Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2017 Volume 14 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2017 Volume 14 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review)

  • Authors:
    • Josefa A. Rodríguez
  • View Affiliations / Copyright

    Affiliations: Cancer Biology Research Group, National Cancer Institute of Colombia, 111511 Bogotá, Colombia
    Copyright: © Rodríguez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4415-4427
    |
    Published online on: August 21, 2017
       https://doi.org/10.3892/ol.2017.6784
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Although the immune system provides protection from cancer by means of immunosurveillance, which serves a major function in eliminating cancer cells, it may also lead to cancer immunoediting, molding tumor immunogenicity. Cancer cells exploit several molecular mechanisms to thwart immune‑mediated death by disabling cellular components of the immune system associated with tumor recognition and rejection. Human leukocyte antigen (HLA) molecules are mandatory for the immune recognition and subsequent killing of neoplastic cells by the immune system, as tumor antigens must be presented in an HLA‑restricted manner to be recognized by T‑cell receptors. Impaired HLA‑I expression prevents the activation of cytotoxic immune mechanisms, whereas impaired HLA‑II expression affects the antigen‑presenting capability of antigen presenting cells. Aberrant HLA‑G expression by cancer cells favors immune escape by inhibiting the activities of virtually all immune cells. The development of cancer therapies based on T‑cell activation must consider these HLA‑associated immune evasion mechanisms, as alterations in their expression occur early and frequently in the majority of types of cancer, and have an adverse impact on the clinical response to immunotherapy. Herein, the concept of altered HLA expression as a mechanism exploited by tumors to escape immune control and induce an immunosuppressive environment is reviewed. A number of novel clinical immunotherapeutic approaches used for cancer treatment are also reviewed, and strategies for overcoming the limitations of these immunotherapeutic interventions are proposed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Grivennikov SI, Greten FR and Karin M: Immunity, Inflammation and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Van den Boorn JG and Hartmann G: Turning tumors into vaccines: Co-opting the innate immune system. Immunity. 39:27–37. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Campoli M and Ferrone S: HLA antigen changes in malignant cells: Epigenetic mechanisms and biologic significance. Oncogene. 27:5869–5885. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Chang CC, Campoli M and Ferrone S: Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: Current challenges and future directions. Adv Cancer Res. 93:189–234. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Garrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F and Stern PL: Natural history of HLA expression during tumour development. Immunol Today. 14:491–499. 1993. View Article : Google Scholar : PubMed/NCBI

7 

Garrido F, Ruiz-Cabello F, Cabrera T, Pérez-Villar JJ, López-Botet M, Duggan-Keen M and Stern PL: Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 18:89–95. 1997. View Article : Google Scholar : PubMed/NCBI

8 

Koopman LA, Corver WE, van der Slik AR, Giphart MJ and Fleuren GJ: Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med. 191:961–976. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Moreau P, Rousseau P, Rouas-Freiss N, Le Discorde M, Dausset J and Carosella ED: HLA-G protein processing and transport to the cell surface. Cell Mol Life Sci. 59:1460–1466. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Adams JL, Smothers J, Srinivasan R and Hoos A: Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 14:603–622. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Srinivasan R and Wolchok JD: Tumor antigens for cancer immunotherapy: Therapeutic potential of xenogeneic DNA vaccines. J Transl Med. 2:122004. View Article : Google Scholar : PubMed/NCBI

12 

Waldhauer I and Steinle A: NK cells and cancer immunosurveillance. Oncogene. 27:5932–5943. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Jaeger BN and Vivier E: Natural killer cell tolerance: Control by self or self-control? Cold Spring Harb Perspect Biol. 4:pii: a007229. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Pegram HJ, Andrews DM, Smyth MJ, Darcy PK and Kershaw MH: Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 89:216–224. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Yokoyama WM and Kim S: Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol Rev. 214:143–154. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Clynes RA, Towers TL, Presta LG and Ravetch JV: Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 6:443–496. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Hayakawa Y and Smyth MJ: Innate immune recognition and suppression of tumors. Adv Cancer Res. 95:293–322. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, Wölfel C, Huber C and Wölfel T: The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA. 102:16013–16018. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O and Matzinger P: CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood. 109:5346–5354. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Gotter J, Brors B, Hergenhahn M and Kyewski B: Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med. 199:155–166. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Gerloni M and Zanetti M: CD4 T cells in tumor immunity. Springer Semin Immunopathol. 27:37–48. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Palm NW and Medzhitov R: Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 227:221–233. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Smith-Garvin JE, Koretzky GA and Jordan MS: T cell activation. Annu Rev Immunol. 27:591–619. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI

25 

de Coaña Pico Y, Choudhury A and Kiessling R: Checkpoint blockade for cancer therapy: Revitalizing a suppressed immune system. Trends Mol Med. 21:482–491. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Carreno BM and Collins M: The B7 family of ligands and its receptors: New pathways for costimulation and inhibition of immune responses. Annu Rev Immunol. 20:29–53. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N and Honjo T: Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 291:319–322. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H and Mak TW: Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 270:985–988. 1995. View Article : Google Scholar : PubMed/NCBI

29 

Chemnitz JM, Parry RV, Nichols KE, June CH and Riley JL: SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 173:945–954. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Kirchhof MG, Chau LA, Lemke CD, Vardhana S, Darlington PJ, Márquez ME, Taylor R, Rizkalla K, Blanca I, Dustin ML and Madrenas J: Modulation of T cell activation by stomatin-like protein 2. J Immunol. 181:1927–1936. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Teft WA, Kirchhof MG and Madrenas J: A molecular perspective of CTLA-4 function. Annu Rev Immunol. 24:65–97. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S and Puppo F: Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol. 33:125–134. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Le Bouteiller P, Fons P, Herault JP, Bono F, Chabot S, Cartwright JE and Bensussan A: Soluble HLA-G and control of angiogenesis. J Reprod Immunol. 76:17–22. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O'Callaghan CA, Dunbar R, Ogg GS, Cerundolo V and Rolink A: Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol. 160:3096–3100. 1998.PubMed/NCBI

35 

Rajagopalan S and Long EO: A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med. 189:1093–1100. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Pankratz S, Ruck T, Meuth SG and Wiendl H: CD4(+)HLA-G(+) regulatory T cells: Molecular signature and pathophysiological relevance. Hum Immunol. 77:727–733. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Kim R, Emi M and Tanabe K: Cancer immunoediting from immune surveillance to immune escape. Immunology. 121:1–14. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Vesely MD, Kershaw MH, Schreiber RD and Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 29:235–271. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Monjazeb AM, Zamora AE, Grossenbacher SK, Mirsoian A, Sckisel GD and Murphy WJ: Immunoediting and antigen loss: Overcoming the achilles heel of immunotherapy with antigen non-specific therapies. Front Oncol. 3:1972013. View Article : Google Scholar : PubMed/NCBI

40 

Khong HT and Restifo NP: Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol. 3:999–1005. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ and Schreiber RD: Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 450:903–907. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Gunderson AJ and Coussens LM: B cells and their mediators as targets for therapy in solid tumors. Exp Cell Res. 319:1644–1649. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI and Morales-Montor J: The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res. 35:1–16. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Lippitz BE: Cytokine patterns in patients with cancer: A systematic review. Lancet Oncol. 14:e218–e228. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J and Harlin H: Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 213:131–145. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Gajewski TF, Fuertes M, Spaapen R, Zheng Y and Kline J: Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 23:286–292. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Mahoney KM and Atkins MB: Prognostic and predictive markers for the new immunotherapies. Oncology (Williston Park). 28 Suppl 3:S39–S48. 2014.

48 

Wong SC, Puaux AL, Chittezhath M, Shalova I, Kajiji TS, Wang X, Abastado JP, Lam KP and Biswas SK: Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol. 40:2296–2307. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, et al: Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 31:860–867. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Tanchot C, Terme M, Pere H, Tran T, Benhamouda N, Strioga M, Banissi C, Galluzzi L, Kroemer G and Tartour E: Tumor-infiltrating regulatory T cells: Phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 6:147–157. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Petersson M, Charo J, Salazar-Onfray F, Noffz G, Mohaupt M, Qin Z, Klein G, Blankenstein T and Kiessling R: Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol. 161:2099–2105. 1998.PubMed/NCBI

52 

Salazar-Onfray F, Charo J, Petersson M, Freland S, Noffz G, Qin Z, Blankenstein T, Ljunggren HG and Kiessling R: Down-regulation of the expression and function of the transporter associated with antigen processing in murine tumor cell lines expressing IL-10. J Immunol. 159:3195–3202. 1997.PubMed/NCBI

53 

Chen CJ, Sung WW, Su TC, Chen MK, Wu PR, Yeh KT, Ko JL and Lee H: High expression of interleukin 10 might predict poor prognosis in early stage oral squamous cell carcinoma patients. Clin Chim Acta. 415:25–30. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Goncalves AS, Wastowski IJ, Capeletti LR, Sacono NT, Cortez AP, Valadares MC, Silva TA and Batista AC: The clinicopathologic significance of the expression of HLA-G in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 117:361–368. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Levy EM, Bianchini M, Von Euw EM, Barrio MM, Bravo AI, Furman D, Domenichini E, Macagno C, Pinsky V, Zucchini C, et al: Human leukocyte antigen-E protein is overexpressed in primary human colorectal cancer. Int J Oncol. 32:633–641. 2008.PubMed/NCBI

56 

Gasparoto TH, de Souza Malaspina TS, Damante JH, de Mello EF Jr, Ikoma MR, Garlet GP, Costa MR, Cavassani KA, da Silva JS and Campanelli AP: Regulatory T cells in the actinic cheilitis. J Oral Pathol Med. 43:754–760. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, Garrido F and Garcia-Lora A: HLA and melanoma: Multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother. 58:1507–1515. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Ferns DM, Heeren AM, Samuels S, Bleeker MC, de Gruijl TD, Kenter GG and Jordanova ES: Classical and non-classical HLA class I aberrations in primary cervical squamous- and adenocarcinomas and paired lymph node metastases. J Immunother Cancer. 4:782016. View Article : Google Scholar : PubMed/NCBI

59 

Campoli M and Ferrone S: HLA antigen and NK cell activating ligand expression in malignant cells: A story of loss or acquisition. Semin Immunopathol. 33:321–334. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Nilsson Lynge L, Djurisic S and Hviid TV: Controlling the immunological crosstalk during conception and pregnancy: HLA-G in reproduction. Front Immunol. 5:1982014.PubMed/NCBI

61 

Cabrera T, López-Nevot MA, Gaforio JJ, Ruiz-Cabello F and Garrido F: Analysis of HLA expression in human tumor tissues. Cancer Immunol Immunother. 52:1–9. 2003.PubMed/NCBI

62 

Goncalves AS, Oliveira JP, Oliveira CF, Silva TA, Mendonca EF, Wastowski IJ and Batista AC: Relevance of HLA-G, HLA-E and IL-10 expression in lip carcinogenesis. Hum Immunol. 77:785–790. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Reimers MS, Engels CC, Putter H, Morreau H, Liefers GJ, van de Velde CJ and Kuppen PJ: Prognostic value of HLA class I, HLA-E, HLA-G and Tregs in rectal cancer: A retrospective cohort study. BMC Cancer. 14:4862014. View Article : Google Scholar : PubMed/NCBI

64 

Rouas-Freiss N, Moreau P, Ferrone S and Carosella ED: HLA-G proteins in cancer: Do they provide tumor cells with an escape mechanism? Cancer Res. 65:10139–10144. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Carosella ED, Moreau P, Le Maoult J, Le Discorde M, Dausset J and Rouas-Freiss N: HLA-G molecules: From maternal-fetal tolerance to tissue acceptance. Adv Immunol. 81:199–252. 2003. View Article : Google Scholar : PubMed/NCBI

66 

LeMaoult J, Zafaranloo K, Le Danff C and Carosella ED: HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 19:662–664. 2005.PubMed/NCBI

67 

Braud VM, Allan DS, O'Callaghan CA, Söderström K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, et al: HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 391:795–799. 1998. View Article : Google Scholar : PubMed/NCBI

68 

Braud VM, Aldemir H, Breart B and Ferlin WG: Expression of CD94-NKG2A inhibitory receptor is restricted to a subset of CD8+ T cells. Trends Immunol. 24:162–164. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Garrido F, Cabrera T and Aptsiauri N: “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: Implications for immunotherapy. Int J Cancer. 127:249–256. 2010.PubMed/NCBI

70 

Vermeulen CF, Jordanova ES, Zomerdijk-Nooijen YA, ter Haar NT, Peters AA and Fleuren GJ: Frequent HLA class I loss is an early event in cervical carcinogenesis. Hum Immunol. 66:1167–1173. 2005. View Article : Google Scholar : PubMed/NCBI

71 

Brady CS, Bartholomew JS, Burt DJ, Duggan-Keen MF, Glenville S, Telford N, Little AM, Davidson JA, Jimenez P, Ruiz-Cabello F, et al: Multiple mechanisms underlie HLA dysregulation in cervical cancer. Tissue Antigens. 55:401–411. 2000. View Article : Google Scholar : PubMed/NCBI

72 

Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, López-Nevot MA and Garrido F: Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics. 63:65–71. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Rodriguez JA, Galeano L, Palacios DM, Gómez C, Serrano ML, Bravo MM and Combita AL: Altered HLA class I and HLA-G expression is associated with IL-10 expression in patients with cervical cancer. Pathobiology. 79:72–83. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P and LeMaoult J: HLA-G: An immune checkpoint molecule. Adv Immunol. 127:33–144. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Seliger B, Ritz U and Ferrone S: Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. Int J Cancer. 118:129–138. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Ristich V, Liang S, Zhang W, Wu J and Horuzsko A: Tolerization of dendritic cells by HLA-G. Eur J Immunol. 35:1133–1142. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Caumartin J, Favier B, Daouya M, Guillard C, Moreau P, Carosella ED and LeMaoult J: Trogocytosis-based generation of suppressive NK cells. EMBO J. 26:1423–1433. 2007. View Article : Google Scholar : PubMed/NCBI

78 

König L, Kasimir-Bauer S, Hoffmann O, Bittner AK, Wagner B, Manvailer LF, Schramm S, Bankfalvi A, Giebel B, Kimmig R, et al: The prognostic impact of soluble and vesicular HLA-G and its relationship to circulating tumor cells in neoadjuvant treated breast cancer patients. Hum Immunol. 77:791–799. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Bainbridge DR, Ellis SA and Sargent IL: The short forms of HLA-G are unlikely to play a role in pregnancy because they are not expressed at the cell surface. J Reprod Immunol. 47:1–16. 2000. View Article : Google Scholar : PubMed/NCBI

80 

Gong FL, Feng XW and Grosse-Wilde H: Impaired antigen-presenting capability of monocytes correlated with their decreased expression of HLA-II antigens in patients with myeloid leukemia. J Tongji Med Univ. 13:65–70. 1993. View Article : Google Scholar : PubMed/NCBI

81 

Yang XX, Pan HZ, Li PY, Li FX, Xu WW, Wu YS, Yao GY and Li M: HLA class II variants in Chinese breast cancer patients. Asian Pac J Cancer Prev. 12:3075–3079. 2011.PubMed/NCBI

82 

Hu JM, Li L, Chen YZ, Liu C, Cui X, Yin L, Yang L, Zou H, Pang L, Zhao J, et al: HLA-DRB1 and HLA-DQB1 methylation changes promote the occurrence and progression of Kazakh ESCC. Epigenetics. 9:1366–1373. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Liang J, Xu A, Xie Y, Awonuga AO and Lin Z: Some but not all of HLA-II alleles are associated with cervical cancer in Chinese women. Cancer Genet Cytogenet. 187:95–100. 2008. View Article : Google Scholar : PubMed/NCBI

84 

National Cancer Institute. Chemotherapy and you U.S. Department of health and human services national institutes of health. 2011.

85 

Taylor A and Powell ME: Intensity-modulated radiotherapy-what is it? Cancer Imaging. 4:68–73. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al: Classification of current anticancer immunotherapies. Oncotarget. 5:12472–12508. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Copier J, Dalgleish AG, Britten CM, Finke LH, Gaudernack G, Gnjatic S, Kallen K, Kiessling R, Schuessler-Lenz M, Singh H, et al: Improving the efficacy of cancer immunotherapy. Eur J Cancer. 45:1424–1431. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Young PA, Morrison SL and Timmerman JM: Antibody-cytokine fusion proteins for treatment of cancer: Engineering cytokines for improved efficacy and safety. Semin Oncol. 41:623–636. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE, et al: Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol. 23:6043–6053. 2005. View Article : Google Scholar : PubMed/NCBI

91 

Fong L and Small EJ: Anti-cytotoxic T-lymphocyte antigen-4 antibody: The first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol. 26:5275–5283. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Aerts M, Benteyn D, Van Vlierberghe H, Thielemans K and Reynaert H: Current status and perspectives of immune-based therapies for hepatocellular carcinoma. World J Gastroenterol. 22:253–261. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Boasberg P, Hamid O and O'Day S: Ipilimumab: Unleashing the power of the immune system through CTLA-4 blockade. Semin Oncol. 37:440–449. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Ugurel S, Röhmel J, Ascierto PA, Flaherty KT, Grob JJ, Hauschild A, Larkin J, Long GV, Lorigan P, McArthur GA, et al: Survival of patients with advanced metastatic melanoma: The impact of novel therapies. Eur J Cancer. 53:125–134. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Thor Straten P and Garrido F: Targetless T cells in cancer immunotherapy. J Immunother Cancer. 4:232016. View Article : Google Scholar : PubMed/NCBI

96 

Vavrova K, Vrabcova P, Filipp D, Bartunkova J and Horvath R: Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy. Med Oncol. 33:1362016. View Article : Google Scholar : PubMed/NCBI

97 

Fesnak AD, June CH and Levine BL: Engineered T cells: The promise and challenges of cancer immunotherapy. Nat Rev Cancer. 16:566–581. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Redeker A and Arens R: Improving adoptive T cell therapy: The particular role of t cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 7:3452016. View Article : Google Scholar : PubMed/NCBI

99 

Del Campo AB, Aptsiauri N, Méndez R, Zinchenko S, Vales A, Paschen A, Ward S, Ruiz-Cabello F, González-Aseguinolaza G and Garrido F: Efficient recovery of HLA class I expression in human tumor cells after beta2-microglobulin gene transfer using adenoviral vector: Implications for cancer immunotherapy. Scand J Immunol. 70:125–135. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Del Campo AB, Carretero J, Muñoz JA, Zinchenko S, Ruiz-Cabello F, González-Aseguinolaza G, Garrido F and Aptsiauri N: Adenovirus expressing β2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition. Cancer Gene Ther. 21:317–332. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Penaloza-MacMaster P, Kamphorst AO, Wieland A, Araki K, Iyer SS, West EE, O'Mara L, Yang S, Konieczny BT, Sharpe AH, et al: Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 211:1905–1918. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Wherry EJ: T cell exhaustion. Nat Immunol. 12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Pauken KE and Wherry EJ: Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36:265–276. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Page DB, Postow MA, Callahan MK, Allison JP and Wolchok JD: Immune modulation in cancer with antibodies. Annu Rev Med. 65:185–202. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Okamoto M, Kobayashi M, Yonemitsu Y, Koido S and Homma S: Dendritic cell-based vaccine for pancreatic cancer in Japan. World J Gastrointest Pharmacol Ther. 7:133–138. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Wang Z, Liu Y, Zhang Y, Shang Y and Gao Q: MDSC-decreasing chemotherapy increases the efficacy of cytokine-induced killer cell immunotherapy in metastatic renal cell carcinoma and pancreatic cancer. Oncotarget. 7:4760–4769. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Zhao X, Ji CY, Liu GQ, Ma DX, Ding HF, Xu M and Xing J: Immunomodulatory effect of DC/CIK combined with chemotherapy in multiple myeloma and the clinical efficacy. Int J Clin Exp Pathol. 8:13146–13155. 2015.PubMed/NCBI

109 

Amiot L, Ferrone S, Grosse-Wilde H and Seliger B: Biology of HLA-G in cancer: A candidate molecule for therapeutic intervention? Cell Mol Life Sci. 68:417–431. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Rodríguez JA: HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review). Oncol Lett 14: 4415-4427, 2017.
APA
Rodríguez, J.A. (2017). HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review). Oncology Letters, 14, 4415-4427. https://doi.org/10.3892/ol.2017.6784
MLA
Rodríguez, J. A."HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review)". Oncology Letters 14.4 (2017): 4415-4427.
Chicago
Rodríguez, J. A."HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review)". Oncology Letters 14, no. 4 (2017): 4415-4427. https://doi.org/10.3892/ol.2017.6784
Copy and paste a formatted citation
x
Spandidos Publications style
Rodríguez JA: HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review). Oncol Lett 14: 4415-4427, 2017.
APA
Rodríguez, J.A. (2017). HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review). Oncology Letters, 14, 4415-4427. https://doi.org/10.3892/ol.2017.6784
MLA
Rodríguez, J. A."HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review)". Oncology Letters 14.4 (2017): 4415-4427.
Chicago
Rodríguez, J. A."HLA‑mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T‑cell activation (Review)". Oncology Letters 14, no. 4 (2017): 4415-4427. https://doi.org/10.3892/ol.2017.6784
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team