|
1
|
Malietzis G, Lee GH, Bernardo D, Blakemore
AI, Knight SC, Moorghen M, Al-Hassi HO and Jenkins JT: The
prognostic significance and relationship with body composition of
CCR7-positive cells in colorectal cancer. J Surg Oncol. 112:86–92.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Altendorf-Hofmann A and Scheele J: A
critical review of the major indicators of prognosis after
resection of hepatic metastases from colorectal carcinoma. Surg
Oncol Clin N Am. 12:165–192. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Vidal-Vanaclocha F: The prometastatic
microenvironment of the liver. Cancer Microenviron. 1:113–129.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Scheele J, Stangl R and Altendorf-Hofmann
A: Hepatic metastases from colorectal carcinoma: Impact of surgical
resection on the natural history. Br J Surg. 77:1241–1246. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Donadon M, Ribero D, Morris-Stiff G,
Abdalla EK and Vauthey JN: New paradigm in the management of
liver-only metastases from colorectal cancer. Gastrointest Cancer
Res. 1:20–27. 2007.PubMed/NCBI
|
|
6
|
Haier J, Korb T, Hotz B, Spiegel HU and
Senninger N: An intravital model to monto steps of metastatic tumor
cell adhesion within the hepatic microcirculation. J Gastrointest
Surg. 7:507–514. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Van den Eyden GG, Majeed AW, Illemann M,
Vermeulen PB, Bird NC, Høyer-Hansen G, Eefsen RL, Reynolds AR and
Brodt P: The multifaceted role of the microenvironment in liver
metastasis: Biology and clinical implications. Cancer Res.
73:2031–2043. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rose DM, Essner R, Hughes TM, Tang PC,
Bilchik A, Wanek LA, Thompson JF and Morton DL: Surgical resection
for metastatic melanoma to the liver: The John Wayne cancer
institute and sydney melanoma unit experience. Arch Surg.
136:950–955. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Eichbaum MH, Kaltwasser M, Bruckner T, de
Rossi TM, Schneeweiss A and Sohn C: Prognostic factors for patients
with liver metastases from breast cancer. Breast Cancer Res Treat.
96:53–62. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang TX, Chua TC and Morris DL:
Radioembolization and chemoembolization for unresectable
neuroendocrine liver metastases-a systematic review. Surg Oncol.
21:299–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Klein CA: Cancer. The metastasis cascade.
Science. 321:1785–1787. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Stasinopoulos I, Penet MF, Krishnamachary
B and Bhujwalla ZM: Molecular and functional imaging of invasion
and metastasis: Windows into the metastatic cascade. Cancer
Biomark. 7:173–188. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Paschos KA, Canovas D and Bird NC: The
role of cell adhesion molecules in the progression of colorectal
cancer and the development of liver metastasis. Cell Signal.
21:665–674. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kawaguchi T: Organ preference of cancer
metastasis and metastasis-related cell adhesion molecules including
carbohydrates. Cardiovasc Hematol Disord Drug Targets. 15:164–186.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Francavilla C, Maddaluno L and Cavallaro
U: The functional role of cell adhesion molecules in tumor
angiogenesis. Semin Cancer Biol. 19:298–309. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mueller MM and Fusenig NE: Friends or
foes-bipolar effects of the tumour stroma in cancer. Nat Rev
Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fridman WH, Remark R, Goc J, Giraldo NA,
Becht E, Hammond SA, Damotte D, Dieu-Nosjean MC and Sautès-Fridman
C: The immune microenvironment: A major player in human cancers.
Int Arch Allergy Immunol. 164:13–26. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
McDonald PC, Chafe SC and Dedhar S:
Overcoming hypoxia-mediated tumor progression: Combinatorial
approaches targeting pH Regulation, angiogenesis and immune
dysfunction. Front Cell Dev Biol. 4:272016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Langley RR and Fidler IJ: The seed and
soil hypothesis revisited-the role of tumor-stroma interactions in
metastasis to different organs. Int J Cancer. 128:2527–2535. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kobayashi H, Boelte KC and Lin PC:
Endothelial cell adhesion molecules and cancer progression. Curr
Med Chem. 14:377–386. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Arabzadeh A, Chan C, Nouvion AL, Breton V,
Benlolo S, DeMarte L, Turbide C, Brodt P, Ferri L and Beauchemin N:
Host-related carcinoembryonic antigen cell adhesion molecule 1
promotes metastasis of colorectal cancer. Oncogene. 32:849–860.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Khatib AM, Auguste P, Fallavollita L, Wang
N, Samani A, Kontogiannea M, Meterissian S and Brodt P:
Characterization of the host proinflammatory response to tumor
cells during the initial stages of liver metastasis. Am J Pathol.
167:749–759. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rahn JJ, Chow JW, Horne GJ, Mah BK,
Emerman JT, Hoffman P and Hugh JC: MUC1 mediates transendothelial
migration in vitro by ligating endothelial cell ICAM-1. Clin Exp
Metastasis. 22:475–483. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Laurent VM, Duperray A, Rajan Sundar V and
Verdier C: Atomic force microscopy reveals a role for endothelial
cell ICAM-1 expression in bladder cancer cell adherence. PLoS One.
9:e980342014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Palange AL, Di Mascolo D, Carallo C,
Gnasso A and Decuzzi P: Lipid-polymer nanoparticles encapsulating
curcumin for modulating the vascular deposition of breast cancer
cells. Nanomedicine. 10:991–1002. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Clayton A, Evans RA, Pettit E, Hallett M,
Williams JD and Steadman R: Cellular activation through the
ligation of intercellular adhesion molecule-1. J Cell Sci.
111:443–453. 1998.PubMed/NCBI
|
|
27
|
Arteta B, Lasuen N, Lopategi A,
Sveinbjörnsson B, Smedsrød B and Vidal-Vanaclocha F: Colon
carcinoma cell interaction with liver sinusoidal endothelium
inhibits organ-specific antitumor immunity through
interleukin-1-induced mannose receptor in mice. Hepatology.
51:2172–2182. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Delfortrie S, Pinte S, Mattot V, Samson C,
Villain G, Caetano B, Lauridant-Philippin G, Baranzelli MC,
Bonneterre J, Trottein F, et al: Egfl7 promotes tumor escape from
immunity by repressing endothelial cell activation. Cancer Res.
71:7176–7186. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ghislin S, Obino D, Middendorp S, Boggetto
N, Alcaide-Loridan C and Deshayes F: LFA-1 and ICAM-1 expression
induced during melanoma-endothelial cell co-culture favors the
transendothelial migration of melanoma cell lines in vitro. BMC
Cancer. 12:4552012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang HT, Lee HI, Guo JH, Chen SH, Liao ZK,
Huang KW, Torng PL and Hwang LH: Calreticulin promotes tumor
lymphocyte infiltration and enhances the antitumor effects of
immunotherapy by up-regulating the endothelial expression of
adhesion molecules. Int J Cancer. 130:2892–2902. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Akeichi T, Mocevicius P, Deduchovas O,
Salnikova O, Castro-Santa E, Büchler MW, Schmidt J and Ryschich E:
αL β2 integrin is indispensable for CD8+ T-cell
recruitment in experimental pancreatic and hepatocellular cancer.
Int J Cancer. 130:2067–2076. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Valcárcel M, Arteta B, Jaureguibeitia A,
Lopategi A, Martínez I, Mendoza L, Muruzabal FJ, Salado C and
Vidal-Vanaclocha F: Three-dimensional growth as multicellular
spheroid activates the proangiogenic phenotype of colorectal
carcinoma cells via LFA-1-dependent VEGF: Implications on hepatic
micrometastasis. J Transl Med. 6:572008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yin Z, Jiang G, Fung JJ, Lu L and Qian S:
ICAM-1 expressed on hepatic stellate cells plays an important role
in immune regulation. Microsurgery. 27:328–332. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bruns T, Zimmermann HW, Pachnio A, Li KK,
Trivedi PJ, Reynolds G, Hubscher S, Stamataki Z, Badenhorst PW,
Weston CJ, et al: CMV infection of human sinusoidal endothelium
regulates hepatic T cell recruitment and activation. J Hepatol.
63:38–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
van Den Engel NK, Heidenthal E, Vinke A,
Kolb H and Martin S: Circulating forms of intercellular adhesion
molecule (ICAM)-1 in mice lacking membranous ICAM-1. Blood.
95:1350–1355. 2000.PubMed/NCBI
|
|
36
|
Pluskota E and D'Souza SE: Fibrinogen
interactions with ICAM-1 (CD54) regulate endothelial cell survival.
Eur J Biochem. 267:4693–4704. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Shen Q, Rahn JJ, Zhang J, Gunasekera N,
Sun X, Shaw AR, Hendzel MJ, Hoffman P, Bernier A and Hugh JC: MUC1
initiates Src-CrkL-Rac1/Cdc42-mediated actin cytoskeletal
protrusive motility after ligating intercellular adhesion
molecule-1. Mol Cancer Res. 6:555–567. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gulubova MV: Expression of cell adhesion
molecules and their beta1 and beta2 integrin ligands in human liver
peliosis. Pathol Res Pract. 201:503–511. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Oudar O, Moreau A, Feldmann G and Scoazec
JY: Expression and regulation of intercellular adhesion molecule-1
(ICAM-1) in organotypic cultures of rat liver tissue. J Hepatol.
29:901–909. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gangopadhyay A, Lazure DA and Thomas P:
Adhesion of colorectal carcinoma cells to the endothelium is
mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp
Metastasis. 16:703–712. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang L, Froio RM, Sciuto TE, Dvorak AM,
Alon R and Luscinskas FW: ICAM-1 regulates neutrophil adhesion and
transcellular migration of TNF-α-activated vascular endothelium
under flow. Blood. 106:584–592. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lalor PF, Shields P, Grant A and Adams DH:
Recruitment of lymphocytes to the human liver. Immunol Cell Biol.
80:52–64. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lawson C, Ainsworth M, Yacoub M and Rose
M: Ligation of ICAM-1 on endothelial cells leads to expression of
VCAM-1 via a nuclear factor-kappaB-independent mechanism. J
Immunol. 162:2990–2996. 1999.PubMed/NCBI
|
|
44
|
Selzner N, Selzner M, Odermatt B, Tian Y,
Van Rooijen N and Clavien PA: ICAM-1 triggers liver regeneration
through leukocyte recruitment and Kupffer cell-dependent release of
TNF-alpha/IL-6 in mice. Gastroenterology. 124:692–700. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Witkowska AM and Borawska MH: Soluble
intercellular adhesion molecule-1 (sICAM-1): An overview. Eur
Cytokine Netw. 15:91–98. 2004.PubMed/NCBI
|
|
46
|
Sprenger A, Schardt C, Rotsch M, Zehrer M,
Wolf M, Havemann K and Heymanns J: Soluble intercellular adhesion
molecule-1 in patients with lung cancer and benign lung diseases. J
Cancer Res Clin Oncol. 123:632–638. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Maruo Y, Gochi A, Kaihara A, Shimamura H,
Yamada T, Tanaka N and Orita K: ICAM-1 expression and the soluble
ICAM-1 level for evaluating the metastatic potential of gastric
cancer. Int J Cancer. 100:486–490. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Christiansen I, Gidlof C, Kälkner KM,
Hagberg H, Bennmarker H and Tötterman T: Elevated serum levels of
soluble ICAM-1 in non-Hodgkin's lymphomas correlate with tumour
burden, disease activity and other prognostic markers. Br J
Haematol. 92:639–646. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhu XW and Gong JP: Expression and role of
icam-1 in the occurrence and development of hepatocellular
carcinoma. Asian Pac J Cancer Prev. 14:1579–1583. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kotteas EA, Gkiozos I, Tsagkouli S, Bastas
A, Ntanos I, Saif MW and Syrigos KN: Soluble ICAM-1 levels in
small-cell lung cancer: Prognostic value for survival and
predictive significance for response during chemotherapy. Med
Oncol. 30:6622013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gassmann P, Kang ML, Mees ST and Haier J:
In vivo tumor cell adhesion in the pulmonary microvasculature is
exclusively mediated by tumor cell-endothelial cell interaction.
BMC Cancer. 10:1772010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang P, Goodrich C, Fu C and Dong C:
Melanoma upregulates ICAM-1 expression on endothelial cells through
engagement of tumor CD44 with endothelial E-selectin and activation
of a PKCα-p38-SP-1 pathway. FASEB J. 28:4591–4609. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sipos E, Chen L, András IE, Wrobel J,
Zhang B, Pu H, Park M, Eum SY and Toborek M: Proinflammatory
adhesion molecules facilitate polychlorinated biphenyl-mediated
enhancement of brain metastasis formation. Toxicol Sci.
126:362–371. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gong L, Mi HJ, Zhu H, Zhou X and Yang H:
P-selectin-mediated platelet activation promotes adhesion of
non-small cell lung carcinoma cells on vascular endothelial cells
under flow. Mol Med Rep. 5:935–942. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Park JS, Kim KM, Kim MH, Chang HJ, Baek
MK, Kim SM and Jung YD: Resveratrol inhibits tumor cell adhesion to
endothelial cells by blocking ICAM-1 expression. Anticancer Res.
29:355–362. 2009.PubMed/NCBI
|
|
56
|
Benedicto A, Marquez J, Olaso E and Arteta
B: LFA-1/ICAM-1 interaction switches on an orchestrated
prometastatic microenvironmental shift during experimental liver
metastasis of colon C26 cancer cells. abstract. Cancer Res. 75:B10.
2015. View Article : Google Scholar
|
|
57
|
Eaton KV, Yang HL, Giachelli CM and
Scatena M: Engineering macrophages to control the inflammatory
response and angiogenesis. Exp Cell Res. 339:300–309. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Steinhoff G, Behrend M, Schrader B,
Duijvestijn AM and Wonigeit K: Expression patterns of leukocyte
adhesion ligand molecules on human liver endothelia. Lack of ELAM-1
and CD62 inducibility on sinusoidal endothelia and distinct
distribution of VCAM-1, ICAM-1, ICAM-2 and LFA-3. Am J Pathol.
142:481–488. 1993.PubMed/NCBI
|
|
59
|
Kong J, Kong L, Kong J, Ke S, Gao J, Ding
X, Zheng L, Sun H and Sun W: After insufficient radiofrequency
ablation, tumor-associated endothelial cells exhibit enhanced
angiogenesis and promote invasiveness of residual hepatocellular
carcinoma. J Transl Med. 10:2302012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lee WY and Kubes P: Leukocyte adhesion in
the liver: Distinct adhesion paradigm from other organs. J Hepatol.
48:504–512. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Salas A, Shimaoka M, Phan U, Kim M and
Springer TA: Transition from rolling to firm adhesion can be
mimicked by extension of integrin alphaLbeta2 in an intermediate
affinity state. J Biol Chem. 281:10876–10882. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Roosien FF, de Kuiper PE, de Rijk D and
Roos E: Invasive and metastatic capacity of revertants of
LFA-1-deficient mutant T-cell hybridomas. Cancer Res. 50:3509–3513.
1990.PubMed/NCBI
|
|
63
|
Tatsumi T, Shimazaki C, Goto H, Araki S,
Sudo Y, Yamagata N, Ashihara E, Inaba T, Fujita N and Nakagawa M:
Expression of adhesion molecules on myeloma cells. Jpn J Cancer
Res. 87:837–842. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Gulubova MV: Expression of cell adhesion
molecules, their ligands and tumour necrosis factor alpha in the
liver of patients with metastatic gastrointestinal carcinomas.
Histochem J. 34:67–77. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Soto MS, Serres S, Anthony DC and Sibson
NR: Functional role of endothelial adhesion molecules in the early
stages of brain metastasis. Neuro-Oncol. 16:540–551. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Horm TM and Schroeder JA: MUC1 and
metastatic cancer: Expression, function and therapeutic targeting.
Cell Adh Migr. 7:187–198. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Williams K, Motiani K, Giridhar PV and
Kasper S: CD44 integrates signaling in normal stem cell, cancer
stem cell and (pre)metastatic niches. Exp Biol Med (Maywood).
238:324–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Olsson E, Honeth G, Bendahl PO, Saal LH,
Gruvberger-Saal S, Ringnér M, Vallon-Christersson J, Jönsson G,
Holm K, Lövgren K, et al: CD44 isoforms are heterogeneously
expressed in breast cancer and correlate with tumor subtypes and
cancer stem cell markers. BMC Cancer. 11:4182011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dalerba P, Dylla SJ, Park IK, Liu R, Wang
X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al:
Phenotypic characterization of human colorectal cancer stem cells.
Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li C, Heidt DG, Dalerba P, Burant CF,
Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM: Identification
of pancreatic cancer stem cells. Cancer Res. 67:1030–1037. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ohtani H: Pathophysiologic significance of
host reactions in human cancer tissue: Desmoplasia and tumor
immunity. Tohoku J Exp Med. 187:193–202. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Essani NA, McGuire GM, Manning AM and
Jaeschke H: Differential induction of mRNA for ICAM-1 and selectins
in hepatocytes, Kupffer cells and endothelial cells during
endotoxemia. Biochem Biophys Res Commun. 211:74–82. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Usami Y, Ishida K, Sato S, Kishino M,
Kiryu M, Ogawa Y, Okura M, Fukuda Y and Toyosawa S: Intercellular
adhesion molecule-1 (ICAM-1) expression correlates with oral cancer
progression and induces macrophage/cancer cell adhesion. Int J
Cancer. 133:568–578. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ohira H, Ueno T, Shakado S, Sakamoto M,
Torimura T, Inuzuka S, Sata M and Tanikawa K: Cultured rat hepatic
sinusoidal endothelial cells express intercellular adhesion
molecule-1 (ICAM-1) by tumor necrosis factor-alpha or interleukin-1
alpha stimulation. J Hepatol. 20:729–734. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tacconi C, Correale C, Gandelli A,
Spinelli A, Dejana E, D'Alessio S and Danese S: Vascular
endothelial growth factor C disrupts the endothelial lymphatic
barrier to promote colorectal cancer invasion. Gastroenterology.
148:1438–1451. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Weber MR, Zuka M, Lorger M, Tschan M,
Torbett BE, Zijlstra A, Quigley JP, Staflin K, Eliceiri BP, Krueger
JS, et al: Activated tumor cell integrin αvβ3 cooperates with
platelets to promote extravasation and metastasis from the blood
stream. Thromb Res. 140:(Suppl 1). S27–S36. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Locard-Paulet M, Lim L, Veluscek G,
McMahon K, Sinclair J, van Weverwijk A, Worboys JD, Yuan Y, Isacke
CM and Jørgensen C: Phosphoproteomic analysis of interacting tumor
and endothelial cells identifies regulatory mechanisms of
transendothelial migration. Sci Signal. 9:ra152016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Skau CT, Fischer RS, Gurel P, Thiam HR,
Tubbs A, Baird MA, Davidson MW, Piel M, Alushin GM, Nussenzweig A,
et al: FMN2 makes perinuclear actin to protect nuclei during
confined migration and promote metastasis. Cell. 167:1571–1585.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Freeman SA, McLeod SJ, Dukowski J, Austin
P, Lee CC, Millen-Martin B, Kubes P, McCafferty DM, Gold MR and
Roskelley CD: Preventing the activation or cycling of the Rap1
GTPase alters adhesion and cytoskeletal dynamics and blocks
metastatic melanoma cell extravasation into the lungs. Cancer Res.
70:4590–4601. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sato T, Habtezion A, Beilhack A, Schulz S,
Butcher E and Thorlacius H: Short-term homing assay reveals a
critical role for lymphocyte function-associated antigen-1 in the
hepatic recruitment of lymphocytes in graft-versus-host disease. J
Hepatol. 44:1132–1140. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gorina R, Lyck R, Vestweber D and
Engelhardt B: β2 integrin-mediated crawling on endothelial ICAM-1
and ICAM-2 is a prerequisite for transcellular neutrophil
diapedesis across the inflamed blood-brain barrier. J Immunol.
192:324–337. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Fu C, Tong C, Wang M, Gao Y, Zhang Y, Lü
S, Liang S, Dong C and Long M: Determining beta2-integrin and
intercellular adhesion molecule 1 binding kinetics in tumor cell
adhesion to leukocytes and endothelial cells by a gas-driven
micropipette assay. J Biol Chem. 286:34777–34787. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Haddad O, Chotard-Ghodsnia R, Verdier C
and Duperray A: Tumor cell/endothelial cell tight contact
upregulates endothelial adhesion molecule expression mediated by
NFkappaB: Differential role of the shear stress. Exp Cell Res.
316:615–626. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wong J, Johnston B, Lee SS, Bullard DC,
Smith CW, Beaudet AL and Kubes P: A minimal role for selectins in
the recruitment of leukocytes into the inflamed liver
microvasculature. J Clin Invest. 99:2782–2790. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ronald JA, Ionescu CV, Rogers KA and
Sandig M: Differential regulation of transendothelial migration of
THP-1 cells by ICAM-1/LFA-1 and VCAM-1/VLA-4. J Leukoc Biol.
70:601–609. 2001.PubMed/NCBI
|
|
86
|
Kubes P and Mehal WZ: Sterile inflammation
in the liver. Gastroenterology. 143:1158–1172. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ramadori G, Moriconi F, Malik I and Dudas
J: Physiology and pathophysiology of liver inflammation, damage and
repair. J Physiol Pharmacol. 59:(Suppl 1). S107–S117. 2008.
|
|
88
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Weis SM and Cheresh DA: Tumor
angiogenesis: Molecular pathways and therapeutic targets. Nat Med.
17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Whiteside TL: Immune suppression in
cancer: Effects on immune cells, mechanisms and future therapeutic
intervention. Semin Cancer Biol. 16:3–15. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dvorak HF: Tumors: Wounds that do not
heal. Similarities between tumor stroma generation and wound
healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lee UE and Friedman SL: Mechanisms of
hepatic fibrogenesis. Best Pract Res Clin Gastroenterol.
25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Madar S, Goldstein I and Rotter V: ‘Cancer
associated fibroblasts’-more than meets the eye. Trends Mol Med.
19:447–453. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hellerbrand Wang SC, Tsukamoto H, Brenner
DA and Rippe RA: Expression of intracellular adhesion molecule 1 by
activated hepatic stellate cells. Hepatology. 24:670–676. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Masamune A, Sakai Y, Kikuta K, Satoh M,
Satoh A and Shimosegawa T: Activated rat pancreatic stellate cells
express intercellular adhesion molecule-1 (ICAM-1) in vitro.
Pancreas. 25:78–85. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kang N, Gores GJ and Shah VH: Hepatic
stellate cells: Partners in crime for liver metastases? Hepatology.
54:707–713. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Olaso E, Salado C, Egilegor E, Gutierrez
V, Santisteban A, Sancho-Bru P, Friedman SL and Vidal-Vanaclocha F:
Proangiogenic role of tumor-activated hepatic stellate cells in
experimental melanoma metastasis. Hepatology. 37:674–685. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Muhanna N, Doron S, Wald O, Horani A, Eid
A, Pappo O, Friedman SL and Safadi R: Activation of hepatic
stellate cells after phagocytosis of lymphocytes: A novel pathway
of fibrogenesis. Hepatology. 48:963–977. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Schildberg FA, Wojtalla A, Siegmund SV,
Endl E, Diehl L, Abdullah Z, Kurts C and Knolle PA: Murine hepatic
stellate cells veto CD8 T cell activation by a CD54-dependent
mechanism. Hepatology. 54:262–272. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhao W, Zhang L, Xu Y, Zhang Z, Ren G,
Tang K, Kuang P, Zhao B, Yin Z and Wang X: Hepatic stellate cells
promote tumor progression by enhancement of immunosuppressive cells
in an orthotopic liver tumor mouse model. Lab Invest. 94:182–191.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Fisher DT, Appenheimer MM and Evans SS:
The two faces of IL-6 in the tumor microenvironment. Semin Immunol.
26:38–47. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Roca H, Varsos ZS, Sud S, Craig MJ, Ying C
and Pienta KJ: CCL2 and interleukin-6 promote survival of human
CD11b+ peripheral blood mononuclear cells and induce
M2-type macrophage polarization. J Biol Chem. 284:34342–34354.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Galdiero MR, Bonavita E, Barajon I,
Garlanda C, Mantovani A and Jaillon S: Tumor associated macrophages
and neutrophils in cancer. Immunobiology. 218:1402–1410. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Okada S, Shikata K, Matsuda M, Ogawa D,
Usui H, Kido Y, Nagase R, Wada J, Shikata Y and Makino H:
Intercellular adhesion molecule-1-deficient mice are resistant
against renal injury after induction of diabetes. Diabetes.
52:2586–2593. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liou GY, Döppler H, Necela B, Edenfield B,
Zhang L, Dawson DW and Storz P: Mutant KRAS-induced expression of
ICAM-1 in pancreatic acinar cells causes attraction of macrophages
to expedite the formation of precancerous lesions. Cancer Discov.
5:52–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lee BR, Chang SY, Hong EH, Kwon BE, Kim
HM, Kim YJ, Lee J, Cho HJ, Cheon JH and Ko HJ: Elevated endoplasmic
reticulum stress reinforced immunosuppression in the tumor
microenvironment via myeloid-derived suppressor cells. Oncotarget.
5:12331–12345. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Sander LE, Sackett SD, Dierssen U, Beraza
N, Linke RP, Müller M, Blander JM, Tacke F and Trautwein C: Hepatic
acute-phase proteins control innate immune responses during
infection by promoting myeloid-derived suppressor cell function. J
Exp Med. 207:1453–1464. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wang Q and Doerschuk CM: The p38
mitogen-activated protein kinase mediates cytoskeletal remodeling
in pulmonary microvascular endothelial cells upon intracellular
adhesion molecule-1 ligation. J Immunol. 166:6877–6884. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Novo E, Cannito S, Zamara E, di Valfrè
Bonzo L, Caligiuri A, Cravanzola C, Compagnone A, Colombatto S,
Marra F, Pinzani M and Parola M: Proangiogenic cytokines as
hypoxia-dependent factors stimulating migration of human hepatic
stellate cells. Am J Pathol. 170:1942–1953. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li X, Wang X, Han C, Wang X, Xing G, Zhou
L, Li G and Niu Y: Astragaloside IV suppresses collagen production
of activated hepatic stellate cells via oxidative stress-mediated
p38 MAPK pathway. Free Radic Biol Med. 60:168–176. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Cui X, Zhang X, Yin Q, Meng A, Su S, Jing
X, Li H, Guan X, Li X, Liu S and Cheng M: F-actin cytoskeleton
reorganization is associated with hepatic stellate cell activation.
Mol Med Rep. 9:1641–1647. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wang Q, Pfeiffer GR II and Gaarde WA:
Activation of SRC tyrosine kinases in response to ICAM-1 ligation
in pulmonary microvascular endothelial cells. J Biol Chem.
278:47731–47743. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lee SJ, Drabik K, Van Wagoner NJ, Lee S,
Choi C, Dong Y and Benveniste EN: ICAM-1-induced expression of
proinflammatory cytokines in astrocytes: Involvement of
extracellular signal-regulated kinase and p38 mitogen-activated
protein kinase pathways. J Immunol. 165:4658–4666. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Blaber R, Stylianou E, Clayton A and
Steadman R: Selective regulation of ICAM-1 and RANTES gene
expression after ICAM-1 ligation on human renal fibroblasts. J Am
Soc Nephrol. 14:116–127. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Borkham-Kamphorst E, van Roeyen CR,
Ostendorf T, Floege J, Gressner AM and Weiskirchen R:
Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol.
46:1064–1074. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Vermeulen PB, Colpaert C, Salgado R,
Royers R, Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix LY and
Van Marck E: Liver metastases from colorectal adenocarcinomas grow
in three patterns with different angiogenesis and desmoplasia. J
Pathol. 195:336–342. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Schellerer VS, Langheinrich M, Hohenberger
W, Croner RS, Merkel S, Rau TT, Stürzl M and Naschberger E:
Tumor-associated fibroblasts isolated from colorectal cancer
tissues exhibit increased ICAM-1 expression and affinity for
monocytes. Oncol Rep. 31:255–261. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Brackett CM, Kojouharov B, Veith J, Greene
KF, Burdelya LG, Gollnick SO, Abrams SI and Gudkov AV: Toll-like
receptor-5 agonist, entolimod, suppresses metastasis and induces
immunity by stimulating an NK-dendritic-CD8+ T-cell
axis. Proc Natl Acad Sci USA. 113:E874–E883. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Poczobutt JM, Nguyen TT, Hanson D, Li H,
Sippel TR, Weiser-Evans MC, Gijon M, Murphy RC and Nemenoff RA:
Deletion of 5-Lipoxygenase in the tumor microenvironment promotes
lung cancer progression and metastasis through regulating T cell
recruitment. J Immunol. 196:891–901. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zanetti M: Tapping CD4 T cells for cancer
immunotherapy: The choice of personalized genomics. J Immunol.
194:2049–2056. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Umansky V, Blattner C, Gebhardt C and
Utikal J: The Role of Myeloid-Derived Suppressor Cells (MDSC) in
Cancer Progression. Vaccines (Basel). 4:E362016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Umansky V, Blattner C, Fleming V, Hu X,
Gebhardt C, Altevogt P and Utikal J: Myeloid-derived suppressor
cells and tumor escape from immune surveillance. Semin
Immunopathol. 39:295–305. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Baay M, Brouwer A, Pauwels P, Peeters M
and Lardon F: Tumor cells and tumor-associated macrophages:
Secreted proteins as potential targets for therapy. Clin Dev
Immunol. 2011:5651872011. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ostrand-Rosenberg S and Sinha P:
Myeloid-derived suppressor cells: Linking inflammation and cancer.
J Immunol. 182:4499–4506. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zen K, Masuda J and Ogata J:
Monocyte-derived macrophages prime peripheral T cells to undergo
apoptosis by cell-cell contact via ICAM-1/LFA-1-dependent
mechanism. Immunobiology. 195:323–333. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Makgoba MW, Sanders ME, Ginther Luce GE,
Dustin ML, Springer TA, Clark EA, Mannoni P and Shaw S: ICAM-1 a
ligand for LFA-1-dependent adhesion of B, T and myeloid cells.
Nature. 331:86–88. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Rabquer BJ, Hou Y, Del Galdo F, Haines GK
III, Gerber ML, Jimenez SA, Seibold JR and Koch AE: The proadhesive
phenotype of systemic sclerosis skin promotes myeloid cell adhesion
via ICAM-1 and VCAM-1. Rheumatology (Oxford). 48:734–740. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Hemmerlein B, Scherbening J, Kugler A and
Radzun HJ: Expression of VCAM-1, ICAM-1, E- and P-selectin and
tumour-associated macrophages in renal cell carcinoma.
Histopathology. 37:78–83. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Tao L, Zhang L, Peng Y, Tao M, Li L, Xiu
D, Yuan C, Ma Z and Jiang B: Neutrophils assist the metastasis of
circulating tumor cells in pancreatic ductal adenocarcinoma: A new
hypothesis and a new predictor for distant metastasis. Medicine
(Baltimore). 95:e49322016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Tabariès S, Ouellet V, Hsu BE, Annis MG,
Rose AA, Meunier L, Carmona E, Tam CE, Mes-Masson AM and Siegel PM:
Granulocytic immune infiltrates are essential for the efficient
formation of breast cancer liver metastases. Breast Cancer Res.
17:452015. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Hirai H, Fujishita T, Kurimoto K, Miyachi
H, Kitano S, Inamoto S, Itatani Y, Saitou M, Maekawa T and Taketo
MM: CCR1-mediated accumulation of myeloid cells in the liver
microenvironment promoting mouse colon cancer. Clin Exp Metastasis.
31:977–989. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ramaiah SK and Jaeschke H: Hepatic
neutrophil infiltration in the pathogenesis of alcohol-induced
liver injury. Toxicol Mech Methods. 17:431–440. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Slattery MJ, Liang S and Dong C: Distinct
role of hydrodynamic shear in leukocyte-facilitated tumor cell
extravasation. Am J Physiol Cell Physiol. 288:C831–C839. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Sakamoto S, Okanoue T, Itoh Y, Nakagawa Y,
Nakamura H, Morita A, Daimon Y, Sakamoto K, Yoshida N, Yoshikawa T
and Kashima K: Involvement of Kupffer cells in the interaction
between neutrophils and sinusoidal endothelial cells in rats.
Shock. 18:152–157. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Li TJ, Jiang YM, Hu YF, Huang L, Yu J,
Zhao LY, Deng HJ, Mou TY, Liu H, Yang Y, et al:
Interleukin-17-producing neutrophils link inflammatory stimuli to
disease progression by promoting angiogenesis in gastric cancer.
Clin Cancer Res. 23:1575–1585. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Seth R, Raymond FD and Makgoba MW:
Circulating ICAM-1 isoforms: Diagnostic prospects for inflammatory
and immune disorders. Lancet. 338:83–84. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Rothlein R, Mainolfi EA, Czajkowski M and
Marlin SD: A form of circulating ICAM-1 in human serum. J Immunol.
147:3788–3793. 1991.PubMed/NCBI
|
|
138
|
Tesarova P, Kalousova M, Zima T, Suchanek
M, Malikova I, Kvasnicka J, Duskova D, Tesar V, Vachek J,
Krupickova-Kasalova Z and Malik J: Endotelial activation and
flow-mediated vasodilation in young patients with breast cancer.
Neoplasma. 60:690–697. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Guney N, Soydinc HO, Derin D, Tas F,
Camlica H, Duranyildiz D, Yasasever V and Topuz E: Serum levels of
intercellular adhesion molecule ICAM-1 and E-selectin in advanced
stage non-small cell lung cancer. Med Oncol. 25:194–200. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Dymicka-Piekarska V, Guzinska-Ustymowicz
K, Kuklinski A and Kemona H: Prognostic significance of adhesion
molecules (sICAM-1, sVCAM-1) and VEGF in colorectal cancer
patients. Thromb Res. 129:e47–e50. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Chen C, Duckworth CA, Zhao Q, Pritchard
DM, Rhodes JM and Yu LG: Increased circulation of galectin-3 in
cancer induces secretion of metastasis-promoting cytokines from
blood vascular endothelium. Clin Cancer Res. 19:1693–1704. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Takahara M, Nagato T, Komabayashi Y,
Yoshino K, Ueda S, Kishibe K and Harabuchi Y: Soluble ICAM-1
secretion and its functional role as an autocrine growth factor in
nasal NK/T cell lymphoma cells. Exp Hematol. 41:711–718. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Draghiciu O, Lubbers J, Nijman HW and
Daemen T: Myeloid derived suppressor cells-An overview of combat
strategies to increase immunotherapy efficacy. Oncoimmunology.
4:e9548292015. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Becker JC, Dummer R, Hartmann AA, Burg G
and Schmidt RE: Shedding of ICAM-1 from human melanoma cell lines
induced by IFN-gamma and tumor necrosis factor-alpha. Functional
consequences on cell-mediated cytotoxicity. J Immunol.
147:4398–4401. 1991.PubMed/NCBI
|
|
145
|
Becker JC, Termeer C, Schmidt RE and
Bröcker EB: Soluble intercellular adhesion molecule-1 inhibits
MHC-restricted specific T cell/tumor interaction. J Immunol.
151:7224–7232. 1993.PubMed/NCBI
|