|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Society AC: Cancer facts & figures
2016. Atlanta: American Cancer Society; 2016
|
|
3
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Taylor BS, Schultz N, Hieronymus H,
Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva
B, et al: Integrative genomic profiling of human prostate cancer.
Cancer Cell. 18:11–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Thomas C, Bögemann M, König F, Machtens S,
Schostak M, Steuber T and Heidenreich A: Advanced prostate cancer
consensus conference (APCCC) 2015 in St. Gallen. Critical review of
the recommendations on diagnosis and therapy of metastatic prostate
cancer by a German expert panel. Urologe A. 55:772–782. 2016.(In
German).
|
|
6
|
Ozono S and Furuse H: Progress of the
treatment for CRPC. Nihon Rinsho. 74 Suppl 3:S615–S618. 2016.(In
Japanese).
|
|
7
|
Lian F, Sharma NV, Moran JD and Moreno CS:
The biology of castration-resistant prostate cancer. Curr Probl
Cancer. 39:17–28. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Maughan BL and Antonarakis ES: Androgen
pathway resistance in prostate cancer and therapeutic implications.
Expert Opin Pharmacother. 16:1521–1537. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Roy AK, Tyagi RK, Song CS, Lavrovsky Y,
Ahn SC, Oh TS and Chatterjee B: Androgen receptor: Structural
domains and functional dynamics after ligand-receptor interaction.
Ann N Y Acad Sci. 949:44–57. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gelmann EP: Molecular biology of the
androgen receptor. J Clin Oncol. 20:3001–3015. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Andersen RJ, Mawji NR, Wang J, Wang G,
Haile S, Myung JK, Watt K, Tam T, Yang YC, Bañuelos CA, et al:
Regression of castrate-recurrent prostate cancer by a
small-molecule inhibitor of the amino-terminus domain of the
androgen receptor. Cancer Cell. 17:535–546. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Darshan MS, Loftus MS, Thadani-Mulero M,
Levy BP, Escuin D, Zhou XK, Gjyrezi A, Chanel-Vos C, Shen R, Tagawa
ST, et al: Taxane-induced blockade to nuclear accumulation of the
androgen receptor predicts clinical responses in metastatic
prostate cancer. Cancer Res. 71:6019–6029. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Aggarwal RR, Thomas G, Youngren J, Foye A,
Olson S, Paris P, Beer TM, Ryan CJ, Witte O, Evans CP, et al:
Androgen receptor (AR) amplification in patients (pts) with
metastatic castration resistant prostate cancer (mCRPC) resistant
to abiraterone (Abi) and enzalutamide (Enz): Preliminary results
from the SU2C/PCF/AACR West Coast prostate cancer dream team
(WCDT). J Clin Oncol. 33:50682015.
|
|
14
|
Haapala K, Kuukasjärvi T, Hyytinen E,
Rantala I, Helin HJ and Koivisto PA: Androgen receptor
amplification is associated with increased cell proliferation in
prostate cancer. Hum Pathol. 38:474–478. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Attard G, Swennenhuis JF, Olmos D, Reid
AH, Vickers E, A'Hern R, Levink R, Coumans F, Moreira J, Riisnaes
R, et al: Characterization of ERG, AR and PTEN gene status in
circulating tumor cells from patients with castration-resistant
prostate cancer. Cancer Res. 69:2912–2918. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bubendorf L, Kononen J, Koivisto P,
Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G and
Kallioniemi OP: Survey of gene amplifications during prostate
cancer progression by high-throughout fluorescence in situ
hybridization on tissue microarrays. Cancer Res. 59:803–806.
1999.PubMed/NCBI
|
|
17
|
Linja MJ, Savinainen KJ, Saramäki OR,
Tammela TL, Vessella RL and Visakorpi T: Amplification and
overexpression of androgen receptor gene in hormone-refractory
prostate cancer. Cancer Res. 61:3550–3555. 2001.PubMed/NCBI
|
|
18
|
Chen CD, Welsbie DS, Tran C, Baek SH, Chen
R, Vessella R, Rosenfeld MG and Sawyers CL: Molecular determinants
of resistance to antiandrogen therapy. Nat Med. 10:33–39. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kim D, Gregory CW, French FS, Smith GJ and
Mohler JL: Androgen receptor expression and cellular proliferation
during transition from androgen-dependent to recurrent growth after
castration in the CWR22 prostate cancer xenograft. Am J Pathol.
160:219–226. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Santer FR, Erb HH and McNeill RV: Therapy
escape mechanisms in the malignant prostate. Seminars Cancer Biol.
35:133–144. 2015. View Article : Google Scholar
|
|
21
|
Waltering KK, Helenius MA, Sahu B, Manni
V, Linja MJ, Jänne OA and Visakorpi T: Increased expression of
androgen receptor sensitizes prostate cancer cells to low levels of
androgens. Cancer Res. 69:8141–8149. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Koivisto P, Kononen J, Palmberg C, Tammela
T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A,
Visakorpi T and Kallioniemi OP: Androgen receptor gene
amplification: A possible molecular mechanism for androgen
deprivation therapy failure in prostate cancer. Cancer Res.
57:314–319. 1997.PubMed/NCBI
|
|
23
|
Barbieri CE, Baca SC, Lawrence MS,
Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van
Allen E, Stransky N, et al: Exome sequencing identifies recurrent
SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet.
44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mayeur GL, Kung WJ, Martinez A, Izumiya C,
Chen DJ and Kung HJ: Ku is a novel transcriptional recycling
coactivator of the androgen receptor in prostate cancer cells. J
Biol Chem. 280:10827–10833. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sarkar S, Brautigan DL, Parsons SJ and
Larner JM: Androgen receptor degradation by the E3 ligase CHIP
modulates mitotic arrest in prostate cancer cells. Oncogene.
33:26–33. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Veldscholte J, Ris-Stalpers C, Kuiper GG,
Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J,
Brinkmann AO and Mulder E: A mutation in the ligand binding domain
of the androgen receptor of human LNCaP cells affects steroid
binding characteristics and response to anti-androgens. Biochem
Biophys Res Commun. 173:534–540. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gaddipati JP, McLeod DG, Heidenberg HB,
Sesterhenn IA, Finger MJ, Moul JW and Srivastava S: Frequent
detection of codon 877 mutation in the androgen receptor gene in
advanced prostate cancers. Cancer Res. 54:2861–2864.
1994.PubMed/NCBI
|
|
28
|
Suzuki H, Sato N, Watabe Y, Masai M, Seino
S and Shimazaki J: Androgen receptor gene mutations in human
prostate cancer. J Steroid Biochem Mol Biol. 46:759–765. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Suzuki H, Akakura K, Komiya A, Aida S,
Akimoto S and Shimazaki J: Codon 877 mutation in the androgen
receptor gene in advanced prostate cancer: Relation to antiandrogen
withdrawal syndrome. Prostate. 29:153–158. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Steketee K, Timmerman L, Ziel-van der Made
AC, Doesburg P, Brinkmann AO and Trapman J: Broadened ligand
responsiveness of androgen receptor mutants obtained by random
amino acid substitution of H874 and mutation hot spot T877 in
prostate cancer. Int J Cancer. 100:309–317. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Balbas MD, Evans MJ, Hosfield DJ,
Wongvipat J, Arora VK, Watson PA, Chen Y, Greene GL, Shen Y and
Sawyers CL: Overcoming mutation-based resistance to antiandrogens
with rational drug design. Elife. 2:e004992013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Robinson D, Van Allen EM, Wu YM, Schultz
N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC,
Attard G, et al: Integrative clinical genomics of advanced prostate
cancer. Cell. 161:1215–1228. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Azad AA, Volik SV, Wyatt AW, Haegert A, Le
Bihan S, Bell RH, Anderson SA, McConeghy B, Shukin R, Bazov J, et
al: Androgen receptor gene aberrations in circulating cell-free
DNA: Biomarkers of therapeutic resistance in castration-resistant
prostate cancer. Clin Cancer Res. 21:2315–2324. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Alliance for Clinical Trials in Oncology,
. Enzalutamide with or without abiraterone and prednisone in
treating patients with castration-resistant metastatic prostate
cancer. ClinicalTrials.gov Identifier: NCT01949337. https://clinicaltrials.gov/ct2/show/NCT01949337September
24–2013
|
|
35
|
Nakazawa M, Antonarakis ES and Luo J:
Androgen receptor splice variants in the era of enzalutamide and
abiraterone. Horm Cancer. 5:265–273. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Haile S and Sadar MD: Androgen receptor
and its splice variants in prostate cancer. Cell Mol Life Sci.
68:3971–3981. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hu R, Dunn TA, Wei S, Isharwal S, Veltri
RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, et al:
Ligand-independent androgen receptor variants derived from splicing
of cryptic exons signify hormone-refractory prostate cancer. Cancer
Res. 69:16–22. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Guo Z, Yang X, Sun F, Jiang R, Linn DE,
Chen H, Chen H, Kong X, Melamed J, Tepper CG, et al: A novel
androgen receptor splice variant is up-regulated during prostate
cancer progression and promotes androgen depletion-resistant
growth. Cancer Res. 69:2305–2313. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Dehm SM, Schmidt LJ, Heemers HV, Vessella
RL and Tindall DJ: Splicing of a novel androgen receptor exon
generates a constitutively active androgen receptor that mediates
prostate cancer therapy resistance. Cancer Res. 68:5469–5477. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fenner A: Prostate cancer: Unravelling AR
splice variant signalling in CPRC. Nat Rev Urol. 9:4102012.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ware KE, Garcia-Blanco MA, Armstrong AJ
and Dehm SM: Biologic and clinical significance of androgen
receptor variants in castration resistant prostate cancer. Endocr
Relat Cancer. 21:T87–T103. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Penel N: Splicing variant of androgen
receptors (AR-V7): New paradigms. Bull Cancer. 103:711–713.
2016.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Qu Y, Dai B, Ye D, Kong Y, Chang K, Jia Z,
Yang X, Zhang H, Zhu Y and Shi G: Constitutively active AR-V7 plays
an essential role in the development and progression of
castration-resistant prostate cancer. Sci Rep. 5:76542015.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Antonarakis ES, Lu C, Wang H, Luber B,
Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, et
al: AR-V7 and resistance to enzalutamide and abiraterone in
prostate cancer. N Engl J Med. 371:1028–1038. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhan Y, Zhang G, Wang X, Qi Y, Bai S, Li
D, Ma T, Sartor O, Flemington EK, Zhang H, et al: Interplay between
cytoplasmic and nuclear androgen receptor splice variants mediates
castration resistance. Mol Cancer Res. 15:59–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang YC, Mawji N, Wang J and Sadar M:
Preclinical evaluation of novel androgen receptor N-terminal domain
inhibitor EPI-002 for the treatment of castration-resistant
prostate cancer. Proceedings of the 105th Annual Meeting of the
American Association for Cancer Research, San Diego, CA, 2014.
Cancer Res. 74(Suppl 19): Abstract 610. 2014;
|
|
47
|
Ito Y, Banuelos CA and Sadar MD:
Combination therapy with EPI-002 and parp inhibitor for
castration-resistant prostate cancer. J Urol. 197:E11082017.
View Article : Google Scholar
|
|
48
|
Hermanson O, Glass CK and Rosenfeld MG:
Nuclear receptor coregulators: Multiple modes of modification.
Trends Endocrinol Metab. 13:55–60. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Culig Z: Androgen receptor coactivators in
regulation of growth and differentiation in prostate cancer. J Cell
Physiol. 231:270–274. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wolf IM, Heitzer MD, Grubisha M and
DeFranco DB: Coactivators and nuclear receptor transactivation. J
Cell Biochem. 104:1580–1586. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Massie CE, Adryan B, Barbosa-Morais NL,
Lynch AG, Tran MG, Neal DE and Mills IG: New androgen receptor
genomic targets show an interaction with the ETS1 transcription
factor. EMBO Rep. 8:871–878. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bennett NC, Gardiner RA, Hooper JD,
Johnson DW and Gobe GC: Molecular cell biology of androgen receptor
signalling. Int J Biochem Cell Biol. 42:813–827. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang Z, Chang CW, Goh WL, Sung WK and
Cheung E: CENTDIST: Discovery of co-associated factors by motif
distribution. Nucleic Acids Res. 39(Web Server issue): W391–W399.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang Q, Li W, Liu XS, Carroll JS, Jänne
OA, Keeton EK, Chinnaiyan AM, Pienta KJ and Brown M: A hierarchical
network of transcription factors governs androgen
receptor-dependent prostate cancer growth. Mol Cell. 27:380–392.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tan PY, Chang CW, Chng KR, Wansa KD, Sung
WK and Cheung E: Integration of regulatory networks by NKX3-1
promotes androgen-dependent prostate cancer survival. Mol Cell
Biol. 32:399–414. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Heemers HV and Tindall DJ: Androgen
receptor (AR) coregulators: A diversity of functions converging on
and regulating the AR transcriptional complex. Endocr Rev.
28:778–808. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ni L, Yang CS, Gioeli D, Frierson H, Toft
DO and Paschal BM: FKBP51 promotes assembly of the Hsp90 chaperone
complex and regulates androgen receptor signaling in prostate
cancer cells. Mol Cell Biol. 30:1243–1253. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen S, Sullivan WP, Toft DO and Smith DF:
Differential interactions of p23 and the TPR-containing proteins
Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress
Chaperones. 3:118–129. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wissmann M, Yin N, Müller JM, Greschik H,
Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R,
et al: Cooperative demethylation by JMJD2C and LSD1 promotes
androgen receptor-dependent gene expression. Nat Cell Biol.
9:347–353. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Laschak M, Bechtel M, Spindler KD and
Hessenauer A: Inability of NCoR/SMRT to repress androgen receptor
transcriptional activity in prostate cancer cell lines. Int J Mol
Med. 28:645–651. 2011.PubMed/NCBI
|
|
61
|
Zaret KS and Carroll JS: Pioneer
transcription factors: Establishing competence for gene expression.
Genes Dev. 25:2227–2241. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Coffey K and Robson CN: Regulation of the
androgen receptor by post-translational modifications. J
Endocrinol. 215:221–237. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen MF, Chen WC, Chang YJ, Wu CF and Wu
CT: Role of DNA methyltransferase 1 in hormone-resistant prostate
cancer. J Mol Med (Berl). 88:953–962. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu Y, Karaca M, Zhang Z, Gioeli D, Earp
HS and Whang YE: Dasatinib inhibits site-specific tyrosine
phosphorylation of androgen receptor by Ack1 and Src kinases.
Oncogene. 29:3208–3216. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Willder JM, Heng SJ, McCall P, Adams CE,
Tannahill C, Fyffe G, Seywright M, Horgan PG, Leung HY, Underwood
MA and Edwards J: Androgen receptor phosphorylation at serine 515
by Cdk1 predicts biochemical relapse in prostate cancer patients.
Br J Cancer. 108:139–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ha S, Iqbal NJ, Mita P, Ruoff R, Gerald
WL, Lepor H, Taneja SS, Lee P, Melamed J, Garabedian MJ and Logan
SK: Phosphorylation of the androgen receptor by PIM1 in hormone
refractory prostate cancer. Oncogene. 32:3992–4000. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shu SK, Liu Q, Coppola D and Cheng JQ:
Phosphorylation and activation of androgen receptor by Aurora-A. J
Biol Chem. 285:33045–33053. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xia Y, Wang M, Beraldi E, Cong M, Zoubeidi
A, Gleave M and Peng L: A novel triazole nucleoside suppresses
prostate cancer cell growth by inhibiting heat shock factor 1 and
androgen receptor. Anticancer Agents Med Chem. 15:1333–1340. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Beltran H, Rickman DS, Park K, Chae SS,
Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST, et
al: Molecular characterization of neuroendocrine prostate cancer
and identification of new drug targets. Cancer Discov. 1:487–495.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Massie CE, Lynch A, Ramos-Montoya A, Boren
J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, et al:
The androgen receptor fuels prostate cancer by regulating central
metabolism and biosynthesis. EMBO J. 30:2719–2733. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kumagai J, Hofland J, Erkens-Schulze S,
Dits NFJ, Jenster G, Bangma CH, Homma Y, De Jong FH and Van Weerden
WM: Intratumoral conversion of adrenal androgens is more important
than De Novo intratumoral steroid synthesis in prostate cancer. Eur
Urol Suppl. 10:2642011. View Article : Google Scholar
|
|
72
|
Montgomery RB, Mostaghel EA, Vessella R,
Hess DL, Kalhorn TF, Higano CS, True LD and Nelson PS: Maintenance
of intratumoral androgens in metastatic prostate cancer: A
mechanism for castration-resistant tumor growth. Cancer Res.
68:4447–4454. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yin L and Hu Q: CYP17
inhibitors-abiraterone, C17,20-lyase inhibitors and multi-targeting
agents. Nat Rev Urol. 11:32–42. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Knuuttila M, Yatkin E, Kallio J,
Savolainen S, Laajala TD, Aittokallio T, Oksala R, Häkkinen M,
Keski-Rahkonen P, Auriola S, et al: Castration induces
up-regulation of intratumoral androgen biosynthesis and androgen
receptor expression in an orthotopic VCaP human prostate cancer
xenograft model. Am J Pathol. 184:2163–2173. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tamae D, Mostaghel E, Montgomery B, Nelson
PS, Balk SP, Kantoff PW, Taplin ME and Penning TM: The DHEA-sulfate
depot following P450c17 inhibition supports the case for AKR1C3
inhibition in high risk localized and advanced castration resistant
prostate cancer. Chem Biol Interact. 234:332–338. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ryan CJ, Smith MR, de Bono JS, Molina A,
Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng
S, et al: Abiraterone in metastatic prostate cancer without
previous chemotherapy. N Engl J Med. 368:138–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Beer TM, Armstrong AJ, Rathkopf DE, Loriot
Y, Sternberg CN, Higano CS, Iversen P, Bhattacharya S, Carles J,
Chowdhury S, et al: Enzalutamide in metastatic prostate cancer
before chemotherapy. N Engl J Med. 371:424–433. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chandrasekar T, Yang JC, Gao AC and Evans
CP: Targeting molecular resistance in castration-resistant prostate
cancer. BMC Med. 13:2062015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang BH: Molecular mechanisms of gene
regulation mediated by nuclear receptor superfamily. Sheng Li Ke
Xue Jin Zhan. 34:369–372. 2003.(In Chinese). PubMed/NCBI
|
|
80
|
Laudet V, Hänni C, Coll J, Catzeflis F and
Stéhelin D: Evolution of the nuclear receptor gene superfamily.
EMBO J. 11:1003–1013. 1992.PubMed/NCBI
|
|
81
|
Szmulewitz RZ, Chung E, Al-Ahmadie H,
Daniel S, Kocherginsky M, Razmaria A, Zagaja GP, Brendler CB,
Stadler WM and Conzen SD: Serum/glucocorticoid-regulated kinase 1
expression in primary human prostate cancers. Prostate. 72:157–164.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sahu B, Laakso M, Pihlajamaa P, Ovaska K,
Sinielnikov I, Hautaniemi S and Jänne OA: FoxA1 specifies unique
androgen and glucocorticoid receptor binding events in prostate
cancer cells. Cancer Res. 73:1570–1580. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Arora VK, Schenkein E, Murali R, Subudhi
SK, Wongvipat J, Balbas MD, Shah N, Cai L, Efstathiou E, Logothetis
C, et al: Glucocorticoid receptor confers resistance to
antiandrogens by bypassing androgen receptor blockade. Cell.
155:1309–1322. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Montgomery B, Cheng HH, Drechsler J and
Mostaghel EA: Glucocorticoids and prostate cancer treatment: Friend
or foe? Asian J Androl. 16:354–358. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Montgomery B, Kheoh T, Molina A, Li J,
Bellmunt J, Tran N, Loriot Y, Efstathiou E, Ryan CJ, Scher HI and
de Bono JS: Impact of baseline corticosteroids on survival and
steroid androgens in metastatic castration-resistant prostate
cancer: Exploratory analysis from COU-AA-301. Eur Urol. 67:866–873.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Song C, Kim Y, Min GE and Ahn H:
Dihydrotestosterone enhances castration-resistant prostate cancer
cell proliferation through STAT5 activation via glucocorticoid
receptor pathway. Prostate. 74:1240–1248. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lorente D, Omlin A, Ferraldeschi R, Pezaro
C, Perez R, Mateo J, Altavilla A, Zafeirou Z, Tunariu N, Parker C,
et al: Tumour responses following a steroid switch from prednisone
to dexamethasone in castration-resistant prostate cancer patients
progressing on abiraterone. Br J Cancer. 111:2248–2253. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chen R, Yu Y and Dong X: Progesterone
receptor in the prostate: A potential suppressor for benign
prostatic hyperplasia and prostate cancer. J Steroid Biochem Mol
Biol. 166:91–96. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Grindstad T, Andersen S, Al-Saad S, Donnem
T, Kiselev Y, Nordahl Melbø-Jørgensen C, Skjefstad K, Busund LT,
Bremnes RM and Richardsen E: High progesterone receptor expression
in prostate cancer is associated with clinical failure. PloS One.
10:e01166912015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Morgensztern D and McLeod HL:
PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer
Drugs. 16:797–803. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Statz CM, Patterson SE and Mockus SM: mTOR
inhibitors in castration-resistant prostate cancer: A systematic
review. Target Oncol. 12:47–59. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kato M, Banuelos CA, Imamura Y, Leung JK,
Caley DP, Wang J, Mawji NR and Sadar MD: Cotargeting androgen
receptor splice variants and mTOR signaling pathway for the
treatment of castration-resistant prostate cancer. Clin Cancer Res.
22:2744–2754. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
McMenamin ME, Soung P, Perera S, Kaplan I,
Loda M and Sellers WR: Loss of PTEN expression in paraffin-embedded
primary prostate cancer correlates with high Gleason score and
advanced stage. Cancer Res. 59:4291–4296. 1999.PubMed/NCBI
|
|
94
|
Zhang W, Zhu J, Efferson CL, Ware C,
Tammam J, Angagaw M, Laskey J, Bettano KA, Kasibhatla S, Reilly JF,
et al: Inhibition of tumor growth progression by antiandrogens and
mTOR inhibitor in a Pten-deficient mouse model of prostate cancer.
Cancer Res. 69:7466–7472. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Park SI, Shah AN, Zhang J and Gallick GE:
Regulation of angiogenesis and vascular permeability by Src family
kinases: Opportunities for therapeutic treatment of solid tumors.
Expert Opin Ther Targets. 11:1207–1217. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Araujo JC, Trudel GC, Saad F, Armstrong
AJ, Yu EY, Bellmunt J, Wilding G, McCaffrey J, Serrano SV, Matveev
VB, et al: Docetaxel and dasatinib or placebo in men with
metastatic castration-resistant prostate cancer (READY): A
randomised, double-blind phase 3 trial. Lancet Oncol. 14:1307–1316.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yang JC, Bai L, Yap S, Gao AC, Kung HJ and
Evans CP: Effect of the specific Src family kinase inhibitor
saracatinib on osteolytic lesions using the PC-3 bone model. Mol
Cancer Ther. 9:1629–1637. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bettedi L and Foukas LC: Growth factor,
energy and nutrient sensing signalling pathways in metabolic
ageing. Biogerontology. 18:913–929. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Neto AS, Tobias-Machado M, Wroclawski ML,
Fonseca FL, Pompeo AC and Del Giglio A: Molecular oncogenesis of
prostate adenocarcinoma: Role of the human epidermal growth factor
receptor 2 (HER-2/neu). Tumori. 96:645–649. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wen Y, Hu MC, Makino K, Spohn B,
Bartholomeusz G, Yan DH and Hung MC: HER-2/neu promotes
androgen-independent survival and growth of prostate cancer cells
through the Akt pathway. Cancer Res. 60:6841–6845. 2000.PubMed/NCBI
|
|
101
|
Smith DC, Smith MR, Sweeney C, Elfiky AA,
Logothetis C, Corn PG, Vogelzang NJ, Small EJ, Harzstark AL, Gordon
MS, et al: Cabozantinib in patients with advanced prostate cancer:
Results of a phase II randomized discontinuation trial. J Clin
Oncol. 31:412–419. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Cannistraci A, Di Pace AL, De Maria R and
Bonci D: MicroRNA as new tools for prostate cancer risk assessment
and therapeutic intervention: Results from clinical data set and
patients' samples. Biomed Res Int. 2014:1461702014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kojima S, Goto Y and Naya Y: The roles of
microRNAs in the progression of castration-resistant prostate
cancer. J Hum Genet. 62:25–31. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Cannistraci A, Di Pace AL, Di Pace AL, De
Maria R and Bonci D: MicroRNA as new tools for prostate cancer risk
assessment and therapeutic intervention: Results from clinical data
set and patients' samples. Biomed Res Int. 2014:1461702014.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Schaefer A, Jung M, Mollenkopf HJ, Wagner
I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G and Jung
K: Diagnostic and prognostic implications of microRNA profiling in
prostate carcinoma. Int J Cancer. 126:1166–1176. 2010.PubMed/NCBI
|
|
106
|
Jalava SE, Urbanucci A, Latonen L,
Waltering KK, Sahu B, Jänne OA, Seppälä J, Lähdesmäki H, Tammela TL
and Visakorpi T: Androgen-regulated miR-32 targets BTG2 and is
overexpressed in castration-resistant prostate cancer. Oncogene.
31:4460–4471. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Takeshita F, Patrawala L, Osaki M,
Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG,
Brown D and Ochiya T: Systemic delivery of synthetic microRNA-16
inhibits the growth of metastatic prostate tumors via
downregulation of multiple cell-cycle genes. Mol Ther. 18:181–187.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kashat M, Azzouz L, Sarkar SH, Kong D, Li
Y and Sarkar FH: Inactivation of AR and Notch-1 signaling by
miR-34a attenuates prostate cancer aggressiveness. Am J Transl Res.
4:432–442. 2012.PubMed/NCBI
|
|
109
|
Majid S, Dar AA, Saini S, Shahryari V,
Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, et
al: miRNA-34b inhibits prostate cancer through demethylation,
active chromatin modifications, and AKT pathways. Clin Cancer Res.
19:73–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Barron N, Keenan J, Gammell P, Martinez
VG, Freeman A, Masters JR and Clynes M: Biochemical relapse
following radical prostatectomy and miR-200a levels in prostate
cancer. Prostate. 72:1193–1199. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Varambally S, Cao Q, Mani RS, Shankar S,
Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al:
Genomic loss of microRNA-101 leads to overexpression of histone
methyltransferase EZH2 in cancer. Science. 322:1695–1699. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Mortensen MM, Høyer S, Orntoft TF,
Sørensen KD, Dyrskjøt L and Borre M: High miR-449b expression in
prostate cancer is associated with biochemical recurrence after
radical prostatectomy. BMC Cancer. 14:8592014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Casanova-Salas I, Rubio-Briones J,
Calatrava A, Mancarella C, Masiá E, Casanova J, Fernández-Serra A,
Rubio L, Ramírez-Backhaus M, Armiñán A, et al: Identification of
miR-187 and miR-182 as biomarkers of early diagnosis and prognosis
in patients with prostate cancer treated with radical
prostatectomy. J Urol. 192:252–259. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Nam RK, Benatar T, Wallis CJ, Amemiya Y,
Yang W, Garbens A, Naeim M, Sherman C, Sugar L and Seth A: MiR-301a
regulates E-cadherin expression and is predictive of prostate
cancer recurrence. Prostate. 76:869–884. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Bell EH, Kirste S, Fleming JL, Stegmaier
P, Drendel V, Mo X, Ling S, Fabian D, Manring I, Jilg CA, et al: A
novel miRNA-based predictive model for biochemical failure
following post-prostatectomy salvage radiation therapy. PloS One.
10:e01187452015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Gallagher DJ, Gaudet MM, Pal P, Kirchhoff
T, Balistreri L, Vora K, Bhatia J, Stadler Z, Fine SW, Reuter V, et
al: Germline BRCA mutations denote a clinicopathologic subset of
prostate cancer. Clin Cancer Res. 16:2115–2121. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Beltran H, Yelensky R, Frampton GM, Park
K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus
DM, et al: Targeted next-generation sequencing of advanced prostate
cancer identifies potential therapeutic targets and disease
heterogeneity. Eur Urol. 63:920–926. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Castro E, Goh C, Olmos D, Saunders E,
Leongamornlert D, Tymrakiewicz M, Mahmud N, Dadaev T, Govindasami
K, Guy M, et al: Germline BRCA mutations are associated with higher
risk of nodal involvement, distant metastasis, and poor survival
outcomes in prostate cancer. J Clin Oncol. 31:1748–1757. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Brenner JC, Ateeq B, Li Y, Yocum AK, Cao
Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, et al: Mechanistic
rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene
fusion-positive prostate cancer. Cancer Cell. 19:664–678. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Mateo J, Carreira S, Sandhu S, Miranda S,
Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A,
Tunariu N, et al: DNA-repair defects and olaparib in metastatic
prostate cancer. N Engl J Med. 373:1697–1708. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Polkinghorn WR, Parker JS, Lee MX, Kass
EM, Spratt DE, Iaquinta PJ, Arora VK, Yen WF, Cai L, Zheng D, et
al: Androgen receptor signaling regulates DNA repair in prostate
cancers. Cancer Discov. 3:1245–1253. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Goodwin JF, Schiewer MJ, Dean JL,
Schrecengost RS, de Leeuw R, Han S, Ma T, Den RB, Dicker AP, Feng
FY and Knudsen KE: A hormone-DNA repair circuit governs the
response to genotoxic insult. Cancer Discov. 3:1254–1271. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Li L, Chang W, Yang G, Ren C, Park S,
Karantanos T, Karanika S, Wang J, Yin J, Shah PK, et al: Targeting
poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage
response pathway in castration-resistant prostate cancer. Sci
Signal. 7:ra472014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Farrow JM, Yang JC and Evans CP: Autophagy
as a modulator and target in prostate cancer. Nat Rev Urol.
11:508–516. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Galluzzi L, Pietrocola F, Bravo-San Pedro
JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J,
Gewirtz DA, Karantza V, et al: Autophagy in malignant
transformation and cancer progression. EMBO J. 34:856–880. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Jiang X, Zhong W, Huang H, He H, Jiang F,
Chen Y, Yue F, Zou J, Li X, He Y, et al: Autophagy defects
suggested by low levels of autophagy activator MAP1S and high
levels of autophagy inhibitor LRPPRC predict poor prognosis of
prostate cancer patients. Mol Carcinog. 54:1194–1204. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Jiang X, Li X, Huang H, Jiang F, Lin Z, He
H, Chen Y, Yue F, Zou J, He Y, et al: Elevated levels of
mitochondrion-associated autophagy inhibitor LRPPRC are associated
with poor prognosis in patients with prostate cancer. Cancer.
120:1228–1236. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Mathew R, Karantza-Wadsworth V and White
E: Role of autophagy in cancer. Nat Rev Cancer. 7:961–967. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hönscheid P, Datta K and Muders MH:
Autophagy: Detection, regulation and its role in cancer and therapy
response. Int J Radiat Biol. 90:628–635. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ziparo E, Petrungaro S, Marini ES, Starace
D, Conti S, Facchiano A, Filippini A and Giampietri C: Autophagy in
prostate cancer and androgen suppression therapy. Int J Mol Sci.
14:12090–12106. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Bennett HL, Stockley J, Fleming JT, Mandal
R, O'Prey J, Ryan KM, Robson CN and Leung HY: Does
androgen-ablation therapy (AAT) associated autophagy have a
pro-survival effect in LNCaP human prostate cancer cells? BJU Int.
111:672–682. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Li M, Jiang X, Liu D, Na Y, Gao GF and Xi
Z: Autophagy protects LNCaP cells under androgen deprivation
conditions. Autophagy. 4:54–60. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Xu Y, Chen SY, Ross KN and Balk SP:
Androgens induce prostate cancer cell proliferation through
mammalian target of rapamycin activation and post-transcriptional
increases in cyclin D proteins. Cancer Res. 66:7783–7792. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Stambolic V, MacPherson D, Sas D, Lin Y,
Snow B, Jang Y, Benchimol S and Mak TW: Regulation of PTEN
transcription by p53. Mol Cell. 8:317–325. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Colquhoun AJ, Venier NA, Vandersluis AD,
Besla R, Sugar LM, Kiss A, Fleshner NE, Pollak M, Klotz LH and
Venkateswaran V: Metformin enhances the antiproliferative and
apoptotic effect of bicalutamide in prostate cancer. Prostate
Cancer Prostatic Dis. 15:346–352. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Notte A, Ninane N, Arnould T and Michiels
C: Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast
cancer cells: Role of autophagy and JNK activation. Cell Death Dis.
4:e6382013. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Li Y, Luo P, Wang J, Dai J, Yang X, Wu H,
Yang B and He Q: Autophagy blockade sensitizes the anticancer
activity of CA-4 via JNK-Bcl-2 pathway. Toxicol Appl Pharmacol.
274:319–327. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Maitland NJ, Frame FM, Polson ES, Lewis JL
and Collins AT: Prostate cancer stem cells: Do they have a basal or
luminal phenotype? Horm Cancer. 2:47–61. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Rizzo S, Attard G and Hudson DL: Prostate
epithelial stem cells. Cell Prolif. 38:363–374. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Richardson GD, Robson CN, Lang SH, Neal
DE, Maitland NJ and Collins AT: CD133, a novel marker for human
prostatic epithelial stem cells. J Cell Sci. 117:3539–3545. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Collins AT, Berry PA, Hyde C, Stower MJ
and Maitland NJ: Prospective identification of tumorigenic prostate
cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Maitland NJ and Collins A: A tumour stem
cell hypothesis for the origins of prostate cancer. BJU Int.
96:1219–1223. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Nicolis SK: Cancer stem cells and
‘stemness’ genes in neuro-oncology. Neurobiol Dis. 25:217–229.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Wang S, Huang S, Zhao X, Zhang Q, Wu M,
Sun F, Han G and Wu D: Enrichment of prostate cancer stem cells
from primary prostate cancer cultures of biopsy samples. Int J Clin
Exp Pathol. 7:184–193. 2013.PubMed/NCBI
|
|
146
|
Tárnok A, Ulrich H and Bocsi J: Phenotypes
of stem cells from diverse origin. Cytometry A. 77:6–10. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Ojo D, Lin X, Wong N, Gu Y and Tang D:
Prostate cancer stem-like cells contribute to the development of
castration-resistant prostate cancer. Cancers (Basel). 7:2290–2308.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Guo Z, Huang H, Zeng L, Du T, Xu K, Lin T,
Jiang C, Dong W, Cao Y, Chen J, et al: Lentivirus-mediated RNAi
knockdown of prostate-specific membrane antigen suppresses growth,
reduces migration ability and the invasiveness of prostate cancer
cells. Med Oncol. 28:878–887. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Nadiminty N, Lou W, Lee SO, Lin X, Trump
DL and Gao AC: Stat3 activation of NF-(kappa)B p100 processing
involves CBP/p300-mediated acetylation. Proc Natl Acad Sci USA.
103:pp. 7264–7269. 2006; View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Scher HI, Fizazi K, Saad F, Taplin ME,
Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et
al: Increased survival with enzalutamide in prostate cancer after
chemotherapy. N Engl J Med. 367:1187–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Cindolo L, Natoli C, De Nunzio C, De Tursi
M, Valeriani M, Giacinti S, Micali S, Rizzo M, Bianchi G, Martorana
E, et al: Abiraterone acetate for treatment of metastatic
castration-resistant prostate cancer in chemotherapy-naive
patients: An Italian analysis of patients' satisfaction. Clin
Genitourin Cancer. 15:520–525. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Kantoff PW, Higano CS, Shore ND, Berger
ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims
RB, et al: Sipuleucel-T immunotherapy for castration-resistant
prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Inamoto T and Azuma H: Overview of the
ongoing clinical trials for new treatments for castrate-resistant
prostate cancer (CRPC). Nihon Rinsho. 74 Suppl 3:S653–S659.
2016.(In Japanese).
|
|
154
|
Penning TM: Mechanisms of drug resistance
that target the androgen axis in castration resistant prostate
cancer (CRPC). J Steroid Biochem Mol Biol. 153:105–113. 2015.
View Article : Google Scholar : PubMed/NCBI
|