|
1
|
Bhat S, Kabekkodu SP, Noronha A and
Satyamoorthy K: Biological implications and therapeutic
significance of DNA methylation regulated genes in cervical cancer.
Biochimie. 121:298–311. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Panatto D, Amicizia D, Bragazzi NL,
Rizzitelli E, Tramalloni D, Valle I and Gasparini R: Chapter
Eight-Human Papillomavirus Vaccine: State of the Art and Future
Perspectives. Adv Protein Chemistry Structural Biol. 101:231–322.
2015. View Article : Google Scholar
|
|
3
|
IARC Monographs on the Evaluation of
Carcinogenic Risks to Humans: Pharmaceuticals: A Review of human
carcinogens. IARC monographs on the evaluation of carcinogenic
risks to humans. 100A:(IARC Monographs). 1–401. 2012.
|
|
4
|
D'Andrilli G: Advances in cervical cancer
and ongoing clinical trialsGynecological Cancers. Giordano A and
Macaluso M: Springer International Publishing; Cham: pp. 51–64.
2016
|
|
5
|
Zhao S: Specific Type Epigenetic Changes
in Cervical CancersCancer Epigenetics, Methods in Molecular Biology
(Methods and Protocols). 1238. Verma M: Humana Press; New York, NY:
pp. 733–749. 2015
|
|
6
|
Langsfeld E and Laimins LA: Human
papillomaviruses: Research priorities for the next decade. Trends
Cancer. 2:234–240. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hu H, Shu M, He L, Yu X, Liu X, Lu Y, Chen
Y, Miao X and Chen X: Epigenomic landscape of
5-hydroxymethylcytosine reveals its transcriptional regulation of
lncRNAs in colorectal cancer. Br J Cancer. 116:658–668. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sova P, Feng Q, Geiss G, Wood T, Strauss
R, Rudolf V, Lieber A and Kiviat N: Discovery of novel methylation
biomarkers in cervical carcinoma by global demethylation and
microarray analysis. Cancer Epidemiol Biomarkers Prev. 15:114–123.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Narayan G, Arias-Pulido H, Koul S, Vargas
H, Zhang FF, Villella J, Schneider A, Terry MB, Mansukhani M and
Murty VV: Frequent promoter methylation of CDH1, DAPK, RARB, and
HIC1 genes in carcinoma of cervix uteri: Its relationship to
clinical outcome. Mol Cancer. 2:242003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Feng Q, Balasubramanian A, Hawes SE, Toure
P, Sow PS, Dem A, Dembele B, Critchlow CW, Xi L, Lu H, et al:
Detection of hypermethylated genes in women with and without
cervical neoplasia. J Natl Cancer Inst. 97:273–282. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Steenbergen RD, Kramer D, Braakhuis BJ,
Stern PL, Verheijen RH, Meijer CJ and Snijders PJ: TSLC1 gene
silencing in cervical cancer cell lines and cervical neoplasia. J
Natl Cancer Inst. 96:294–305. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lu Q, Ma D and Zhao S: DNA methylation
changes in cervical cancers. Methods Mol Biol. 863:155–176. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Trang P, Weidhaas JB and Slack FJ:
MicroRNAs and cancerThe Molecular Basis of Human Cancer. Coleman WB
and Tsongalis GJ: 2nd. Springer; New York, New York, NY: pp.
277–286. 2017, View Article : Google Scholar
|
|
14
|
Leung TW, Liu SS, Leung RC, Chu MM, Cheung
AN and Ngan HY: HPV 16 E2 binding sites 1 and 2 become more
methylated than E2 binding site 4 during cervical carcinogenesis. J
Med Virol. 87:1022–1033. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Doeberitz MVK and Vinokurova S: Compounds
and methods associated with differential methylation of human
papilloma virus genomes in epithelial cells. US Patent 12/740,986.
Filed October 31, 2008; issued September 29. 2015.
|
|
16
|
Kan YY, Liou YL, Wang HJ, Chen CY, Sung
LC, Chang CF and Liao CI: PAX1 methylation as a potential biomarker
for cervical cancer screening. Int J Gynecol Cancer. 24:928–934.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jha AK, Nikbakht M, Jain V, Sehgal A,
Capalash N and Kaur J: Promoter hypermethylation of p73 and p53
genes in cervical cancer patients among north Indian population.
Mol Biol Rep. 39:9145–9157. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Guenin S, Mouallif M, Deplus R, Lampe X,
Krusy N, Calonne E, Delbecque K, Kridelka F, Fuks F, Ennaji MM and
Delvenne P: Aberrant promoter methylation and expression of UTF1
during cervical carcinogenesis. PLoS One. 7:e427042012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Missaoui N, Hmissa S, Trabelsi A, Traoré
C, Mokni M, Dante R and Frappart L: Promoter hypermethylation of
CDH13, DAPK1 and TWIST1 genes in precancerous and cancerous lesions
of the uterine cervix. Pathol Res Pract. 207:37–42. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yang HJ: Aberrant DNA methylation in
cervical carcinogenesis. Chin J Cancer. 32:42–48. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liz J and Esteller M: lncRNAs and
microRNAs with a role in cancer development. Biochim Biophys Acta.
1859:169–176. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang JT, Ding L, Jiang SW, Hao J, Zhao WM,
Zhou Q, Yang ZK and Zhang L: Folate deficiency and aberrant
expression of DNA methyltransferase 1 were associated with cervical
cancerization. Curr Pharm Des. 20:1639–1646. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Berdasco M and Esteller M: Aberrant
epigenetic landscape in cancer: How cellular identity goes awry.
Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jackson R, Rosa BA, Lameiras S, Cuninghame
S, Bernard J, Floriano WB, Lambert PF, Nicolas A and Zehbe I:
Functional variants of human papillomavirus type 16 demonstrate
host genome integration and transcriptional alterations
corresponding to their unique cancer epidemiology. BMC Genomics.
17:8512016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wilting SM, van Boerdonk RA, Henken FE,
Meijer CJ, Diosdado B, Meijer GA, le Sage C, Agami R, Snijders PJ
and Steenbergen RD: Methylation-mediated silencing and tumour
suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer.
9:1672010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Botezatu A, Goia-Rusanu CD, Iancu IV,
Huica I, Plesa A, Socolov D, Ungureanu C and Anton G: Quantitative
analysis of the relationship between microRNA-124a, −34b and −203
gene methylation and cervical oncogenesis. Mol Med Rep. 4:121–128.
2011.PubMed/NCBI
|
|
29
|
Yao T, Rao Q, Liu L, Zheng C, Xie Q, Liang
J and Lin Z: Exploration of tumor-suppressive microRNAs silenced by
DNA hypermethylation in cervical cancer. Virol J. 10:1752013.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wilting SM, Verlaat W, Jaspers A, Makazaji
NA, Agami R, Meijer CJ, Snijders PJ and Steenbergen RD:
Methylation-mediated transcriptional repression of microRNAs during
cervical carcinogenesis. Epigenetics. 8:220–228. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Morgan MA and Shilatifard A: Chromatin
signatures of cancer. Genes Dev. 29:238–249. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Khan SA, Reddy D and Gupta S: Global
histone post-translational modifications and cancer: Biomarkers for
diagnosis, prognosis and treatment? World J Biol Chem. 6:333–345.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ghittoni R, Accardi R, Chiocca S and
Tommasino M: The role of human papillomaviruses in carcinogenesis.
Ecancermedicalscience. 9:5262015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ruttkay-Nedecky B, Jimenez AM Jimenez,
Nejdl L, Chudobova D, Gumulec J, Masarik M, Adam V and Kizek R:
Relevance of infection with human papillomavirus: The role of the
p53 tumor suppressor protein and E6/E7 zinc finger proteins
(Review). Int J Oncol. 43:1754–1762. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mesri EA, Feitelson MA and Munger K: Human
viral oncogenesis: A cancer hallmarks analysis. Cell Host Microbe.
15:266–282. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen AA, Gheit T, Franceschi S, Tommasino
M and Clifford GM; IARC HPV Variant Study Group, : Human
papillomavirus 18 genetic variation and cervical cancer risk
worldwide. J Virol. 89:10680–10687. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Evans W, Filippova M, Aragon R, Filippov
V, Reeves ME and Duerksen-Hughes P: Abstract 1828: Proteomic
analysis of the effect of E6 star expression on cellular pathways
in HPV positive SiHa and HPV negative C33A cervical carcinoma
cells. Cancer Res. 75:1828. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Illiano E, Demurtas OC, Massa S, Di Bonito
P, Consalvi V, Chiaraluce R, Zanotto C, De Giuli Morghen C,
Radaelli A, Venuti A and Franconi R: Production of functional,
stable, unmutated recombinant human papillomavirus E6 oncoprotein:
Implications for HPV-tumor diagnosis and therapy. J Transl Med.
14:2242016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Duensing S and Münger K: The human
papillomavirus type 16 E6 and E7 oncoproteins independently induce
numerical and structural chromosome instability. Cancer Res.
62:7075–7082. 2002.PubMed/NCBI
|
|
40
|
Munger K, Baldwin A, Edwards KM, Hayakawa
H, Nguyen CL, Owens M, Grace M and Huh K: Mechanisms of human
papillomavirus-induced oncogenesis. J Virol. 78:11451–11460. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kruiswijk F, Labuschagne CF and Vousden
KH: p53 in survival, death and metabolic health: A lifeguard with a
licence to kill. Nat Rev Mol Cell Biol. 16:393–405. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hengstermann A, Linares LK, Ciechanover A,
Whitaker NJ and Scheffner M: Complete switch from Mdm2 to human
papillomavirus E6-mediated degradation of p53 in cervical cancer
cells. Proc Natl Acad Sci USA. 98:pp. 1218–1223. 2001; View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mantovani F and Banks L: The human
papillomavirus E6 protein and its contribution to malignant
progression. Oncogene. 20:7874–7887. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Paek AL, Liu JC, Loewer A, Forrester WC
and Lahav G: Cell-to-cell variation in p53 dynamics leads to
fractional killing. Cell. 165:631–642. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yim EK and Park JS: The role of HPV E6 and
E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer
Res Treat. 37:319–324. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ganguly N and Parihar SP: Human papilloma
virus E6 and E7 oncoproteins as risk factors for tumorigenesis. J
Biosci. 34:113–123. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tommasino M: The human papillomavirus
family and its role in carcinogenesis. Semin Cancer Biol. 26:13–21.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yin FF, Wang N, Bi XN, Yu X, Xu XH, Wang
YL, Zhao CQ, Luo B and Wang YK: Serine/threonine kinases 31(STK31)
may be a novel cellular target gene for the HPV16 oncogene E7 with
potential as a DNA hypomethylation biomarker in cervical cancer.
Virol J. 13:602016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dueñas-González A, Lizano M, Candelaria M,
Cetina L, Arce C and Cervera E: Epigenetics of cervical cancer. An
overview and therapeutic perspectives. Mol Cancer. 4:382005.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Whiteside MA, Siegel EM and Unger ER:
Human papillomavirus and molecular considerations for cancer risk.
Cancer. 113 Suppl 10:S2981–S2994. 2008. View Article : Google Scholar
|
|
51
|
Leonard SM, Wei W, Collins SI, Pereira M,
Diyaf A, Constandinou-Williams C, Young LS, Roberts S and Woodman
CB: Oncogenic human papillomavirus imposes an instructive pattern
of DNA methylation changes which parallel the natural history of
cervical HPV infection in young women. Carcinogenesis.
33:1286–1293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jiang P and Yue Y: Human papillomavirus
oncoproteins and apoptosis (Review). Exp Ther Med. 7:3–7. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Burgers WA, Blanchon L, Pradhan S, de
Launoit Y, Kouzarides T and Fuks F: Viral oncoproteins target the
DNA methyltransferases. Oncogene. 26:1650–1655. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Au Yeung CL, Tsang WP, Tsang TY, Co NN,
Yau PL and Kwok TT: HPV-16 E6 upregulation of DNMT1 through
repression of tumor suppressor p53. Oncol Rep. 24:1599–1604.
2010.PubMed/NCBI
|
|
55
|
Richards KL, Zhang B, Baggerly KA, Colella
S, Lang JC, Schuller DE and Krahe R: Genome-wide hypomethylation in
head and neck cancer is more pronounced in HPV-negative tumors and
is associated with genomic instability. PLoS One. 4:e49412009.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS,
Chen CY, Lu YY, Tang YA, Yang YC, Yang PC and Wang YC:
Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1
overexpression in lung cancer. Cancer Res. 70:5807–5817. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cai Q, Lv L, Shao Q, Li X and Dian A:
Human papillomavirus early proteins and apoptosis. Arch Gynecol
Obstet. 287:541–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Banzai C, Nishino K, Quan J, Yoshihara K,
Sekine M, Yahata T and Tanaka K: Gynecological Cancer Registry of
Niigata: Promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A
genes in cervical carcinoma. Int J Clin Oncol. 19:127–132. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Samuelsson J, Alonso S, Ruiz-Larroya T,
Cheung TH, Wong YF and Perucho M: Frequent somatic demethylation of
RAPGEF1/C3G intronic sequences in gastrointestinal and
gynecological cancer. Int J Oncol. 38:1575–1577. 2011.PubMed/NCBI
|
|
60
|
Shuangshoti S, Hourpai N, Pumsuk U and
Mutirangura A: Line-1 hypomethylation in multistage carcinogenesis
of the uterine cervix. Asian Pac J Cancer Prev. 8:307–309.
2007.PubMed/NCBI
|
|
61
|
Badal V, Chuang LS, Tan EH, Badal S, Villa
LL, Wheeler CM, Li BF and Bernard HU: CpG methylation of human
papillomavirus type 16 DNA in cervical cancer cell lines and in
clinical specimens: Genomic hypomethylation correlates with
carcinogenic progression. J Virol. 77:6227–6234. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
How Kit A, Nielsen HM and Tost J: DNA
methylation based biomarkers: Practical considerations and
applications. Biochimie. 94:2314–2337. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mersakova S, Nachajova M, Szepe P,
Kasajova PS and Halasova E: DNA methylation and detection of
cervical cancer and precancerous lesions using molecular methods.
Tumor Biol. 37:23–27. 2016. View Article : Google Scholar
|
|
64
|
Steenbergen RD, Snijders PJ, Heideman DA
and Meijer CJ: Clinical implications of (epi)genetic changes in
HPV-induced cervical precancerous lesions. Nat Rev Cancer.
14:395–405. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Whittaker SR, Mallinger A, Workman P and
Clarke PA: Inhibitors of cyclin-dependent kinases as cancer
therapeutics. Pharmacol Ther. 173:83–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sherr CJ and Bartek J: Cell cycle-targeted
cancer therapies S phase: The DNA synthesis phase of the cell
cycle. 1:Annual Review of Cancer Biology. 41–57. 2017. View Article : Google Scholar
|
|
67
|
Huang LW, Pan HS, Lin YH, Seow KM, Chen HJ
and Hwang JL: P16 methylation is an early event in cervical
carcinogenesis. Int J Gynecol Cancer. 21:452–456. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Terra AP, Murta EF, Maluf PJ, Caballero
OL, Brait M and Adad SJ: Aberrant promoter methylation can be
useful as a marker of recurrent disease in patients with cervical
intraepithelial neoplasia grade III. Tumori. 93:572–579.
2007.PubMed/NCBI
|
|
69
|
Aran D, Sabato S and Hellman A: DNA
methylation of distal regulatory sites characterizes dysregulation
of cancer genes. Genome Biol. 14:R212013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen CL, Liu SS, Ip SM, Wong LC, Ng TY and
Ngan HY: E-cadherin expression is silenced by DNA methylation in
cervical cancer cell lines and tumours. Eur J Cancer. 39:517–523.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jeong DH, Youm MY, Kim YN, Lee KB, Sung
MS, Yoon HK and Kim KT: Promoter methylation of p16, DAPK, CDH1,
and TIMP-3 genes in cervical cancer: Correlation with
clinicopathologic characteristics. Int J Gynecol Cancer.
16:1234–1240. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Shivapurkar N, Sherman ME, Stastny V,
Echebiri C, Rader JS, Nayar R, Bonfiglio TA, Gazdar AF and Wang SS:
Evaluation of candidate methylation markers to detect cervical
neoplasia. Gynecol Oncol. 107:549–553. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Overmeer RM, Henken FE, Snijders PJ,
Claassen-Kramer D, Berkhof J, Helmerhorst TJ, Heideman DA, Wilting
SM, Murakami Y, Ito A, et al: Association between dense CADM1
promoter methylation and reduced protein expression in high-grade
CIN and cervical SCC. J Pathol. 215:388–397. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yadav SS, Prasad SB, Das M, Kumari S,
Pandey LK, Singh S, Pradhan S and Narayan G: Epigenetic silencing
of CXCR4 promotes loss of cell adhesion in cervical cancer. Biomed
Res Int. 2014:5814032014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Narayan G, Xie D, Ishdorj G, Scotto L,
Mansukhani M, Pothuri B, Wright JD, Kaufmann AM, Schneider A,
Arias-Pulido H and Murty VV: Epigenetic inactivation of TRAIL decoy
receptors at 8p12-21.3 commonly deleted region confers sensitivity
to Apo2L/trail-cisplatin combination therapy in cervical cancer.
Genes Chromosomes Cancer. 55:177–189. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Snellenberg S, Cillessen SA, Van Criekinge
W, Bosch L, Meijer CJ, Snijders PJ and Steenbergen RD:
Methylation-mediated repression of PRDM14 contributes to apoptosis
evasion in HPV-positive cancers. Carcinogenesis. 35:2611–2618.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Michie AM, McCaig AM, Nakagawa R and
Vukovic M: Death-associated protein kinase (DAPK) and signal
transduction: Regulation in cancer. FEBS J. 277:74–80. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kim JH, Choi YD, Lee JS, Lee JH, Nam JH
and Choi C: Assessment of DNA methylation for the detection of
cervical neoplasia in liquid-based cytology specimens. Gynecol
Oncol. 116:99–104. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yang N, Nijhuis ER, Volders HH, Eijsink
JJ, Lendvai A, Zhang B, Hollema H, Schuuring E, Wisman GB and van
der Zee AG: Gene promoter methylation patterns throughout the
process of cervical carcinogenesis. Cell Oncol. 32:131–143.
2010.PubMed/NCBI
|
|
80
|
Jha AK, Nikbakht M, Parashar G,
Shrivastava A, Capalash N and Kaur J: Reversal of hypermethylation
and reactivation of the RARβ2 gene by natural compounds in cervical
cancer cell lines. Folia Biol (Praha). 56:195–200. 2010.PubMed/NCBI
|
|
81
|
Rabizadeh S, Xavier RJ, Ishiguro K,
Bernabeortiz J, Lopez-Ilasaca M, Khokhlatchev A, Mollahan P,
Pfeifer GP, Avruch J and Seed B: The scaffold protein CNK1
interacts with the tumor suppressor RASSF1A and augments
RASSF1A-induced cell death. J Biol Chem. 279:29247–29254. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Aoki K and Taketo MM: Adenomatous
polyposis coli (APC): A multi-functional tumor suppressor gene. J
Cell Sci. 120:3327–3335. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dong SM, Kim HS, Rha SH and Sidransky D:
Promoter hypermethylation of multiple genes in carcinoma of the
uterine cervix. Clin Cancer Res. 7:1982–1986. 2001.PubMed/NCBI
|
|
84
|
Song Y and Zhang C: Hydralazine inhibits
human cervical cancer cell growth in vitro in association with APC
demethylation and re-expression. Cancer Chemother Pharmacol.
63:605–613. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Baer C, Claus R and Plass C: Genome-wide
epigenetic regulation of miRNAs in cancer. Cancer Res. 73:473–477.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jiménez-Wences H, Peralta-Zaragoza O and
Fernández-Tilapa G: Human papilloma virus, DNA methylation and
microRNA expression in cervical cancer (Review). Oncol Rep.
31:2467–2476. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Iida M, Banno K, Yanokura M, Nakamura K,
Adachi M, Nogami Y, Umene K, Masuda K, Kisu I, Iwata T, et al:
Candidate biomarkers for cervical cancer treatment: Potential for
clinical practice (Review). Mol Clin Oncol. 2:647–655. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dakubo GD: Methylated DNA as cancer
biomarkers in circulationCancer Biomarkers in Body Fluids. 1st.
Springer International Publishing; Cham: pp. 103–123. 2016,
View Article : Google Scholar
|
|
89
|
Huang RL, Su PH, Liao YP, Wu TI, Hsu YT,
Lin WY, Wang HC, Weng YC, Ou YC, Huang TH and Lai HC: Integrated
Epigenomics analysis reveals a DNA methylation panel for
endometrial cancer detection using cervical scrapings. Clin Cancer
Res. 23:263–272. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kahn SL, Ronnett BM, Gravitt PE and
Gustafson KS: Quantitative methylation-specific PCR for the
detection of aberrant DNA methylation in liquid-based Pap tests.
Cancer. 114:57–64. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wisman GB, Nijhuis ER, Hoque MO,
Reesink-Peters N, Koning AJ, Volders HH, Buikema HJ, Boezen HM,
Hollema H, Schuuring E, et al: Assessment of gene promoter
hypermethylation for detection of cervical neoplasia. Int J Cancer.
119:1908–1914. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Feng Q, Hawes SE, Stern JE, Dem A, Sow PS,
Dembele B, Toure P, Sova P, Laird PW and Kiviat NB: Promoter
hypermethylation of tumor suppressor genes in urine from patients
with cervical neoplasia. Cancer Epidemiol Biomarkers Prev.
16:1178–1184. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Huang BH, Laban M, Leung CH, Lee L, Lee
CK, Salto-Tellez M, Raju GC and Hooi SC: Inhibition of histone
deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression,
independent of histone deacetylase. Cell Death Differ. 12:395–404.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Danam RP, Howell SR, Brent TP and Harris
LC: Epigenetic regulation of O6-methylguanine-DNA methyltransferase
gene expression by histone acetylation and methyl-CpG binding
proteins. Mol Cancer Ther. 4:61–69. 2005.PubMed/NCBI
|
|
95
|
Lee J, Yoon YS and Chung JH: Epigenetic
silencing of the WNT antagonist DICKKOPF-1 in cervical cancer cell
lines. Gynecol Oncol. 109:270–274. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Bodily JM, Mehta KP and Laimins LA: Human
papillomavirus E7 enhances hypoxia-inducible factor 1-mediated
transcription by inhibiting binding of histone deacetylases. Cancer
Res. 71:1187–1195. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lu TY, Kao CF, Lin CT, Huang DY, Chiu CY,
Huang YS and Wu HC: DNA methylation and histone modification
regulate silencing of OPG during tumor progression. J Cell Biochem.
108:315–325. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang Z, Joh K, Yatsuki H, Zhao W, Soejima
H, Higashimoto K, Noguchi M, Yokoyama M, Iwasaka T and Mukai T:
Retinoic acid receptor beta 2 is epigenetically silenced either by
DNA methylation or repressive histone modifications at the promoter
in cervical cancer cells. Cancer Lett. 247:318–327. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Seligson DB, Horvath S, Shi T, Yu H, Tze
S, Grunstein M and Kurdistani SK: Global histone modification
patterns predict risk of prostate cancer recurrence. Nature.
435:1262–1266. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Plesa A, Iancu IV, Botezatu A, Huica I,
Stoian M and Anton G: The involvement of epigenetic mechanisms in
HPV-induced cervical cancer. Human Papillomavirus – Research in a
Global Perspective. Rajkumar R: 9InTech. 2016. View Article : Google Scholar
|
|
101
|
Easwaran H, Tsai HC and Baylin SB: Cancer
Epigenetics: Tumor heterogeneity, plasticity of stem-like states,
and drug resistance. Mol Cell. 54:716–727. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
de la Cruz-Hernández E, Pérez-Cárdenas E,
Contreras-Paredes A, Cantú D, Mohar A, Lizano M and Dueñas-González
A: The effects of DNA methylation and histone deacetylase
inhibitors on human papillomavirus early gene expression in
cervical cancer, an in vitro and clinical study. Virol J. 4:182007.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sui X, Chen R, Wang Z, Huang Z, Kong N,
Zhang M, Han W, Lou F, Yang J, Zhang Q, et al: Autophagy and
chemotherapy resistance: A promising therapeutic target for cancer
treatment. Cell Death Dis. 4:e8382013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hassan M, Watari H, AbuAlmaaty A, Ohba Y
and Sakuragi N: Apoptosis and molecular targeting therapy in
cancer. Biomed Res Int. 2014:1508452014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Esteller M: Epigenetics in cancer. N Engl
J Med. 358:1148–1159. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Fang J, Zhang H and Jin S: Epigenetics and
cervical cancer: From pathogenesis to therapy. Tumor Biol.
35:5083–5093. 2014. View Article : Google Scholar
|
|
107
|
Coronel J, Cetina L, Pacheco I,
Trejo-Becerril C, González-Fierro A, de la Cruz-Hernandez E,
Perez-Cardenas E, Taja-Chayeb L, Arias-Bofill D, Candelaria M, et
al: A double-blind, placebo-controlled, randomized phase III trial
of chemotherapy plus epigenetic therapy with hydralazine valproate
for advanced cervical cancer. Preliminary results. Med Oncol. 28
Suppl 1:S540–S546. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zambrano P, Segura-Pacheco B,
Perez-Cardenas E, Cetina L, Revilla-Vazquez A, Taja-Chayeb L,
Chavez-Blanco A, Angeles E, Cabrera G, Sandoval K, et al: A phase I
study of hydralazine to demethylate and reactivate the expression
of tumor suppressor genes. BMC Cancer. 5:442005. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
You JS, Kang JK, Lee EK, Lee JC, Lee SH,
Jeon YJ, Koh DH, Ahn SH, Seo DW, Lee HY, et al: Histone deacetylase
inhibitor apicidin downregulates DNA methyltransferase 1 expression
and induces repressive histone modifications via recruitment of
corepressor complex to promoter region in human cervix cancer
cells. Oncogene. 27:1376–1386. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kelly WK, O'Connor OA, Krug LM, Chiao JH,
Heaney M, Curley T, MacGregore-Cortelli B, Tong W, Secrist JP,
Schwartz L, et al: Phase I study of an oral histone deacetylase
inhibitor, suberoylanilide hydroxamic acid, in patients with
advanced cancer. J Clin Oncol. 23:3923–3931. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chen CC, Lee KD, Pai MY, Chu PY, Hsu CC,
Chiu CC, Chen LT, Chang JY, Hsiao SH and Leu YW: Changes in DNA
methylation are associated with the development of drug resistance
in cervical cancer cells. Cancer Cell Int. 15:982015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sato N, Maitra A, Fukushima N, van Heek
NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C and Goggins M:
Frequent hypomethylation of multiple genes overexpressed in
pancreatic ductal adenocarcinoma. Cancer Res. 63:4158–1166.
2003.PubMed/NCBI
|
|
113
|
Virmani AK, Muller C, Rathi A,
Zoechbauer-Mueller S, Mathis M and Gazdar AF: Aberrant methylation
during cervical carcinogenesis. Clin Cancer Res. 7:584–589.
2001.PubMed/NCBI
|
|
114
|
Kim YT and Zhao M: Aberrant cell cycle
regulation in cervical carcinoma. Yonsei Med J. 46:597–613. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ohtani N, Yamakoshi K, Takahashi A and
Hara E: The p16INK4a-RB pathway: Molecular link between cellular
senescence and tumor suppression. J Med Invest. 51:146–153. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ki KD, Lee SK, Tong SY, Lee JM, Song DH
and Chi SG: Role of 5′-CpG island hypermethylation of the FHIT gene
in cervical carcinoma. J Gynecol Oncol. 19:117–122. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Özören N and El-Deiry WS: Cell surface
death receptor signaling in normal and cancer cells. Semin Cancer
Biol. 13:135–147. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Jung S, Yi L, Jeong D, Kim J, An S, Oh TJ,
Kim CH, Kim CJ, Yang Y, Kim KI, et al: The role of ADCYAP1,
adenylate cyclase activating polypeptide 1, as a methylation
biomarker for the early detection of cervical cancer. Oncol Rep.
25:245–252. 2011.PubMed/NCBI
|
|
119
|
Huang RL, Chang CC, Su PH, Chen YC, Liao
YP, Wang HC, Yo YT, Chao TK, Huang HC, Lin CY, et al: Methylomic
analysis identifies frequent DNA methylation of zinc finger protein
582 (ZNF582) in cervical neoplasms. PLoS One. 7:e410602012.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ivanova T, Vinokurova S, Petrenko A,
Eshilev E, Solovyova N, Kisseljov F and Kisseljova N: Frequent
hypermethylation of 5′flanking region of TIMP-2 gene in cervical
cancer. Int J Cancer. 108:882–886. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Widschwendter A, Müller HM, Fiegl H,
Ivarsson L, Wiedemair A, Müller-Holzner E, Goebel G, Marth C and
Widschwendter M: DNA methylation in serum and tumors of cervical
cancer patients. Clin Cancer Res. 10:565–571. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhai Y, Bommer GT, Feng Y, Wiese AB,
Fearon ER and Cho KR: Loss of estrogen receptor 1 enhances cervical
cancer invasion. Am J Pathol. 177:884–895. 2010. View Article : Google Scholar : PubMed/NCBI
|