonas hydrophila infection in fish. Fish
Shellfish Immunol. 59:196–202. 2016. View Article : Google Scholar : PubMed/NCBI
|