Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2018 Volume 15 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2018 Volume 15 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular and cellular mechanisms of castration resistant prostate cancer (Review)

  • Authors:
    • Yiqiao Huang
    • Xianhan Jiang
    • Xue Liang
    • Ganggang Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 6063-6076
    |
    Published online on: February 27, 2018
       https://doi.org/10.3892/ol.2018.8123
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

With increases in the mortality rate and number of patients with prostate cancer (PCa), PCa, particularly the advanced and metastatic disease, has been the focus of a number of studies globally. Over the past seven decades, androgen deprivation therapy has been the primary therapeutic option for patients with advanced PCa; however, the majority of patients developed a poor prognosis stage of castration resistant prostate cancer (CRPC), which eventually led to mortality. Due to CRPC being incurable, laboratory investigations and clinical studies focusing on CRPC have been conducted worldwide. Clarification of the molecular pathways that may lead to CRPC is important for discovering novel therapeutic strategies to delay or reverse the progression of disease. A sustained androgen receptor (AR) signal is still regarded as the main cause of CRPC. Increasing number of studies have proposed different potential mechanisms that cause CRPC, and this has led to the development of novel agents targeting the AR‑dependent pathway or AR‑independent signaling. In the present review, the major underlying mechanisms causing CRPC, including several major categories of AR‑dependent mechanisms, AR bypass signaling, AR‑independent mechanisms and other important hypotheses (including the functions of autophagy, PCa stem cell and microRNAs in CRPC progression), are summarized with retrospective pre‑clinical or clinical trials to guide future research and therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Society AC: Cancer facts & figures 2016. Atlanta: American Cancer Society; 2016

3 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al: Integrative genomic profiling of human prostate cancer. Cancer Cell. 18:11–22. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Thomas C, Bögemann M, König F, Machtens S, Schostak M, Steuber T and Heidenreich A: Advanced prostate cancer consensus conference (APCCC) 2015 in St. Gallen. Critical review of the recommendations on diagnosis and therapy of metastatic prostate cancer by a German expert panel. Urologe A. 55:772–782. 2016.(In German).

6 

Ozono S and Furuse H: Progress of the treatment for CRPC. Nihon Rinsho. 74 Suppl 3:S615–S618. 2016.(In Japanese).

7 

Lian F, Sharma NV, Moran JD and Moreno CS: The biology of castration-resistant prostate cancer. Curr Probl Cancer. 39:17–28. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Maughan BL and Antonarakis ES: Androgen pathway resistance in prostate cancer and therapeutic implications. Expert Opin Pharmacother. 16:1521–1537. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Roy AK, Tyagi RK, Song CS, Lavrovsky Y, Ahn SC, Oh TS and Chatterjee B: Androgen receptor: Structural domains and functional dynamics after ligand-receptor interaction. Ann N Y Acad Sci. 949:44–57. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Gelmann EP: Molecular biology of the androgen receptor. J Clin Oncol. 20:3001–3015. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK, Watt K, Tam T, Yang YC, Bañuelos CA, et al: Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell. 17:535–546. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK, Gjyrezi A, Chanel-Vos C, Shen R, Tagawa ST, et al: Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 71:6019–6029. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Aggarwal RR, Thomas G, Youngren J, Foye A, Olson S, Paris P, Beer TM, Ryan CJ, Witte O, Evans CP, et al: Androgen receptor (AR) amplification in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) resistant to abiraterone (Abi) and enzalutamide (Enz): Preliminary results from the SU2C/PCF/AACR West Coast prostate cancer dream team (WCDT). J Clin Oncol. 33:50682015.

14 

Haapala K, Kuukasjärvi T, Hyytinen E, Rantala I, Helin HJ and Koivisto PA: Androgen receptor amplification is associated with increased cell proliferation in prostate cancer. Hum Pathol. 38:474–478. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A'Hern R, Levink R, Coumans F, Moreira J, Riisnaes R, et al: Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69:2912–2918. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G and Kallioniemi OP: Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res. 59:803–806. 1999.PubMed/NCBI

17 

Linja MJ, Savinainen KJ, Saramäki OR, Tammela TL, Vessella RL and Visakorpi T: Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 61:3550–3555. 2001.PubMed/NCBI

18 

Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG and Sawyers CL: Molecular determinants of resistance to antiandrogen therapy. Nat Med. 10:33–39. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Kim D, Gregory CW, French FS, Smith GJ and Mohler JL: Androgen receptor expression and cellular proliferation during transition from androgen-dependent to recurrent growth after castration in the CWR22 prostate cancer xenograft. Am J Pathol. 160:219–226. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Santer FR, Erb HH and McNeill RV: Therapy escape mechanisms in the malignant prostate. Seminars Cancer Biol. 35:133–144. 2015. View Article : Google Scholar

21 

Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Jänne OA and Visakorpi T: Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res. 69:8141–8149. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visakorpi T and Kallioniemi OP: Androgen receptor gene amplification: A possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57:314–319. 1997.PubMed/NCBI

23 

Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, et al: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Mayeur GL, Kung WJ, Martinez A, Izumiya C, Chen DJ and Kung HJ: Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells. J Biol Chem. 280:10827–10833. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Sarkar S, Brautigan DL, Parsons SJ and Larner JM: Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene. 33:26–33. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J, Brinkmann AO and Mulder E: A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun. 173:534–540. 1990. View Article : Google Scholar : PubMed/NCBI

27 

Gaddipati JP, McLeod DG, Heidenberg HB, Sesterhenn IA, Finger MJ, Moul JW and Srivastava S: Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res. 54:2861–2864. 1994.PubMed/NCBI

28 

Suzuki H, Sato N, Watabe Y, Masai M, Seino S and Shimazaki J: Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol. 46:759–765. 1993. View Article : Google Scholar : PubMed/NCBI

29 

Suzuki H, Akakura K, Komiya A, Aida S, Akimoto S and Shimazaki J: Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: Relation to antiandrogen withdrawal syndrome. Prostate. 29:153–158. 1996. View Article : Google Scholar : PubMed/NCBI

30 

Steketee K, Timmerman L, Ziel-van der Made AC, Doesburg P, Brinkmann AO and Trapman J: Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int J Cancer. 100:309–317. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Balbas MD, Evans MJ, Hosfield DJ, Wongvipat J, Arora VK, Watson PA, Chen Y, Greene GL, Shen Y and Sawyers CL: Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife. 2:e004992013. View Article : Google Scholar : PubMed/NCBI

32 

Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 161:1215–1228. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, Anderson SA, McConeghy B, Shukin R, Bazov J, et al: Androgen receptor gene aberrations in circulating cell-free DNA: Biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res. 21:2315–2324. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Alliance for Clinical Trials in Oncology, . Enzalutamide with or without abiraterone and prednisone in treating patients with castration-resistant metastatic prostate cancer. ClinicalTrials.gov Identifier: NCT01949337. https://clinicaltrials.gov/ct2/show/NCT01949337September 24–2013

35 

Nakazawa M, Antonarakis ES and Luo J: Androgen receptor splice variants in the era of enzalutamide and abiraterone. Horm Cancer. 5:265–273. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Haile S and Sadar MD: Androgen receptor and its splice variants in prostate cancer. Cell Mol Life Sci. 68:3971–3981. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, et al: Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69:16–22. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Chen H, Kong X, Melamed J, Tepper CG, et al: A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69:2305–2313. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Dehm SM, Schmidt LJ, Heemers HV, Vessella RL and Tindall DJ: Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68:5469–5477. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Fenner A: Prostate cancer: Unravelling AR splice variant signalling in CPRC. Nat Rev Urol. 9:4102012. View Article : Google Scholar : PubMed/NCBI

41 

Ware KE, Garcia-Blanco MA, Armstrong AJ and Dehm SM: Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer. 21:T87–T103. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Penel N: Splicing variant of androgen receptors (AR-V7): New paradigms. Bull Cancer. 103:711–713. 2016.(In French). View Article : Google Scholar : PubMed/NCBI

43 

Qu Y, Dai B, Ye D, Kong Y, Chang K, Jia Z, Yang X, Zhang H, Zhu Y and Shi G: Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci Rep. 5:76542015. View Article : Google Scholar : PubMed/NCBI

44 

Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, et al: AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 371:1028–1038. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Zhan Y, Zhang G, Wang X, Qi Y, Bai S, Li D, Ma T, Sartor O, Flemington EK, Zhang H, et al: Interplay between cytoplasmic and nuclear androgen receptor splice variants mediates castration resistance. Mol Cancer Res. 15:59–68. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Yang YC, Mawji N, Wang J and Sadar M: Preclinical evaluation of novel androgen receptor N-terminal domain inhibitor EPI-002 for the treatment of castration-resistant prostate cancer. Proceedings of the 105th Annual Meeting of the American Association for Cancer Research, San Diego, CA, 2014. Cancer Res. 74(Suppl 19): Abstract 610. 2014;

47 

Ito Y, Banuelos CA and Sadar MD: Combination therapy with EPI-002 and parp inhibitor for castration-resistant prostate cancer. J Urol. 197:E11082017. View Article : Google Scholar

48 

Hermanson O, Glass CK and Rosenfeld MG: Nuclear receptor coregulators: Multiple modes of modification. Trends Endocrinol Metab. 13:55–60. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Culig Z: Androgen receptor coactivators in regulation of growth and differentiation in prostate cancer. J Cell Physiol. 231:270–274. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Wolf IM, Heitzer MD, Grubisha M and DeFranco DB: Coactivators and nuclear receptor transactivation. J Cell Biochem. 104:1580–1586. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Massie CE, Adryan B, Barbosa-Morais NL, Lynch AG, Tran MG, Neal DE and Mills IG: New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep. 8:871–878. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Bennett NC, Gardiner RA, Hooper JD, Johnson DW and Gobe GC: Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol. 42:813–827. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Zhang Z, Chang CW, Goh WL, Sung WK and Cheung E: CENTDIST: Discovery of co-associated factors by motif distribution. Nucleic Acids Res. 39(Web Server issue): W391–W399. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Wang Q, Li W, Liu XS, Carroll JS, Jänne OA, Keeton EK, Chinnaiyan AM, Pienta KJ and Brown M: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 27:380–392. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Tan PY, Chang CW, Chng KR, Wansa KD, Sung WK and Cheung E: Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol. 32:399–414. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Heemers HV and Tindall DJ: Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 28:778–808. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Ni L, Yang CS, Gioeli D, Frierson H, Toft DO and Paschal BM: FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol. 30:1243–1253. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Chen S, Sullivan WP, Toft DO and Smith DF: Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones. 3:118–129. 1998. View Article : Google Scholar : PubMed/NCBI

59 

Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, et al: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 9:347–353. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Laschak M, Bechtel M, Spindler KD and Hessenauer A: Inability of NCoR/SMRT to repress androgen receptor transcriptional activity in prostate cancer cell lines. Int J Mol Med. 28:645–651. 2011.PubMed/NCBI

61 

Zaret KS and Carroll JS: Pioneer transcription factors: Establishing competence for gene expression. Genes Dev. 25:2227–2241. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Coffey K and Robson CN: Regulation of the androgen receptor by post-translational modifications. J Endocrinol. 215:221–237. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Chen MF, Chen WC, Chang YJ, Wu CF and Wu CT: Role of DNA methyltransferase 1 in hormone-resistant prostate cancer. J Mol Med (Berl). 88:953–962. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Liu Y, Karaca M, Zhang Z, Gioeli D, Earp HS and Whang YE: Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene. 29:3208–3216. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Willder JM, Heng SJ, McCall P, Adams CE, Tannahill C, Fyffe G, Seywright M, Horgan PG, Leung HY, Underwood MA and Edwards J: Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients. Br J Cancer. 108:139–148. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Ha S, Iqbal NJ, Mita P, Ruoff R, Gerald WL, Lepor H, Taneja SS, Lee P, Melamed J, Garabedian MJ and Logan SK: Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. Oncogene. 32:3992–4000. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Shu SK, Liu Q, Coppola D and Cheng JQ: Phosphorylation and activation of androgen receptor by Aurora-A. J Biol Chem. 285:33045–33053. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Xia Y, Wang M, Beraldi E, Cong M, Zoubeidi A, Gleave M and Peng L: A novel triazole nucleoside suppresses prostate cancer cell growth by inhibiting heat shock factor 1 and androgen receptor. Anticancer Agents Med Chem. 15:1333–1340. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST, et al: Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1:487–495. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, et al: The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30:2719–2733. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Kumagai J, Hofland J, Erkens-Schulze S, Dits NFJ, Jenster G, Bangma CH, Homma Y, De Jong FH and Van Weerden WM: Intratumoral conversion of adrenal androgens is more important than De Novo intratumoral steroid synthesis in prostate cancer. Eur Urol Suppl. 10:2642011. View Article : Google Scholar

72 

Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD and Nelson PS: Maintenance of intratumoral androgens in metastatic prostate cancer: A mechanism for castration-resistant tumor growth. Cancer Res. 68:4447–4454. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Yin L and Hu Q: CYP17 inhibitors-abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat Rev Urol. 11:32–42. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Knuuttila M, Yatkin E, Kallio J, Savolainen S, Laajala TD, Aittokallio T, Oksala R, Häkkinen M, Keski-Rahkonen P, Auriola S, et al: Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model. Am J Pathol. 184:2163–2173. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Tamae D, Mostaghel E, Montgomery B, Nelson PS, Balk SP, Kantoff PW, Taplin ME and Penning TM: The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high risk localized and advanced castration resistant prostate cancer. Chem Biol Interact. 234:332–338. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng S, et al: Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 368:138–148. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, Iversen P, Bhattacharya S, Carles J, Chowdhury S, et al: Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 371:424–433. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Chandrasekar T, Yang JC, Gao AC and Evans CP: Targeting molecular resistance in castration-resistant prostate cancer. BMC Med. 13:2062015. View Article : Google Scholar : PubMed/NCBI

79 

Wang BH: Molecular mechanisms of gene regulation mediated by nuclear receptor superfamily. Sheng Li Ke Xue Jin Zhan. 34:369–372. 2003.(In Chinese). PubMed/NCBI

80 

Laudet V, Hänni C, Coll J, Catzeflis F and Stéhelin D: Evolution of the nuclear receptor gene superfamily. EMBO J. 11:1003–1013. 1992.PubMed/NCBI

81 

Szmulewitz RZ, Chung E, Al-Ahmadie H, Daniel S, Kocherginsky M, Razmaria A, Zagaja GP, Brendler CB, Stadler WM and Conzen SD: Serum/glucocorticoid-regulated kinase 1 expression in primary human prostate cancers. Prostate. 72:157–164. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Sahu B, Laakso M, Pihlajamaa P, Ovaska K, Sinielnikov I, Hautaniemi S and Jänne OA: FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res. 73:1570–1580. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, Shah N, Cai L, Efstathiou E, Logothetis C, et al: Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 155:1309–1322. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Montgomery B, Cheng HH, Drechsler J and Mostaghel EA: Glucocorticoids and prostate cancer treatment: Friend or foe? Asian J Androl. 16:354–358. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Montgomery B, Kheoh T, Molina A, Li J, Bellmunt J, Tran N, Loriot Y, Efstathiou E, Ryan CJ, Scher HI and de Bono JS: Impact of baseline corticosteroids on survival and steroid androgens in metastatic castration-resistant prostate cancer: Exploratory analysis from COU-AA-301. Eur Urol. 67:866–873. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Song C, Kim Y, Min GE and Ahn H: Dihydrotestosterone enhances castration-resistant prostate cancer cell proliferation through STAT5 activation via glucocorticoid receptor pathway. Prostate. 74:1240–1248. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Lorente D, Omlin A, Ferraldeschi R, Pezaro C, Perez R, Mateo J, Altavilla A, Zafeirou Z, Tunariu N, Parker C, et al: Tumour responses following a steroid switch from prednisone to dexamethasone in castration-resistant prostate cancer patients progressing on abiraterone. Br J Cancer. 111:2248–2253. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Chen R, Yu Y and Dong X: Progesterone receptor in the prostate: A potential suppressor for benign prostatic hyperplasia and prostate cancer. J Steroid Biochem Mol Biol. 166:91–96. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Grindstad T, Andersen S, Al-Saad S, Donnem T, Kiselev Y, Nordahl Melbø-Jørgensen C, Skjefstad K, Busund LT, Bremnes RM and Richardsen E: High progesterone receptor expression in prostate cancer is associated with clinical failure. PloS One. 10:e01166912015. View Article : Google Scholar : PubMed/NCBI

90 

Morgensztern D and McLeod HL: PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. 16:797–803. 2005. View Article : Google Scholar : PubMed/NCBI

91 

Statz CM, Patterson SE and Mockus SM: mTOR inhibitors in castration-resistant prostate cancer: A systematic review. Target Oncol. 12:47–59. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Kato M, Banuelos CA, Imamura Y, Leung JK, Caley DP, Wang J, Mawji NR and Sadar MD: Cotargeting androgen receptor splice variants and mTOR signaling pathway for the treatment of castration-resistant prostate cancer. Clin Cancer Res. 22:2744–2754. 2016. View Article : Google Scholar : PubMed/NCBI

93 

McMenamin ME, Soung P, Perera S, Kaplan I, Loda M and Sellers WR: Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 59:4291–4296. 1999.PubMed/NCBI

94 

Zhang W, Zhu J, Efferson CL, Ware C, Tammam J, Angagaw M, Laskey J, Bettano KA, Kasibhatla S, Reilly JF, et al: Inhibition of tumor growth progression by antiandrogens and mTOR inhibitor in a Pten-deficient mouse model of prostate cancer. Cancer Res. 69:7466–7472. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Park SI, Shah AN, Zhang J and Gallick GE: Regulation of angiogenesis and vascular permeability by Src family kinases: Opportunities for therapeutic treatment of solid tumors. Expert Opin Ther Targets. 11:1207–1217. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Araujo JC, Trudel GC, Saad F, Armstrong AJ, Yu EY, Bellmunt J, Wilding G, McCaffrey J, Serrano SV, Matveev VB, et al: Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): A randomised, double-blind phase 3 trial. Lancet Oncol. 14:1307–1316. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Yang JC, Bai L, Yap S, Gao AC, Kung HJ and Evans CP: Effect of the specific Src family kinase inhibitor saracatinib on osteolytic lesions using the PC-3 bone model. Mol Cancer Ther. 9:1629–1637. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Bettedi L and Foukas LC: Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing. Biogerontology. 18:913–929. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Neto AS, Tobias-Machado M, Wroclawski ML, Fonseca FL, Pompeo AC and Del Giglio A: Molecular oncogenesis of prostate adenocarcinoma: Role of the human epidermal growth factor receptor 2 (HER-2/neu). Tumori. 96:645–649. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Wen Y, Hu MC, Makino K, Spohn B, Bartholomeusz G, Yan DH and Hung MC: HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 60:6841–6845. 2000.PubMed/NCBI

101 

Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, Vogelzang NJ, Small EJ, Harzstark AL, Gordon MS, et al: Cabozantinib in patients with advanced prostate cancer: Results of a phase II randomized discontinuation trial. J Clin Oncol. 31:412–419. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Cannistraci A, Di Pace AL, De Maria R and Bonci D: MicroRNA as new tools for prostate cancer risk assessment and therapeutic intervention: Results from clinical data set and patients' samples. Biomed Res Int. 2014:1461702014. View Article : Google Scholar : PubMed/NCBI

103 

Kojima S, Goto Y and Naya Y: The roles of microRNAs in the progression of castration-resistant prostate cancer. J Hum Genet. 62:25–31. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Cannistraci A, Di Pace AL, Di Pace AL, De Maria R and Bonci D: MicroRNA as new tools for prostate cancer risk assessment and therapeutic intervention: Results from clinical data set and patients' samples. Biomed Res Int. 2014:1461702014. View Article : Google Scholar : PubMed/NCBI

105 

Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G and Jung K: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 126:1166–1176. 2010.PubMed/NCBI

106 

Jalava SE, Urbanucci A, Latonen L, Waltering KK, Sahu B, Jänne OA, Seppälä J, Lähdesmäki H, Tammela TL and Visakorpi T: Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene. 31:4460–4471. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D and Ochiya T: Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 18:181–187. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Kashat M, Azzouz L, Sarkar SH, Kong D, Li Y and Sarkar FH: Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am J Transl Res. 4:432–442. 2012.PubMed/NCBI

109 

Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, et al: miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 19:73–84. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Barron N, Keenan J, Gammell P, Martinez VG, Freeman A, Masters JR and Clynes M: Biochemical relapse following radical prostatectomy and miR-200a levels in prostate cancer. Prostate. 72:1193–1199. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 322:1695–1699. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Mortensen MM, Høyer S, Orntoft TF, Sørensen KD, Dyrskjøt L and Borre M: High miR-449b expression in prostate cancer is associated with biochemical recurrence after radical prostatectomy. BMC Cancer. 14:8592014. View Article : Google Scholar : PubMed/NCBI

113 

Casanova-Salas I, Rubio-Briones J, Calatrava A, Mancarella C, Masiá E, Casanova J, Fernández-Serra A, Rubio L, Ramírez-Backhaus M, Armiñán A, et al: Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy. J Urol. 192:252–259. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Nam RK, Benatar T, Wallis CJ, Amemiya Y, Yang W, Garbens A, Naeim M, Sherman C, Sugar L and Seth A: MiR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence. Prostate. 76:869–884. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Bell EH, Kirste S, Fleming JL, Stegmaier P, Drendel V, Mo X, Ling S, Fabian D, Manring I, Jilg CA, et al: A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy. PloS One. 10:e01187452015. View Article : Google Scholar : PubMed/NCBI

116 

Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, Bhatia J, Stadler Z, Fine SW, Reuter V, et al: Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 16:2115–2121. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus DM, et al: Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 63:920–926. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, Mahmud N, Dadaev T, Govindasami K, Guy M, et al: Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 31:1748–1757. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, et al: Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 19:664–678. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, et al: DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 373:1697–1708. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, Arora VK, Yen WF, Cai L, Zheng D, et al: Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 3:1245–1253. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Goodwin JF, Schiewer MJ, Dean JL, Schrecengost RS, de Leeuw R, Han S, Ma T, Den RB, Dicker AP, Feng FY and Knudsen KE: A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov. 3:1254–1271. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Li L, Chang W, Yang G, Ren C, Park S, Karantanos T, Karanika S, Wang J, Yin J, Shah PK, et al: Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Sci Signal. 7:ra472014. View Article : Google Scholar : PubMed/NCBI

124 

Farrow JM, Yang JC and Evans CP: Autophagy as a modulator and target in prostate cancer. Nat Rev Urol. 11:508–516. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, et al: Autophagy in malignant transformation and cancer progression. EMBO J. 34:856–880. 2015. View Article : Google Scholar : PubMed/NCBI

126 

Jiang X, Zhong W, Huang H, He H, Jiang F, Chen Y, Yue F, Zou J, Li X, He Y, et al: Autophagy defects suggested by low levels of autophagy activator MAP1S and high levels of autophagy inhibitor LRPPRC predict poor prognosis of prostate cancer patients. Mol Carcinog. 54:1194–1204. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Jiang X, Li X, Huang H, Jiang F, Lin Z, He H, Chen Y, Yue F, Zou J, He Y, et al: Elevated levels of mitochondrion-associated autophagy inhibitor LRPPRC are associated with poor prognosis in patients with prostate cancer. Cancer. 120:1228–1236. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Mathew R, Karantza-Wadsworth V and White E: Role of autophagy in cancer. Nat Rev Cancer. 7:961–967. 2007. View Article : Google Scholar : PubMed/NCBI

129 

Hönscheid P, Datta K and Muders MH: Autophagy: Detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 90:628–635. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Ziparo E, Petrungaro S, Marini ES, Starace D, Conti S, Facchiano A, Filippini A and Giampietri C: Autophagy in prostate cancer and androgen suppression therapy. Int J Mol Sci. 14:12090–12106. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Bennett HL, Stockley J, Fleming JT, Mandal R, O'Prey J, Ryan KM, Robson CN and Leung HY: Does androgen-ablation therapy (AAT) associated autophagy have a pro-survival effect in LNCaP human prostate cancer cells? BJU Int. 111:672–682. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Li M, Jiang X, Liu D, Na Y, Gao GF and Xi Z: Autophagy protects LNCaP cells under androgen deprivation conditions. Autophagy. 4:54–60. 2008. View Article : Google Scholar : PubMed/NCBI

133 

Xu Y, Chen SY, Ross KN and Balk SP: Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66:7783–7792. 2006. View Article : Google Scholar : PubMed/NCBI

134 

Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S and Mak TW: Regulation of PTEN transcription by p53. Mol Cell. 8:317–325. 2001. View Article : Google Scholar : PubMed/NCBI

135 

Colquhoun AJ, Venier NA, Vandersluis AD, Besla R, Sugar LM, Kiss A, Fleshner NE, Pollak M, Klotz LH and Venkateswaran V: Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in prostate cancer. Prostate Cancer Prostatic Dis. 15:346–352. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Notte A, Ninane N, Arnould T and Michiels C: Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: Role of autophagy and JNK activation. Cell Death Dis. 4:e6382013. View Article : Google Scholar : PubMed/NCBI

137 

Li Y, Luo P, Wang J, Dai J, Yang X, Wu H, Yang B and He Q: Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway. Toxicol Appl Pharmacol. 274:319–327. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI

139 

Maitland NJ, Frame FM, Polson ES, Lewis JL and Collins AT: Prostate cancer stem cells: Do they have a basal or luminal phenotype? Horm Cancer. 2:47–61. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Rizzo S, Attard G and Hudson DL: Prostate epithelial stem cells. Cell Prolif. 38:363–374. 2005. View Article : Google Scholar : PubMed/NCBI

141 

Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ and Collins AT: CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 117:3539–3545. 2004. View Article : Google Scholar : PubMed/NCBI

142 

Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI

143 

Maitland NJ and Collins A: A tumour stem cell hypothesis for the origins of prostate cancer. BJU Int. 96:1219–1223. 2005. View Article : Google Scholar : PubMed/NCBI

144 

Nicolis SK: Cancer stem cells and ‘stemness’ genes in neuro-oncology. Neurobiol Dis. 25:217–229. 2007. View Article : Google Scholar : PubMed/NCBI

145 

Wang S, Huang S, Zhao X, Zhang Q, Wu M, Sun F, Han G and Wu D: Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples. Int J Clin Exp Pathol. 7:184–193. 2013.PubMed/NCBI

146 

Tárnok A, Ulrich H and Bocsi J: Phenotypes of stem cells from diverse origin. Cytometry A. 77:6–10. 2010. View Article : Google Scholar : PubMed/NCBI

147 

Ojo D, Lin X, Wong N, Gu Y and Tang D: Prostate cancer stem-like cells contribute to the development of castration-resistant prostate cancer. Cancers (Basel). 7:2290–2308. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Guo Z, Huang H, Zeng L, Du T, Xu K, Lin T, Jiang C, Dong W, Cao Y, Chen J, et al: Lentivirus-mediated RNAi knockdown of prostate-specific membrane antigen suppresses growth, reduces migration ability and the invasiveness of prostate cancer cells. Med Oncol. 28:878–887. 2011. View Article : Google Scholar : PubMed/NCBI

149 

Nadiminty N, Lou W, Lee SO, Lin X, Trump DL and Gao AC: Stat3 activation of NF-(kappa)B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci USA. 103:pp. 7264–7269. 2006; View Article : Google Scholar : PubMed/NCBI

150 

Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et al: Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 367:1187–1197. 2012. View Article : Google Scholar : PubMed/NCBI

151 

Cindolo L, Natoli C, De Nunzio C, De Tursi M, Valeriani M, Giacinti S, Micali S, Rizzo M, Bianchi G, Martorana E, et al: Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer in chemotherapy-naive patients: An Italian analysis of patients' satisfaction. Clin Genitourin Cancer. 15:520–525. 2017. View Article : Google Scholar : PubMed/NCBI

152 

Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI

153 

Inamoto T and Azuma H: Overview of the ongoing clinical trials for new treatments for castrate-resistant prostate cancer (CRPC). Nihon Rinsho. 74 Suppl 3:S653–S659. 2016.(In Japanese).

154 

Penning TM: Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (CRPC). J Steroid Biochem Mol Biol. 153:105–113. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang Y, Jiang X, Liang X and Jiang G: Molecular and cellular mechanisms of castration resistant prostate cancer (Review). Oncol Lett 15: 6063-6076, 2018.
APA
Huang, Y., Jiang, X., Liang, X., & Jiang, G. (2018). Molecular and cellular mechanisms of castration resistant prostate cancer (Review). Oncology Letters, 15, 6063-6076. https://doi.org/10.3892/ol.2018.8123
MLA
Huang, Y., Jiang, X., Liang, X., Jiang, G."Molecular and cellular mechanisms of castration resistant prostate cancer (Review)". Oncology Letters 15.5 (2018): 6063-6076.
Chicago
Huang, Y., Jiang, X., Liang, X., Jiang, G."Molecular and cellular mechanisms of castration resistant prostate cancer (Review)". Oncology Letters 15, no. 5 (2018): 6063-6076. https://doi.org/10.3892/ol.2018.8123
Copy and paste a formatted citation
x
Spandidos Publications style
Huang Y, Jiang X, Liang X and Jiang G: Molecular and cellular mechanisms of castration resistant prostate cancer (Review). Oncol Lett 15: 6063-6076, 2018.
APA
Huang, Y., Jiang, X., Liang, X., & Jiang, G. (2018). Molecular and cellular mechanisms of castration resistant prostate cancer (Review). Oncology Letters, 15, 6063-6076. https://doi.org/10.3892/ol.2018.8123
MLA
Huang, Y., Jiang, X., Liang, X., Jiang, G."Molecular and cellular mechanisms of castration resistant prostate cancer (Review)". Oncology Letters 15.5 (2018): 6063-6076.
Chicago
Huang, Y., Jiang, X., Liang, X., Jiang, G."Molecular and cellular mechanisms of castration resistant prostate cancer (Review)". Oncology Letters 15, no. 5 (2018): 6063-6076. https://doi.org/10.3892/ol.2018.8123
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team