|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Herzog TJ and Pothuri B: Ovarian cancer: A
focus on management of recurrent disease. Nat Clin Pract Oncol.
3:604–611. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hunn J and Rodriguez GC: Ovarian cancer:
Etiology, risk factors, and epidemiology. Clin Obstet Gynecol.
55:3–23. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lin HW, Tu YY, Lin SY, Su WJ, Lin WL, Lin
WZ, Wu SC and Lai YL: Risk of ovarian cancer in women with pelvic
inflammatory disease: A population-based study. Lancet Oncol.
12:900–904. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Risch HA and Howe GR: Pelvic inflammatory
disease and the risk of epithelial ovarian cancer. Cancer Epidemiol
Biomarkers Prev. 4:447–451. 1995.PubMed/NCBI
|
|
6
|
Shu XO, Brinton LA, Gao YT and Yuan JM:
Population-based case-control study of ovarian cancer in Shanghai.
Cancer Res. 49:3670–3674. 1989.PubMed/NCBI
|
|
7
|
Kuper H, Adami HO and Trichopoulos D:
Infections as a major preventable cause of human cancer. J Intern
Med. 248:171–183. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Garrett WS: Cancer and the microbiota.
Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Centers for Disease Control and
Prevention1, ; Workowski KA and Berman SM: Sexually transmitted
diseases treatment guidelines, 2006. MMWR Recomm Rep. 55:1–94.
2006.
|
|
10
|
Ladany S and Sarov I: Recent advances in
chlamydia trachomatis. Eur J Epidemiol. 1:235–256. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Moulder JW: Interaction of chlamydiae and
host cells in vitro. Microbiol Rev. 55:143–190. 1991.PubMed/NCBI
|
|
12
|
Molano M, Meijer CJ, Weiderpass E, Arslan
A, Posso H, Franceschi S, Ronderos M, Muñoz N and van den Brule AJ:
The natural course of Chlamydia trachomatis infection in
asymptomatic Colombian women: A 5-year follow-up study. J Infect
Dis. 191:907–916. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tosi MF: Innate immune responses to
infection. J Allergy Clin Immunol. 116:241–249; quiz 250. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
den Hartog JE, Morré SA and Land JA:
Chlamydia trachomatis-associated tubal factor subfertility:
Immunogenetic aspects and serological screening. Hum Reprod Update.
12:719–730. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sellami H, Said-Sadier N, Znazen A, Gdoura
R, Ojcius DM and Hammami A: Chlamydia trachomatis infection
increases the expression of inflammatory tumorigenic cytokines and
chemokines as well as components of the Toll-like receptor and
NF-κB pathways in human prostate epithelial cells. Mol Cell Probes.
28:147–154. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
King AE, Wheelhouse N, Cameron S, McDonald
SE, Lee KF, Entrican G, Critchley HO and Horne AW: Expression of
secretory leukocyte protease inhibitor and elafin in human
fallopian tube and in an in-vitro model of Chlamydia trachomatis
infection. Hum Reprod. 24:679–686. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Derbigny WA, Shobe LR, Kamran JC, Toomey
KS and Ofner S: Identifying a role for Toll-like receptor 3 in the
innate immune response to Chlamydia muridarum infection in murine
oviduct epithelial cells. Infect Immun. 80:254–265. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Frazer LC, Darville T, Chandra-Kuntal K,
Andrews CW Jr, Zurenski M, Mintus M, AbdelRahman YM, Belland RJ,
Ingalls RR and O'Connell CM: Plasmid-cured Chlamydia caviae
activates TLR2-dependent signaling and retains virulence in the
guinea pig model of genital tract infection. PLoS One.
7:e307472012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mascellino MT, Boccia P and Oliva A:
Immunopathogenesis in Chlamydia trachomatis infected women. ISRN
Obstet Gynecol. 2011:4369362011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans: Human papillomaviruses. IARC Monogr
Eval Carcinog Risks Hum. 90:1–636. 2007.PubMed/NCBI
|
|
21
|
Shanmughapriya S, Senthilkumar G,
Vinodhini K, Das BC, Vasanthi N and Natarajaseenivasan K: Viral and
bacterial aetiologies of epithelial ovarian cancer. Eur J Clin
Microbiol Infect Dis. 31:2311–2317. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Idahl A, Lundin E, Jurstrand M, Kumlin U,
Elgh F, Ohlson N and Ottander U: Chlamydia trachomatis and
Mycoplasma genitalium plasma antibodies in relation to epithelial
ovarian tumors. Infect Dis Obstet Gynecol. 2011:8246272011.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Carvalho JP and Carvalho FM: Is
Chlamydia-infected tubal fimbria the origin of ovarian cancer? Med
Hypotheses. 71:690–693. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kessler M, Zielecki J, Thieck O,
Mollenkopf HJ, Fotopoulou C and Meyer TF: Chlamydia trachomatis
disturbs epithelial tissue homeostasis in fallopian tubes via
paracrine Wnt signaling. Am J Pathol. 180:186–198. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zügel U and Kaufmann SH: Role of heat
shock proteins in protection from and pathogenesis of infectious
diseases. Clin Microbiol Rev. 12:19–39. 1999.PubMed/NCBI
|
|
26
|
Pockley AG: Heat shock proteins as
regulators of the immune response. Lancet. 362:469–276. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Di Felice V, David S, Cappello F, Farina F
and Zummo G: Is chlamydial heat shock protein 60 a risk factor for
oncogenesis? Cell Mol Life Sci. 62:4–9. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tsai YP, Yang MH, Huang CH, Chang SY, Chen
PM, Liu CJ, Teng SC and Wu KJ: Interaction between HSP60 and
beta-catenin promotes metastasis. Carcinogenesis. 30:1049–1057.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Giaginis C, Daskalopoulou SS, Vgenopoulou
S, Sfiniadakis I, Kouraklis G and Theocharis SE: Heat Shock
Protein-27, −60 and −90 expression in gastric cancer: Association
with clinicopathological variables and patient survival. BMC
Gastroenterol. 9:142009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bodzek P, Partyka R and Damasiewicz-Bodzek
A: Antibodies against Hsp60 and Hsp65 in the sera of women with
ovarian cancer. J Ovarian Res. 7:302014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lim R, Lappas M, Ahmed N, Permezel M,
Quinn MA and Rice GE: 2D-PAGE of ovarian cancer: Analysis of
soluble and insoluble fractions using medium-range immobilized pH
gradients. Biochem Biophys Res Commun. 406:408–413. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tully JG, Taylor-Robinson D, Cole RM and
Rose DL: A newly discovered mycoplasma in the human urogenital
tract. Lancet. 1:1288–1291. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gibson DG, Benders GA, Andrews-Pfannkoch
C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley
A, Thomas DW, Algire MA, et al: Complete chemical synthesis,
assembly, and cloning of a Mycoplasma genitalium genome. Science.
319:1215–1220. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fraser CM, Gocayne JD, White O, Adams MD,
Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley
JM, et al: The minimal gene complement of Mycoplasma genitalium.
Science. 270:397–403. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Manhart LE, Holmes KK, Hughes JP, Houston
LS and Totten PA: Mycoplasma genitalium among young adults in the
United States: An emerging sexually transmitted infection. Am J
Public Health. 97:1118–1125. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Taylor-Robinson D and Jensen JS:
Mycoplasma genitalium: From Chrysalis to multicolored butterfly.
Clin Microbiol Rev. 24:498–514. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Idahl A, Lundin E, Elgh F, Jurstrand M,
Møller JK, Marklund I, Lindgren P and Ottander U: Chlamydia
trachomatis, Mycoplasma genitalium, Neisseria gonorrhoeae, human
papillomavirus, and polyomavirus are not detectable in human tissue
with epithelial ovarian cancer, borderline tumor, or benign
conditions. Am J Obstet Gynecol. 202:71.e1–e6. 2010. View Article : Google Scholar
|
|
38
|
Chan PJ, Seraj IM, Kalugdan TH and King A:
Prevalence of mycoplasma conserved DNA in malignant ovarian cancer
detected using sensitive PCR-ELISA. Gynecol Oncol. 63:258–260.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Quirk JT, Kupinski JM and DiCioccio RA:
Detection of mycoplasma ribosomal DNA sequences in ovarian tumors
by nested PCR. Gynecol Oncol. 83:560–562. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Namiki K, Goodison S, Porvasnik S, Allan
RW, Iczkowski KA, Urbanek C, Reyes L, Sakamoto N and Rosser CJ:
Persistent exposure to mycoplasma induces malignant transformation
of human prostate cells. PLoS One. 4:e68722009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang S, Wear DJ and Lo S: Mycoplasmal
infections alter gene expression in cultured human prostatic and
cervical epithelial cells. FEMS Immunol Med Microbiol. 27:43–50.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
McGowin CL, Popov VL and Pyles RB:
Intracellular Mycoplasma genitalium infection of human vaginal and
cervical epithelial cells elicits distinct patterns of inflammatory
cytokine secretion and provides a possible survival niche against
macrophage-mediated killing. BMC Microbiol. 9:1392009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tsai S, Wear DJ, Shih JW and Lo SC:
Mycoplasmas and oncogenesis: Persistent infection and multistage
malignant transformation. Proc Natl Acad Sci USA. 92:pp.
10197–10201. 1995; View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Haggerty CL and Taylor BD: Mycoplasma
genitalium: An emerging cause of pelvic inflammatory disease.
Infect Dis Obstet Gynecol. 2011:9598162011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Baczynska A, Funch P, Fedder J, Knudsen
HJ, Birkelund S and Christiansen G: Morphology of human Fallopian
tubes after infection with Mycoplasma genitalium and Mycoplasma
hominis-in vitro organ culture study. Hum Reprod. 22:968–979. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Crum CP, McKeon FD and Xian W: The oviduct
and ovarian cancer: Causality, clinical implications, and ‘targeted
prevention’. Clin Obstet Gynecol. 55:24–35. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
McGowin CL, Annan RS, Quayle AJ, Greene
SJ, Ma L, Mancuso MM, Adegboye D and Martin DH: Persistent
Mycoplasma genitalium infection of human endocervical epithelial
cells elicits chronic inflammatory cytokine secretion. Infect
Immun. 80:3842–3849. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
McGowin CL, Radtke AL, Abraham K, Martin
DH and Herbst-Kralovetz M: Mycoplasma genitalium infection
activates cellular host defense and inflammation pathways in a
3-dimensional human endocervical epithelial cell model. J Infect
Dis. 207:1857–1868. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dunne EF, Unger ER, Sternberg M, McQuillan
G, Swan DC, Patel SS and Markowitz LE: Prevalence of HPV infection
among females in the United States. JAMA. 297:813–819. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhao FH, Lewkowitz AK, Hu SY, Chen F, Li
LY, Zhang QM, Wu RF, Li CQ, Wei LH, Xu AD, et al: Prevalence of
human papillomavirus and cervical intraepithelial neoplasia in
China: A pooled analysis of 17 population-based studies. Int J
Cancer. 131:2929–2938. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hong H, He TF, Ni HX, Zhang S and Xu GZ:
Prevalence and genotype distribution of HPV infection among women
in Ningbo, China. Int J Gynaecol Obstet. 131:96–99. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen Q, Xie LX, Qing ZR, Li LJ, Luo ZY,
Lin M, Zhang SM, Chen WZ, Lin BZ, Lin QL, et al: Epidemiologic
characterization of human papillomavirus infection in rural
Chaozhou, eastern Guangdong Province of China. PLoS One.
7:e321492012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang YY, Li L, Wei S, Peng J, Yuan SX, Xie
JS and Liu ZH: Human papillomavirus (HPV) infection in women
participating in cervical cancer screening from to 2010 in Shenzhen
city, South China. Asian Pac J Cancer Prev. 14:7483–7487. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sui S, Jiao Z, Niyazi MSS, Lu P and Qiao
YL: Genotype distribution and behavioral risk factor analysis of
human papillomavirus infection in Uyghur women. Asian Pac J Cancer
Prev. 14:5861–5865. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Muñoz N, Bosch FX, de Sanjosé S, Herrero
R, Castellsagué X, Shah KV, Snijders PJ and Meijer CJ;
International Agency for Research on Cancer Multicenter Cervical
Cancer Study Group, : Epidemiologic classification of human
papillomavirus types associated with cervical cancer. N Engl J Med.
348:518–527. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tang KW, Alaei-Mahabadi B, Samuelsson T,
Lindh M and Larsson E: The landscape of viral expression and host
gene fusion and adaptation in human cancer. Nat Commun. 4:25132013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rosa MI, Silva GD, de Azedo Simões PW,
Souza MV, Panatto AP, Simon CS, Madeira K and Medeiros LR: The
prevalence of human papillomavirus in ovarian cancer: A systematic
review. Int J Gynecol Cancer. 23:437–441. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Al-Shabanah OA, Hafez MM, Hassan ZK,
Sayed-Ahmed MM, Abozeed WN, Al-Rejaie SS and Alsheikh AA: Human
papillomavirus genotyping and integration in ovarian cancer Saudi
patients. Virol J. 10:3432013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bilyk OO, Pande NT, Pejovic T and
Buchinska LG: The frequency of human papilloma virus types 16, 18
in upper genital tract of women at high risk of developing ovarian
cancer. Exp Oncol. 36:121–124. 2014.PubMed/NCBI
|
|
60
|
Bilyk OO, Pande NT and Buchynska LG:
Analysis of p53, p16(INK4a), pRb and Cyclin D1 expression and human
papillomavirus in primary ovarian serous carcinomas. Exp Oncol.
33:150–156. 2011.PubMed/NCBI
|
|
61
|
Mahmood FM, Kadhim HS and Al Khuzaee LR
Mousa: Detection of human papillomavirus-16 e6-oncoprotein in
epithelial ovarian tumors samples of iraqi patients. Jundishapur J
Microbiol. 7:e119452014.PubMed/NCBI
|
|
62
|
Ghittoni R, Accardi R, Chiocca S and
Tommasino M: Role of human papillomaviruses in carcinogenesis.
Ecancermedicalscience. 9:5262015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Münger K and Howley PM: Human
papillomavirus immortalization and transformation functions. Virus
Res. 89:213–228. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Park JW, Nickel KP, Torres AD, Lee D,
Lambert PF and Kimple RJ: Human papillomavirus type 16 E7
oncoprotein causes a delay in repair of DNA damage. Radiother
Oncol. 113:337–344. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Honegger A, Schilling D, Bastian S,
Sponagel J, Kuryshev V, Sültmann H, Scheffner M, Hoppe-Seyler K and
Hoppe-Seyler F: Dependence of intracellular and exosomal microRNAs
on viral E6/E7 oncogene expression in HPV-positive tumor cells.
PLoS Pathog. 11:e10047122015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gregoire L, Rabah R, Schmelz EM, Munkarah
A, Roberts PC and Lancaster WD: Spontaneous malignant
transformation of human ovarian surface epithelial cells in vitro.
Clin Cancer Res. 7:4280–4287. 2001.PubMed/NCBI
|
|
67
|
Yu J, Solano FX Jr and Seethala RR:
Bilateral cytomegalovirus (CMV) oophoritis mimicking widely
metastatic carcinoma: A case report and review of the literature.
Diagn Pathol. 2:502007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wick W and Platten M: CMV infection and
glioma, a highly controversial concept struggling in the clinical
arena. Neuro Oncol. 16:332–333. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Richardson AK, Currie MJ, Robinson BA,
Morrin H, Phung Y, Pearson JF, Anderson TP, Potter JD and Walker
LC: Cytomegalovirus and Epstein-Barr virus in breast cancer. PLoS
One. 10:e01189892015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Han CP, Tsao YP, Sun CA, Ng HT and Chen
SL: Human papillomavirus, cytomegalovirus and herpes simplex virus
infections for cervical cancer in Taiwan. Cancer Lett. 120:217–221.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Harkins L, Volk AL, Samanta M, Mikolaenko
I, Britt WJ, Bland KI and Cobbs CS: Specific localisation of human
cytomegalovirus nucleic acids and proteins in human colorectal
cancer. Lancet. 360:1557–1563. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Samanta M, Harkins L, Klemm K, Britt WJ
and Cobbs CS: High prevalence of human cytomegalovirus in prostatic
intraepithelial neoplasia and prostatic carcinoma. J Urol.
170:998–1002. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Michaelis M, Baumgarten P, Mittelbronn M,
Driever PH, Doerr HW and Cinatl J Jr: Oncomodulation by human
cytomegalovirus: Novel clinical findings open new roads. Med
Microbiol Immunol. 200:1–5. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Söderberg-Nauclér C and Johnsen JI:
Cytomegalovirus in human brain tumors: Role in pathogenesis and
potential treatment options. World J Exp Med. 5:1–10. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bentz GL and Yurochko AD: Human CMV
infection of endothelial cells induces an angiogenic response
through viral binding to EGF receptor and beta1 and beta3
integrins. Proc Natl Acad Sci USA. 105:pp. 5531–5536. 2008;
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bishop RK, Oseguera CA Valle and Spencer
JV: Human cytomegalovirus interleukin-10 promotes proliferation and
migration of MCF-7 breast cancer cells. Cancer Cell Microenviron.
2(pii): e6782015.PubMed/NCBI
|
|
77
|
Price RL, Song J, Bingmer K, Kim TH, Yi
JY, Nowicki MO, Mo X, Hollon T, Murnan E, Alvarez-Breckenridge C,
et al: Cytomegalovirus contributes to glioblastoma in the context
of tumor suppressor mutations. Cancer Res. 73:3441–3450. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Scrivo R, Vasile M, Bartosiewicz I and
Valesini G: Inflammation as ‘common soil’ of the multifactorial
diseases. Autoimmun Rev. 10:369–374. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Karin M, Lawrence T and Nizet V: Innate
immunity gone awry: Linking microbial infections to chronic
inflammation and cancer. Cell. 124:823–835. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Whiteside TL: The role of immune cells in
the tumor microenvironment. Cancer Treat Res. 130:103–124. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mantovani A, Allavena P, Sica A and
Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Enzler T, Gillessen S, Manis JP, Ferguson
D, Fleming J, Alt FW, Mihm M and Dranoff G: Deficiencies of GM-CSF
and interferon gamma link inflammation and cancer. J Exp Med.
197:1213–1219. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Macciò A and Madeddu C: Inflammation and
ovarian cancer. Cytokine. 58:133–147. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Curiel TJ, Coukos G, Zou L, Alvarez X,
Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L,
Burow M, et al: Specific recruitment of regulatory T cells in
ovarian carcinoma fosters immune privilege and predicts reduced
survival. Nat Med. 10:942–949. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
86
|
Block MS, Charbonneau B, Vierkant RA,
Fogarty Z, Bamlet WR, Pharoah PD; Georgia Chenevix-Trench; for
AOCS; /ACS Group, ; Rossing MA, Cramer D, Pearce CL, et al:
Variation in NF-κB signaling pathways and survival in invasive
epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev.
23:1421–1427. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Trabert B, Ness RB, Lo-Ciganic WH, Murphy
MA, Goode EL, Poole EM, Brinton LA, Webb PM, Nagle CM, Jordan SJ,
et al: Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and
acetaminophen use and risk of invasive epithelial ovarian cancer: A
pooled analysis in the Ovarian Cancer Association Consortium. J
Natl Cancer Inst. 106:djt4312014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hu T, Li LF, Shen J, Zhang L and Cho CH:
Chronic inflammation and colorectal cancer: The role of vascular
endothelial growth factor. Curr Pharm Des. 21:2960–2967. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ellis LM and Hicklin DJ: VEGF-targeted
therapy: mechanisms of anti-tumour activity. Nat Rev Cancer.
8:579–591. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Noort AR, van Zoest KP, Weijers EM,
Koolwijk P, Maracle CX, Novack DV, Siemerink MJ, Schlingemann RO,
Tak PP and Tas SW: NF-κB-inducing kinase is a key regulator of
inflammation-induced and tumour-associated angiogenesis. J Pathol.
234:375–385. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
De Spiegelaere W, Cornillie P, Casteleyn
C, Burvenich C and Van den Broeck W: Detection of hypoxia inducible
factors and angiogenic growth factors during foetal endochondral
and intramembranous ossification. Anat Histol Embryol. 39:376–384.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yang Y, Sun M, Wang L and Jiao B: HIFs,
angiogenesis, and cancer. J Cell Biochem. 114:967–974. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sherer DM, Eliakim R and Abulafia O: The
role of angiogenesis in the accumulation of peritoneal fluid in
benign conditions and the development of malignant ascites in the
female. Gynecol Obstet Invest. 50:217–224. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li J, Li S, Chen R, Yu H and Lu X: The
prognostic significance of anti-angiogenesis therapy in ovarian
cancer: A meta-analysis. J Ovarian Res. 8:542015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jayson GC, Kohn EC, Kitchener HC and
Ledermann JA: Ovarian cancer. Lancet. 384:1376–1388. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li G, He L, Zhang E, Shi J, Zhang Q, Le
AD, Zhou K and Tang X: Overexpression of human papillomavirus (HPV)
type 16 oncoproteins promotes angiogenesis via enhancing HIF-1α and
VEGF expression in non-small cell lungcancer cells. Cancer Lett.
311:160–170. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Matlaf LA, Harkins LE, Bezrookove V, Cobbs
CS and Soroceanu L: Cytomegalovirus pp71 protein is expressed in
human glioblastoma and promotes pro-angiogenic signaling by
activation of stem cell factor. PLoS One. 8:e681762013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Barriere G, Fici P, Gallerani G, Fabbri F
and Rigaud M: Epithelial mesenchymal transition: A double-edged
sword. Clin Transl Med. 4:142015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang YL, Zhao XM, Shuai ZF, Li CY, Bai QY,
Yu XW and Wen QT: Snail promotes epithelial-mesenchymal transition
and invasiveness in human ovarian cancer cells. Int J Clin Exp Med.
8:7388–7393. 2015.PubMed/NCBI
|
|
101
|
Wu J, Liu Z, Shao C, Gong Y, Hernando E,
Lee P, Narita M, Muller W, Liu J and Wei JJ: HMGA2
overexpression-induced ovarian surface epithelial transformation is
mediated through regulation of EMT genes. Cancer Res. 71:349–359.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Haslehurst AM, Koti M, Dharsee M, Nuin P,
Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, et al: EMT
transcription factors snail and slug directly contribute to
cisplatin resistance in ovarian cancer. BMC Cancer. 12:912012.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cohen EN, Gao H, Anfossi S, Mego M, Reddy
NG, Debeb B, Giordano A, Tin S, Wu Q, Garza RJ, et al: Inflammation
mediated metastasis: Immune induced epithelial-to-mesenchymal
transition in inflammatory breast cancer cells. PLoS One.
10:e01327102015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Choi YJ, Kim N, Chang H, Lee HS, Park SM,
Park JH, Shin CM, Kim JM, Kim JS, Lee DH and Jung HC: Helicobacter
pylori-induced epithelial-mesenchymal transition, a potential role
of gastric cancer initiation and an emergence of stem cells.
Carcinogenesis. 36:553–563. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chandrakesan P, Roy B, Jakkula LU, Ahmed
I, Ramamoorthy P, Tawifik O, Papineni R, Houchen C, Anant S and
Umar S: Utility of a bacterial infection model to study
epithelial-mesenchymal transition, mesenchymal-epithelial
transition or tumorigenesis. Oncogene. 33:2639–2654. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Duan H, Qu L and Shou C: Mycoplasma
hyorhinis induces epithelial-mesenchymal transition in gastric
cancer cell MGC803 via TLR4-NF-κB signaling. Cancer Lett.
354:447–454. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang L, Tian WD, Xu X, Nie B, Lu J, Liu X,
Zhang B, Dong Q, Sunwoo JB, Li G and Li XP: Epstein-Barr virus
nuclear antigen 1 (EBNA1) protein induction of
epithelial-mesenchymal transition in nasopharyngeal carcinoma
cells. Cancer. 120:363–372. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bose SK, Meyer K, Di Bisceglie AM, Ray RB
and Ray R: Hepatitis C virus induces epithelial-mesenchymal
transition in primary human hepatocytes. J Virol. 86:13621–13628.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li H, Li Y, Liu D and Liu J: LPS promotes
epithelial-mesenchymal transition and activation of TLR4/JNK
signaling. Tumour Biol. 35:10429–10435. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhao L, Yang R, Cheng L, Wang M, Jiang Y
and Wang S: LPS-induced epithelial-mesenchymal transition of
intrahepatic biliary epithelial cells. J Surg Res. 171:819–825.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kondo Y, Higa-Nakamine S, Noguchi N, Maeda
N, Toku S, Isohama Y, Sugahara K, Kukita I and Yamamoto H:
Induction of epithelial-mesenchymal transition by flagellin in
cultured lung epithelial cells. Am J Physiol Lung Cell Mol Physiol.
303:L1057–L1069. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Franchi L, Park JH, Shaw MH, Marina-Garcia
N, Chen G, Kim YG and Núñez G: Intracellular NOD-like receptors in
innate immunity, infection and disease. Cell Microbiol. 10:1–38.
2008.PubMed/NCBI
|
|
113
|
Park GB, Kim D, Kim YS, Kim S, Lee HK,
Yang JW and Hur DY: The Epstein-Barr virus causes
epithelial-mesenchymal transition in human corneal epithelial cells
via Syk/src and Akt/Erk signaling pathways. Invest Ophthalmol Vis
Sci. 55:1770–1779. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Horikawa T, Yang J, Kondo S, Yoshizaki T,
Joab I, Furukawa M and Pagano JS: Twist and epithelial-mesenchymal
transition are induced by the EBV oncoprotein latent membrane
protein 1 and are associated with metastatic nasopharyngeal
carcinoma. Cancer Res. 67:1970–1978. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sides MD, Klingsberg RC, Shan B, Gordon
KA, Nguyen HT, Lin Z, Takahashi T, Flemington EK and Lasky JA: The
Epstein-Barr virus latent membrane protein 1 and transforming
growth factor-β1 synergistically induce epithelial-mesenchymal
transition in lung epithelial cells. Am J Respir Cell Mol Biol.
44:852–862. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li T, Li D, Cheng L, Wu H, Gao Z, Liu Z,
Jiang W, Gao YH, Tian F, Zhao L and Wang S: Epithelial-mesenchymal
transition induced by hepatitis C virus core protein in
cholangiocarcinoma. Ann Surg Oncol. 17:1937–1944. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Bapat SA, Mali AM, Koppikar CB and Kurrey
NK: Stem and progenitor-like cells contribute to the aggressive
behavior of human epithelial ovarian cancer. Cancer Res.
65:3025–3029. 2005.PubMed/NCBI
|
|
118
|
Garson K and Vanderhyden BC: Epithelial
ovarian cancer stem cells: Underlying complexity of a simple
paradigm. Reproduction. 149:R59–R70. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Korkaya H, Liu S and Wicha MS: Regulation
of cancer stem cells by cytokine networks: Attacking cancer's
inflammatory roots. Clin Cancer Res. 17:6125–6129. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Leizer AL, Alvero AB, Fu HH, Holmberg JC,
Cheng YC, Silasi DA, Rutherford T and Mor G: Regulation of
inflammation by the NF-κB pathway in ovarian cancer stem cells. Am
J Reprod Immunol. 65:438–447. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chefetz I, Alvero AB, Holmberg JC,
Lebowitz N, Craveiro V, Yang-Hartwich Y, Yin G, Squillace L,
Soteras M Gurrea, Aldo P and Mor G: TLR2 enhances ovarian cancer
stem cell self-renewal and promotes tumor repair and recurrence.
Cell Cycle. 12:511–521. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Xiang T, Long H, He L, Han X, Lin K, Liang
Z, Zhuo W, Xie R and Zhu B: Interleukin-17 produced by tumor
microenvironment promotes self-renewal of CD133+ cancer stem-like
cells in ovarian cancer. Oncogene. 34:165–176. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Castells M, Milhas D, Gandy C, Thibault B,
Rafii A, Delord JP and Couderc B: Microenvironment mesenchymal
cells protect ovarian cancer cell lines from apoptosis by
inhibiting XIAP inactivation. Cell Death Dis. 4:e8872013.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Farina A, Cirone M, York M, Lenna S,
Padilla C, McLaughlin S, Faggioni A, Lafyatis R, Trojanowska M and
Farina GA: Epstein-Barr virus infection induces aberrant TLR
activation pathway and fibroblast-myofibroblast conversion in
scleroderma. J Invest Dermatol. 134:954–964. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
He Z, Gao Y, Deng Y, Li W, Chen Y, Xing S,
Zhao X, Ding J and Wang X: Lipopolysaccharide induces lung
fibroblast proliferation through Toll-like receptor 4 signaling and
the phosphoinositide3-kinase-Akt pathway. PLoS One. 7:e359262012.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Erez N, Glanz S, Raz Y, Avivi C and
Barshack I: Cancer associated fibroblasts express pro-inflammatory
factors in human breast and ovarian tumors. Biochem Biophys Res
Commun. 437:397–402. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Yeung TL, Leung CS, Wong KK, Samimi G,
Thompson MS, Liu J, Zaid TM, Ghosh S, Birrer MJ and Mok SC: TGF-β
modulates ovarian cancer invasion by upregulating CAF-derived
versican in the tumor microenvironment. Cancer Res. 73:5016–5028.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Dimanche-Boitrel MT, Vakaet L Jr, Pujuguet
P, Chauffert B, Martin MS, Hammann A, Van Roy F, Mareel M and
Martin F: In vivo and in vitro invasiveness of a rat colon-cancer
cell line maintaining E-cadherin expression: An enhancing role of
tumor-associated myofibroblasts. Int J Cancer. 56:512–521. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Boire A, Covic L, Agarwal A, Jacques S,
Sherifi S and Kuliopulos A: PAR1 is a matrix metalloprotease-1
receptor that promotes invasion and tumorigenesis of breast cancer
cells. Cell. 120:303–313. 2005. View Article : Google Scholar : PubMed/NCBI
|