|
1
|
Stewart BW and Wild CP: World cancer
report 2014. World. 2014.
|
|
2
|
Japanese Gastric Cancer Association
Registration Committee, . Maruyama K, Kaminishi M, Hayashi K, Isobe
Y, Honda I, Katai H, Arai K, Kodera Y and Nashimoto A: Gastric
cancer treated in 1991 in Japan: Data analysis of nationwide
registry. Gastric Cancer. 9:51–66. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Maehara Y, Hasuda S, Koga T, Tokunaga E,
Kakeji Y and Sugimachi K: Postoperative outcome and sites of
recurrence in patients following curative resection of gastric
cancer. Br J Surg. 87:353–357. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yashiro M, Chung YS, Nishimura S, Inoue T
and Sowa M: Fibrosis in the peritoneum induced by scirrhous gastric
cancer cells may act as ‘soil’ for peritoneal dissemination.
Cancer. 77 8 Suppl:S1668–S1675. 1996. View Article : Google Scholar
|
|
5
|
Li Z, Miao Z, Jin G, Li X, Li H, Lv Z and
Xu HM: big-h3 supports gastric cancer cell adhesion, migration and
proliferation in peritoneal carcinomatosis. Mol Med Rep. 6:558–564.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Paget S: The distribution of secondary
growths in cancer of the breast. Cancer Metastasis Rev. 8:98–101.
1989.PubMed/NCBI
|
|
7
|
Yonemura Y, Kawamura T, Bandou E,
Tsukiyama G, Endou Y and Miura M: The natural history of free
cancer cells in the peritoneal cavity. Recent Results Cancer Res.
169:11–23. 2007.PubMed/NCBI
|
|
8
|
Bando E, Yonemura Y, Takeshita Y,
Taniguchi K, Yasui T, Yoshimitsu Y, Fushida S, Fujimura T,
Nishimura G and Miwa K: Intraoperative lavage for cytological
examination in 1,297 patients with gastric carcinoma. Am J Surg.
178:256–262. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yonemura Y, Endou Y, Kimura K, Fushida S,
Bandou E, Taniguchi K, Kinoshita K, Ninomiya I, Sugiyama K,
Heizmann CW, et al: Inverse expression of S100A4 and E-cadherin is
associated with metastatic potential in gastric cancer. Clin Cancer
Res. 6:4234–4242. 2000.PubMed/NCBI
|
|
10
|
Marutsuka T, Shimada S, Shiomori K,
Hayashi N, Yagi Y, Yamane T and Ogawa M: Mechanisms of peritoneal
metastasis after operation for non-serosa-invasive gastric
carcinoma: An ultrarapid detection system for intraperitoneal free
cancer cells and a prophylactic strategy for peritoneal metastasis.
Clin Cancer Res. 9:678–685. 2003.PubMed/NCBI
|
|
11
|
Takebayashi K, Murata S, Yamamoto H,
Ishida M, Yamaguchi T, Kojima M, Shimizu T, Shiomi H, Sonoda H,
Naka S, et al: Surgery-induced peritoneal cancer cells in patients
who have undergone curative gastrectomy for gastric cancer. Ann
Surg Oncol. 21:1991–1997. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zlotnik A: Chemokines and cancer. Int J
Cancer. 119:2026–2029. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tanaka T, Bai Z, Srinoulprasert Y, Yang
BG, Hayasaka H and Miyasaka M: Chemokines in tumor progression and
metastasis. Cancer Sci. 96:317–322. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yoshie O: Immune chemokines and their
receptors: The key elements in the genesis, homeostasis and
function of the immune system. Springer Semin Immunopathol.
22:371–391. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yasumoto K, Koizumi K, Kawashima A, Saitoh
Y, Arita Y, Shinohara K, Minami T, Nakayama T, Sakurai H, Takahashi
Y, et al: Role of the CXCL12/CXCR4 axis in peritoneal
carcinomatosis of gastric cancer. Cancer Res. 66:2181–2187. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
17
|
Koizumi K, Hojo S, Akashi T, Yasumoto K
and Saiki I: Chemokine receptors in cancer metastasis and cancer
cell-derived chemokines in host immune response. Cancer Sci.
98:1652–1658. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lv ZD, Na D, Liu FN, Du ZM, Sun Z, Li Z,
Ma XY, Wang ZN and Xu HM: Induction of gastric cancer cell adhesion
through transforming growth factor-beta1-mediated peritoneal
fibrosis. J Exp Clin Cancer Res. 29:1392010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kiyasu Y, Kaneshima S and Koga S:
Morphogenesis of peritoneal metastasis in human gastric cancer.
Cancer Res. 41:1236–1239. 1981.PubMed/NCBI
|
|
20
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Margetts PJ, Oh KH and Kolb M:
Transforming growth factor-beta: Importance in long-term peritoneal
membrane changes. Perit Dial Int. 25 Suppl 3:S15–S17.
2005.PubMed/NCBI
|
|
23
|
Massagué J: TGFβ signalling in context.
Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gordon KJ and Blobe GC: Role of
transforming growth factor-beta superfamily signaling pathways in
human disease. Biochim Biophys Acta. 1782:197–228. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tsukada T, Fushida S, Harada S, Yagi Y,
Kinoshita J, Oyama K, Tajima H, Fujita H, Ninomiya I, Fujimura T
and Ohta T: The role of human peritoneal mesothelial cells in the
fibrosis and progression of gastric cancer. Int J Oncol.
41:476–482. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu Q, Mao H, Nie J, Chen W, Yang Q, Dong
X and Yu X: Transforming growth factor {beta}1 induces
epithelial-mesenchymal transition by activating the JNK-Smad3
pathway in rat peritoneal mesothelial cells. Perit Dial Int. 28
Suppl 3:S88–S95. 2008.PubMed/NCBI
|
|
27
|
Lv ZD, Wang HB, Li FN, Wu L, Liu C, Nie G,
Kong B, Qu HL and Li JG: TGF-β1 induces peritoneal fibrosis by
activating the Smad2 pathway in mesothelial cells and promotes
peritoneal carcinomatosis. Int J Mol Med. 29:373–379.
2012.PubMed/NCBI
|
|
28
|
Jiang CG, Lv L, Liu FR, Wang ZN, Na D, Li
F, Li JB, Sun Z and Xu HM: Connective tissue growth factor is a
positive regulator of epithelial-mesenchymal transition and
promotes the adhesion with gastric cancer cells in human peritoneal
mesothelial cells. Cytokine. 61:173–180. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Okazaki M, Fushida S, Harada S, Tsukada T,
Kinoshita J, Oyama K, Tajima H, Ninomiya I, Fujimura T and Ohta T:
The angiotensin II type 1 receptor blocker candesartan suppresses
proliferation and fibrosis in gastric cancer. Cancer Lett.
355:46–53. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Shinbo T, Fushida S, Tsukada T, Harada S,
Kinoshita J, Oyama K, Okamoto K, Ninomiya I, Takamura H, Kitagawa
H, et al: Protein-bound polysaccharide K suppresses tumor fibrosis
in gastric cancer by inhibiting the TGF-b signaling pathway. Oncol
Rep. 33:553–558. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tanaka H, Muguruma K, Ohira M, Kubo N,
Yamashita Y, Maeda K, Sawada T and Hirakawa K: Impact of adjuvant
immunochemotherapy using protein-bound polysaccharide-K on overall
survival of patients with gastric cancer. Anticancer Res.
32:3427–3433. 2012.PubMed/NCBI
|
|
32
|
Ono Y, Hayashida T, Konagai A, Okazaki H,
Miyao K, Kawachi S, Tanabe M, Shinoda M, Jinno H, Hasegawa H, et
al: Direct inhibition of the transforming growth factor-β pathway
by protein-bound polysaccharide through inactivation of Smad2
signaling. Cancer Sci. 103:317–324. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nakashio T, Narita T, Akiyama S, Kasai Y,
Fujiwara M, Ito K, Takagi H and Kanngi R: Adhesion of human gastric
and pancreatic cancer cells to peritoneal mesothelial cells is
mediated by CD44 and beta(1) integrin. Int J Oncol. 10:183–188.
1997.PubMed/NCBI
|
|
34
|
Takatsuki H, Komatsu S, Sano R, Takada Y
and Tsuji T: Adhesion of gastric carcinoma cells to peritoneum
mediated by alpha3beta1 integrin (VLA-3). Cancer Res. 64:6065–6070.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Giancotti FG and Ruoslahti E: Integrin
signaling. Science. 285:1028–1032. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fukuda K, Saikawa Y, Yagi H, Wada N,
Takahashi T and Kitagawa Y: Role of integrin a1 subunits in gastric
cancer patients with peritoneal dissemination. Mol Med Rep.
5:336–340. 2012.PubMed/NCBI
|
|
37
|
Nishimura S, Chung YS, Yashiro M, Inoue T
and Sowa M: Role of alpha 2 beta 1- and alpha 3 beta 1-integrin in
the peritoneal implantation of scirrhous gastric carcinoma. Br J
Cancer. 74:1406–1412. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen CN, Chang CC, Lai HS, Jeng YM, Chen
CI, Chang KJ, Lee PH and Lee H: Connective tissue growth factor
inhibits gastric cancer peritoneal metastasis by blocking integrin
a3b1-dependent adhesion. Gastric Cancer. 18:504–515. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yonemura Y, Endo Y, Fujita H, Kimura K,
Sugiyama K, Momiyama N, Shimada H and Sasaki T: Inhibition of
peritoneal dissemination in human gastric cancer by MMP-7-specific
antisense oligonucleotide. J Exp Clin Cancer Res. 20:205–212.
2001.PubMed/NCBI
|
|
40
|
Li Z, Zhang D, Zhang H, Miao Z, Tang Y,
Sun G and Dai D: Prediction of peritoneal recurrence by the mRNA
level of CEA and MMP-7 in peritoneal lavage of gastric cancer
patients. Tumour Biol. 35:3463–3470. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mimori K, Fukagawa T, Kosaka Y, Ishikawa
K, Iwatsuki M, Yokobori T, Hirasaki S, Takatsuno Y, Sakashita H,
Ishii H, et al: A large-scale study of MT1-MMP as a marker for
isolated tumor cells in peripheral blood and bone marrow in gastric
cancer cases. Ann Surg Oncol. 15:2934–2942. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Visse R and Nagase H: Matrix
metalloproteinases and tissue inhibitors of metalloproteinases:
Structure, function, and biochemistry. Circ Res. 92:827–839. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Miyagi M, Aoyagi K, Kato S and Shirouzu K:
The TIMP-1 gene transferred through adenovirus mediation shows a
suppressive effect on peritoneal metastases from gastric cancer.
Int J Clin Oncol. 12:17–24. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yoshikawa T, Tsuburaya A, Kobayashi O,
Sairenji M, Motohashi H, Yanoma S and Noguchi Y: Intratumoral
concentrations of tissue inhibitor of matrix metalloproteinase 1 in
patients with gastric carcinoma a new biomartker for invasion and
its impact on survival. Cancer. 91:1739–1744. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gentile A, Trusolino L and Comoglio PM:
The met tyrosine kinase receptor in development and cancer. Cancer
Metastasis Rev. 27:85–94. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Trusolino L, Bertotti A and Comoglio PM:
MET signalling: Principles and functions in development, organ
regeneration and cancer. Nat Rev Mol Cell Biol. 11:834–848. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Toiyama Y, Yasuda H, Saigusa S, Matushita
K, Fujikawa H, Tanaka K, Mohri Y, Inoue Y, Goel A and Kusunoki M:
Co-expression of hepatocyte growth factor and c-Met predicts
peritoneal dissemination established by autocrine hepatocyte growth
factor/c-Met signaling in gastric cancer. Int J Cancer.
130:2912–2921. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Binder DK and Scharfman HE: Brain-derived
neurotrophic factor. Growth Factors. 22:123–131. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Okugawa Y, Tanaka K, Inoue Y, Kawamura M,
Kawamoto A, Hiro J, Saigusa S, Toiyama Y, Ohi M, Uchida K, et al:
Brain-derived neurotrophic factor/tropomyosin-related kinase B
pathway in gastric cancer. Br J Cancer. 108:121–130. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Perretti M and D'Acquisto F: Annexin A1
and glucocorticoids as effectors of the resolution of inflammation.
Nat Rev Immunol. 9:62–70. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Leoni G, Alam A, Neumann PA, Lambeth JD,
Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, et al:
Annexin A1, formyl peptide receptor, and NOX1 orchestrate
epithelial repair. J Clin Invest. 123:443–454. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cheng TY, Wu MS, Lin JT, Lin MT, Shun CT,
Huang HY, Hua KT and Kuo ML: Annexin A1 is associated with gastric
cancer survival and promotes gastric cancer cell invasiveness
through the formyl peptide receptor/extracellular signal-regulated
kinase/integrin beta-1-binding protein 1 pathway. Cancer.
118:5757–5767. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Aoyagi K, Kouhuji K, Yano S, Miyagi M,
Imaizumi T, Takeda J and Shirouzu K: VEGF significance in
peritoneal recurrence from gastric cancer. Gastric Cancer.
8:155–163. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mueller MM and Fusenig NE: Friends or
foes-bipolar effects of the tumour stroma in cancer. Nat Rev
Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shimoda M, Mellody KT and Orimo A:
Carcinoma-associated fibroblasts are a rate-limiting determinant
for tumour progression. Semin Cell Dev Biol. 21:19–25. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gabbiani G, Ryan GB and Majne G: Presence
of modified fibroblasts in granulation tissue and their possible
role in wound contraction. Experientia. 27:549–550. 1971.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
LeBleu VS, Taduri G, O'Connell J, Teng Y,
Cooke VG, Woda C, Sugimoto H and Kalluri R: Origin and function of
myofibroblasts in kidney fibrosis. Nat Med. 19:1047–1053. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Fuyuhiro Y, Yashiro M, Noda S, Matsuoka J,
Hasegawa T, Kato Y, Sawada T and Hirakawa K: Cancer-associated
orthotopic myofibroblasts stimulates the motility of gastric
carcinoma cells. Cancer Sci. 103:797–805. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Satoyoshi R, Aiba N, Yanagihara K, Yashiro
M and Tanaka M: Tks5 activation in mesothelial cells creates
invasion front of peritoneal carcinomatosis. Oncogene.
34:3176–3187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Terai S, Fushida S, Tsukada T, Kinoshita
J, Oyama K, Okamoto K, Makino I, Tajima H, Ninomiya I, Fujimura T,
et al: Bone marrow derived ‘fibrocytes’ contribute to tumor
proliferation and fibrosis in gastric cancer. Gastric Cancer.
18:306–313. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ostman A and Augsten M: Cancer-associated
fibroblasts and tumor growth-bystanders turning into key players.
Curr Opin Genet Dev. 19:67–73. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu X, Chen X, Zhou Q, Li P, Yu B, Li J, Qu
Y, Yan J, Yu Y, Yan M, et al: Hepatocyte growth factor activates
tumor stromal fibroblasts to promote tumorigenesis in gastric
cancer. Cancer Lett. 335:128–135. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Satoyoshi R, Kuriyama S, Aiba N, Yashiro M
and Tanaka M: Asporin activates coordinated invasion of scirrhous
gastric cancer and cancer-associated fibroblasts. Oncogene.
34:650–660. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kikuchi Y, Kunita A, Iwata C, Komura D,
Nishiyama T, Shimazu K, Takeshita K, Shibahara J, Kii I, Morishita
Y, et al: The niche component periostin is produced by
cancer-associated fibroblasts, supporting growth of gastric cancer
through ERK activation. Am J Pathol. 184:859–870. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nakajima M, Kizawa H, Saitoh M, Kou I,
Miyazono K and Ikegawa S: Mechanisms for asporin function and
regulation in articular cartilage. J Biol Chem. 282:32185–32192.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu Y and Liu BA: Enhanced proliferation,
invasion, and epithelial-mesenchymal transition of
nicotine-promoted gastric cancer by periostin. World J
Gastroenterol. 17:2674–2680. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sun C, Fukui H, Hara K, Zhang X, Kitayama
Y, Eda H, Tomita T, Oshima T, Kikuchi S, Watari J, et al: FGF9 from
cancer-associated fibroblasts is a possible mediator of invasion
and anti-apoptosis of gastric cancer cells. BMC Cancer. 15:3332015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sung CO, Lee KW, Han S and Kim SH: Twist1
is up-regulated in gastric cancer-associated fibroblasts with poor
clinical outcomes. Am J Pathol. 179:1827–1838. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fukui H, Zhang X, Sun C, Hara K, Kikuchi
S, Yamasaki T, Kondo T, Tomita T, Oshima T, Watari J, et al: IL-22
produced by cancer-associated fibroblasts promotes gastric cancer
cell invasion via STAT3 and ERK signaling. Br J Cancer.
111:763–771. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
He XJ, Tao HQ, Hu ZM, Ma YY, Xu J, Wang
HJ, Xia YJ, Li L, Fei BY, Li YQ and Chen JZ: Expression of
galectin-1 in carcinoma-associated fibroblasts promotes gastric
cancer cell invasion through upregulation of integrin b1. Cancer
Sci. 105:1402–1410. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yu B, Chen X, Li J, Qu Y, Su L, Peng Y,
Huang J, Yan J, Yu Y, Gu Q, et al: Stromal fibroblasts in the
microenvironment of gastric carcinomas promote tumor metastasis via
upregulating TAGLN expression. BMC Cell Biol. 14:172013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Shimotsuma M, Shields JW, Simpson-Morgan
MW, Sakuyama A, Shirasu M, Hagiwara A and Takahashi T:
Morpho-physiological function and role of omental milky spots as
omentum-associated lymphoid tissue (OALT) in the peritoneal cavity.
Lymphology. 26:90–101. 1993.PubMed/NCBI
|
|
73
|
Hagiwara A, Takahashi T, Sawai K,
Taniguchi H, Shimotsuma M, Okano S, Sakakura C, Tsujimoto H, Osaki
K, Sasaki S, et al: Milky spots as the implantation site for
malignant cells in peritoneal dissemination in mice. Cancer Res.
53:687–692. 1993.PubMed/NCBI
|
|
74
|
Beelen RH, Fluitsma DM and Hoefsmit EC:
The cellular composition of omentum milky spots and the
ultrastructure of milky spot macrophages and reticulum cells. J
Reticuloendothel Soc. 28:585–599. 1980.PubMed/NCBI
|
|
75
|
Liebermann-Meffert D: The greater omentum.
Anatomy, embryology, and surgical applications. Surg Clin North Am.
80(275–293): xii2000.
|
|
76
|
Oosterling SJ, van der Bij GJ, Bögels M,
van der Sijp JR, Beelen RH, Meijer S and van Egmond M: Insufficient
ability of omental milky spots to prevent peritoneal tumor
outgrowth supports omentectomy in minimal residual disease. Cancer
Immunol Immunother. 55:1043–1051. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cui L, Johkura K, Liang Y, Teng R, Ogiwara
N, Okouchi Y, Asanuma K and Sasaki K: Biodefense function of
omental milky spots through cell adhesion molecules and leukocyte
proliferation. Cell Tissue Res. 310:321–330. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu XY, Miao ZF, Zhao TT, Wang ZN, Xu YY,
Gao J, Wu JH, You Y, Xu H and Xu HM: Milky spot macrophages
remodeled by gastric cancer cells promote peritoneal mesothelial
cell injury. Biochem Biophys Res Commun. 439:378–383. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bingle L, Brown NJ and Lewis CE: The role
of tumour-associated macrophages in tumour progression:
Implications for new anticancer therapies. J Pathol. 196:254–265.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cao L, Hu X, Zhang J, Huang G and Zhang Y:
The role of the CCL22-CCR4 axis in the metastasis of gastric cancer
cells into omental milky spots. J Transl Med. 12:2672014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gerber SA, Rybalko VY, Bigelow CE, Lugade
AA, Foster TH, Frelinger JG and Lord EM: Preferential attachment of
peritoneal tumor metastases to omental immune aggregates and
possible role of a unique vascular microenvironment in metastatic
survival and growth. Am J Pathol. 169:1739–1752. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Miao ZF, Wang ZN, Zhao TT, Xu YY, Gao J,
Miao F and Xu HM: Peritoneal milky spots serve as a hypoxic niche
and favor gastric cancer stem/progenitor cell peritoneal
dissemination through hypoxia-inducible factor 1a. Stem Cells.
32:3062–3074. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang B, Pan X, Cobb GP and Anderson TA:
microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zheng B, Liang L, Huang S, Zha R, Liu L,
Jia D, Tian Q, Wang Q, Wang C, Long Z, et al: MicroRNA-409
suppresses tumour cell invasion and metastasis by directly
targeting radixin in gastric cancers. Oncogene. 31:4509–4516. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li Z, Cao Y, Jie Z, Liu Y, Li Y, Li J, Zhu
G, Liu Z, Tu Y, Peng G, et al: miR-495 and miR-551a inhibit the
migration and invasion of human gastric cancer cells by directly
interacting with PRL-3. Cancer Lett. 323:41–47. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y,
Mao XH, Wu C, Yang SM, Zeng H, Zou QM and Guo G: MicroRNA-25
promotes gastric cancer migration, invasion and proliferation by
directly targeting transducer of ERBB2, 1 and correlates with poor
survival. Oncogene. 34:2556–2565. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kurashige J, Mima K, Sawada G, Takahashi
Y, Eguchi H, Sugimachi K, Mori M, Yanagihara K, Yashiro M, Hirakawa
K, et al: Epigenetic modulation and repression of miR-200b by
cancer-associated fibroblasts contribute to cancer invasion and
peritoneal dissemination in gastric cancer. Carcinogenesis.
36:133–141. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hashiguchi Y, Nishida N, Mimori K, Sudo T,
Tanaka F, Shibata K, Ishii H, Mochizuki H, Hase K, Doki Y and Mori
M: Down-regulation of miR-125a-3p in human gastric cancer and its
clinicopathological significance. Int J Oncol. 40:1477–1482.
2012.PubMed/NCBI
|
|
90
|
Ohshima K, Inoue K, Fujiwara A, Hatakeyama
K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K
and Mochizuki T: Let-7 microRNA family is selectively secreted into
the extracellular environment via exosomes in a metastatic gastric
cancer cell line. PLoS One. 5:e132472010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Takei Y, Takigahira M, Mihara K, Tarumi Y
and Yanagihara K: The metastasis-associated microRNA miR-516a-3p is
a novel therapeutic target for inhibiting peritoneal dissemination
of human scirrhous gastric cancer. Cancer Res. 71:1442–1453. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Miyake S, Kitajima Y, Nakamura J, Kai K,
Yanagihara K, Tanaka T, Hiraki M, Miyazaki K and Noshiro H: HIF-1a
is a crucial factor in the development of peritoneal dissemination
via natural metastatic routes in scirrhous gastric cancer. Int J
Oncol. 43:1431–1440. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Krishnamachary B, Zagzag D, Nagasawa H,
Rainey K, Okuyama H, Baek JH and Semenza GL: Hypoxia-inducible
factor-1-dependent repression of E-cadherin in von Hippel-Lindau
tumor suppressor-null renal cell carcinoma mediated by TCF3,
ZFHX1A, and ZFHX1B. Cancer Res. 66:2725–2731. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Funasaka T and Raz A: The role of
autocrine motility factor in tumor and tumor microenvironment.
Cancer Metastasis Rev. 26:725–735. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lu X and Kang Y: Hypoxia and
hypoxia-inducible factors: Master regulators of metastasis. Clin
Cancer Res. 16:5928–5935. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Silverman PM: The subperitoneal space:
Mechanisms of tumour spread in the peritoneal cavity, mesentery,
and omentum. Cancer Imaging. 4:25–29. 2003. View Article : Google Scholar : PubMed/NCBI
|